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Abstract-State estimators are vitally important in energy control centers. The measurements that
come from control system are generally analysed by a state estimator. Since there can al\V<1ysbe bad
measurements in the system, estimated value and the true value of the state estimator can be far from
each other. In this paper, by using an artificial neural network (ANN), a bad data detection,
identification and then elimination preestimation filter is outlined.

1. Introduction
The electrical energy, from generation to consumption, is measured, protected and
controlled at various times. It is the control centers' job to obtain the safety and
continuity of the electtical energy. For this, state estimators have an important role in
energy control centers.

In control stations, measurement values are obtained by the SCADA system. This system
is an application that collects the data needed for operators and other applied programs in
control center and sends their commands to stations. By using the measurement value
that come from the SCADA system and other data, state estimation and state variables of
the network (bus voltage and angles) can be detected.

Measurement values come from SCADA system may include many errors. These errors
are because of analogous numerical translators measurement equipment, etc. An
important job of the state estimation is to detect and identify the measurement errors.
Measurement errors cause the data be far from the true values. To handle this problem,
several bad data detection and identification methods have been developed and reported
in the literature.

Most common state estimation techniques in industry are based on the weighted least
squares (WLS) method. These state estimators usually repeated an estimation detection-
elimination cycle until an acceptable result is obtained. WLS based estimators cannot
effectively detect and identify interactive and conforming bad data.

In this paper, a back propagation artificial neural network based preestimation method for
bad data detection, identification and elimination is presented.

2. ANNs and Data Handling
For a non-linear relation or a complex pattern between input and output values, ANN is a
very powerful estimation method. In most ANN applications, for constructing non-linear
transfer functions, usually "back-propagation technique" is used.

In this paper, a pre-estimation filter is designed as shown in Fig.!. This filter detects and
identifies the gross errors in raw measurements before the state estimation. For any data,



it is said "bad" if the difference between the measurement variables is larger then an
identification threshold
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Figure 1. Preestimation Filter
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During the training stage, the output part of a training pattern is the same as input part
and both parts consist of con-ect measurements of the system. When the neural network
is being trained, the connection weights are corrected to minimise the error between the
true and estimated values of the measurement variables. In ANN, the weights are the
distributed associated memory units and show the current state of the knowledge. In
training examples, systems operation measurements are shown with all weights and
distributed among the measurements taken from system operation states. This will lead to
a responsible network reasonable network response when the network is presented with
incomplete, noisy or previously unseen inputs, and is referred to as "generalisation".

3. Architecture of Proposed Measurement Estimator
Architecture of a measurement estimator is composed of an input, an output and hidden
layer as shown in Fig.2. The input values of the network are the measurements from a
study system and these output units provide the input values estimated values.

Measurements
Figure 2. Architecture of the neural network measurement estimator

Given the true value of the measurement variable, the activation function developed for
hidden and output layer is given by,



where g; and 0; are the input and output for the ith unit respectively. This is a smooth
version of a (-1,1) step fimction. When the generalised delta rule is used as a training
procedure, the error signal of the ith unit in the output layer is given by,

where ti is the desired output of the ith unit. The error signal of the ith unit in the hidden
layer is given by,

()i = (112).(1-0;2). L()k,Wki (3)
k

where k is the unit index in the output layer and Wk is the weight from ith to kth unit.

4. Training Examples
The true values of all training examples are obtained from power flow studies conducted
over the entire system. The resultant measurements are divided into several measurement
subsets each with an assigned neural network as in Fig.3. Many training patterns for each
neural network are formed by selecting the true values of its corresponding measurement
subset from the training examples. Each training pattern represents a training example for
its corresponding neural network . Each neural network is actually trained to be an
encoder, encoding its measurement subset onto itself Such a trained network is called
"associative". After training, each network becomes an estimator of a corresponding
measurement subset.
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Fig.3. Measurements which are divided into several measurement subsets each with an
assigned neural network

5. Calculations with Bad Data
In bad data detection and identification block of the filters comparison between
measurement inputs and their estimated values flags the bad measurement inputs.

5.1. Detection and identification of bad data
If the difference of the bad data measurement and its estimated value is greater than the
difference of a good measurement and its estimated value, bad measurement inputs are
flagged. The rule for bad data detection and identification is as follows:



where, Zj is the measured value of the ith measurement variable, OJ the estimated value
of the ith measurement variable and rj the threshold value of bad data for the ith
measurement.

According to this rule, if the square of the difference between the measured and
estimated values of a measurement variable is greater than a given threshold, this value is
flagged as bad measurement. The threshold of each variable is determined to be larger
than its measurement standard deviation O'r and less than a critical error used in defining
the bad data.

5.2. Replacement of Bad Data
With the proposed filter, bad measurement detection and replacement of bad
measurement with good estimates can be provided. If there are too many bad
measurements, detection and identification procedure can be repeated in order to get
better estimations. The elimination of identified bad data cause locally or globally
measurement system to make minimum number of calculations. A block diagram for
detection bad data is given in figure 4.
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In our study, as stated before, a back propagation ANN based bad data detection,
identification and elimination method is applied on an example system as shown in Fig.5.

The characteristic values of the example system is given in Table 2. The result of power
flow analysis for the true values measurement value of the example system and the values
when the procedure stated in our study is applied to the example system are shown in
Table 1.



TABLE 1. Values obtained from power flow (base case values), measured values and
estimated values.

Base case value Measured value Estimated value
g; Z Oi

--------------- -------------- ----------------
Measurement kV MW MVAR kV MW MVAR kV MW MVAR

MVl 241.5 238.4 241.711
MGl 107.9 16.0 113.1 20.2 107.9 15.999
Mu 28.7 -15.4 -31.5 13.2 28.699 -15.399
Ml4 43.6 20.1 38.9 21.2 43.6 20.1
Ml' 35.6 11.3 35.7 9.4 35.599 11.299

MVl 241.5 237.8 241.742
Mm 50.0 74.4 48.4 71.9 50.0 74.4
M2l -27.8 12.8 -34.9 9.7 -27.799 12.8
M24 33.1 46.1 32.8 38.3 33.099 46.1
M2' 15.5 15.4 17.4 22.0 15.499 15.399
M26 26.2 12.4 22.3 15.0 26.199 12.4
M23 2.9 -12.3 8.6 -11.9 3.043 -12.299

MV3 246.3 250.7 246.307
MG3 60.0 89.6 55.1 90.6 60.0 89.6
M32 -2.9 5.7 -2.1 10.2 -3.043 5.607
M30l 19.1 23.2 17.7 23.9 19.099 23.2
M36 43.8 60.7 43.3 58.3 43.8 60.7

MV4 227.6 225.7 227.623
MIA 70.0 70.0 71.8 71.9 70.0 70.0
~l -42.5 -19.9 -40.1 -14.3 -42.5 -19.9
~ -31.6 -45.1 -29.8 -44.3 -31.599 -45.1
~~ 4.1 -4.9 0.7 -17.4 4.123 -4.902

Mv, 226.7 225.7 226.347
Mu 70.0 70.0 72.0 67.7 70.0 70.0
M~ -4.0 -2.8 -2.1 -1.5 -4.027 -2.9204
Moll -34.5 -13.5 -36.6 -17.5 -34.499 -13.5
M'2 -15.0 -18.0 -11.7 -22.2 -14.999 -18.0
M'3 -18.0 -26.1 -25.1 -29.9 -17.999 -26.1
M.16 1.6 -9.7 -2.1 -0.8 2.132 -9.699

MV6 231.0 228.9 230.957
ML6 70.0 70.0 72.3 60.9 70.0 70.0
Jv4, -1.6 3.9 1.0 2.9 -2.132 3.9174
~2 -25.7 -16.0 -19.6 -22.3 - 25.169 -16.0
~3 -42.8 -57.9 -46.8 -51.1 -42.8 -57.9

TABLE 2. Characteristic values of the example system

BUS DATA
BUS NO. GEN VOLTAGE P LOAD Q LOAD

(puMW) ( puKV) (puMW) (puMVAR)
SWING 1 0.00 1.050 0.00 0.00

2 0.50 1.050 0.00 0.00
3 0.60 1.070 0.00 0.00
4 0.00 1.000 0.70 0.70
5 0.00 1.000 0.70 0.70
6 0.00 1.000 0.70 0.70



LINE DATA
FROM TO R X BCAP*

1 2 0.1000 0.2000 0.0200
1 4 0.0500 0.2000 0.0200
1 5 0.0800 0.3000 0.0300
2 3 0.0500 0.2500 0.0300
2 4 0.0500 0.1000 0.0100
2 5 0.1000 0.3000 0.0200
2 6 0.0700 0.2000 0.0250
3 5 0.1200 0.2600 0.0250
3 6 0.0200 0.1000 0.0100
4 5 0.2000 0.4000 0.0400
5 6 0.1000 0.3000 0.0300

BCAP* = 1/2 Tota1line charging

Conclusion
ANN based bad detection, identification and elimination procedure generally has great
accuracy as shown in the numerical application made on the example system. When the
result in Table I is examined, it seen that this system is superior and more economic
(according to the cost comes from the computer speed) than other method.<;.Decreasing
of error level depends on number of analysis in this method. We can say that number of
analysis must be increased for minimum error level.

We decided that measurement values which are valid for Eq.4 are bad data in this
numerical application. In this case, bad data are in the M12(P,Q), M21(P), M24(Q),
M4s(Q), MS3(P), MS6(Q), ML6(Q) measurement.
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