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Abstract: Due to a trend to higher sustainability, biodiesel is often mixed into petrodiesel. The
analysis of these blends on a molecular level is not trivial, since huge differences in concentrations
and polarity of the analytes require a large dynamic range of the analytical method, as well as the
ability to investigate molecules of widely different polarities. A combination of high-performance
liquid chromatography (HPLC) with high resolution mass spectrometry (HRMS) was identified as
a promising method and a normal-phase (NP)-HPLC using amino-functionalized silica gel-based
stationary phase delivered the best results with very fast (under 4 min) measurements, with distinct
separation of the compounds and clean mass spectra of singular compounds. This method can also
be easily modified to elute all FAMEs (fatty acid methyl esters) in one singular peak, thus making the
separation even faster (under 3 min).
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1. Introduction

Though fossil fuels still have the highest share of all energy sources used worldwide
they are accompanied by a number of problems [1]. First of all they are a finite resource, thus
determined to deplete in the future causing huge social turmoil [2,3]. Secondly, burning
these fuels produces great amounts carbon dioxide, which increases global warming,
causing severe ramifications for the environment and humanity [4–6]. This results in a
sociological and economical shift to renewable energies, causing fossil fuels to be less
profitable and increases the need for renewable energy sources [7,8]. The transport sector is
one of the biggest emitters of CO2 and reliant on liquid energy sources, but most renewable
energy sources produce electricity [1,9]. Since the majority of the newly registered cars
in Germany are still fuel powered, the renewable energy content in transportation is very
low [10,11]. To lessen the carbon footprint of the transport sector one can replace petro
based fuel with fuel made from renewable sources, e.g., biodiesel. Biodiesel is in its physical
properties very similar to petrodiesel fuel and is therefore mixed into commercial diesel
fuel in many countries, sometimes by law as in Germany [12]. Due to its similar physical
properties, biodiesel can be implemented into the current energy mix for the transport
sector, still using the existing infrastructure for storage and transportation. Compared
to petrodiesel, biodiesel produces less carbon dioxide, less particulate matter (PM) and
shows better lubricious traits [13–15]. The downside of biodiesel usage is a small increase
in NOx emissions upon combustion [15–19]. In contrast to petrodiesel, biodiesel is made
from animal or plant lipids, processed via alkali-hydroxide-catalyzed transesterification
to fatty acid methyl esters (FAMEs) [20]. The source materials highly influence the FAME
distribution in biodiesel and with it the characteristics and aging properties of the fuel [19].
Feedstocks for biodiesel production vary greatly and are often dependent on local climate
and infrastructure. This makes rapeseed oil and used cooking oils the two main origin
materials for biodiesel production in Germany [21]. Biodiesel are categorized based on
their source material. If they are made from edible sources, and thus compete with food
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production, like rapeseed methyl ester (RME), they are categorized as a first generation
biodiesel. [22] Since UCOME (used cooking oils methyl ester—UCOME) is recycled from
old cooking fats, normally a waste product, and therefore does not interfere with food
production it is mostly considered a second generation biofuel. [23] The main constituents
of biodiesel are five methylesters of fatty acids, namely C16:0 and C18:0-3 (Figure 1). They
are categorized by the length of the fatty acid chain (C16:0) and the number of unsaturated
carbon bonds (C16:0). The distribution of these five FAMEs is defined by the source material
used [24]. On the other hand, petrol based diesel consists of a great variety of different
compounds, possibly in the range of tens of thousands of different molecules, with a
limited number identified so far. This means, that a single compound in diesel is only
present in minor concentrations [25–28]. Although biodiesel is only blended into diesel
up to 7% according to DIN EN 590, this means that the five esters possess much higher
concentrations in the resulting blend than the petro diesel compounds. This discrepancy in
concentration between the different compounds, bears an analytical problem and leads to
the necessity of an analytical method with high dynamic range, which limits the choice for
analysis greatly. Furthermore the five biodiesel compounds are very polar [29], whereas
petrodiesel mainly consists of non or low polar hydrocarbons (Figure 1). This bears another
analytical problem, since there is almost no single analytical method which covers such
a wide discrepancy in dynamic range and polarity. To facilitate this problem, we studied
the capabilities of different chromatographic separation methods that are coupled to high
resolution mass spectrometry (HRMS) [30–35] and tested them on separating and analyzing
bio-/petrodiesel blends. HRMS has shown itself to be invaluable in analyzing complex
energy related mixtures [36–38], and we chose high performance liquid chromatography
(HPLC) as the best suitable separation method. Among the HPLC approaches we tested
were reverse phase HPLC (RP-HPLC) with an octadecylsilane stationary phase and Ag-
HPLC, where the stationary phase has been functionalized with silver ions. Ag-HPLC has
been used in FAME separation before [39,40] and showed great potential in separating
FAMEs and even different FAME stereoisomers, but exhibited long separation times and
delivered unreliable results in our testing. RP-HPLC has been used in biodiesel production
quality control [41,42] and was tested here as well, but the interaction of unsaturated esters
with the stationary phase was too strong and prevented suitable separations.
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Figure 1. Formulas of C16:0, C18:0, C18:1, C18:2, C18:3, from top to bottom (left side) and a selection
of diesel components (right side).

In the end, a normal-phase chromatography (NP-HPLC) method based on adulteration
analysis experiments [43] was developed and tested for its ability to enhance information
gathered from mass spectrometric measurements of blends compared to direct injection,
and is presented here. The ultimate goal was to provide a fast method that is able to
cleanly and efficiently separate the bio- from the petro-diesel components in fuel blends
to circumvent suppression effects in mass spectrometric analysis, ideally with a FAME
separation as well to allow for individual FAME detection, and which can also be adapted to
other fields, where simultaneous detection of polar and non-polar compounds is necessary.
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2. Materials and Methods

Sample preparation. Two different samples, a pure rapeseed methyl ester (RME)
and a blend of 10% RME in petrodiesel were used here. The biodiesel FAME content is
presented in Table 1. Small amounts of fuel samples were gathered and diluted in either
methanol to 100 ppm (direct injection) or in n-heptane to 1000 ppm (HPLC).

Table 1. Properties of the biodiesel used in this study.

Parameter RME
Water content (mg/kg) 264
Ester content (%w/w)

C16:0 4.1
C18:0 1.8
C18:1 56.2
C18:2 19.7
C18:3 10.0

Mass spectrometry. As a detector for the experiments an Orbitrap Elite mass spec-
trometer (Thermo Scientific, Bremen, Germany) with a resolution setting of R = 480,000
(FWHM (full width at half maximum) at m/z 400), scanning from m/z 200–1000.

Direct injection. To test the application of different ionization methods, direct injection
mass spectrometry experiments were carried out on an Orbitrap Elite (Thermo Scientific,
Bremen, Germany) with the settings mentioned above. For APPI(+) (atmospheric pressure
photo ionization) and APCI(+) (atmospheric pressure chemical ionization) the flow rate
was 10 µL/min. APCI(+) was set to a discharge current of 4.0 µA and APPI(+) used a
Krypton-VUV lamp (Syagen, Tustin, CA, USA) emitting at 10.0 and 10.6 eV. For ESI(+)
measurements the flow rate was reduced to 5 µL/min and the voltage was set to 4 kV.
The standard substance methyl oleate (>99%, Sigma-Aldrich Chemie GmbH, Taufkirchen,
Germany) was measured with ESI(+). All direct injection samples were either dissolved in
methanol (Standard 100 ppm, diesel 100 ppm) or n-heptane (blend 1000 ppm). The solvents
used for this were n-heptane (Sigma-Aldrich Chemie GmbH, LiChrosolv HPLC grade) or
methanol (J.T.Baker, Ultra HPLC Grade).

HPLC. All HPLC separation were conducted with an UltiMate 3000 HPLC system
(Thermo Fischer Scientific, Bremen, Germany) housing a binary pump, column thermostat
and UV/PDA (ultraviolet/photo diode array) detector.

Normal phase chromatography (NP-HPLC). The column used for NP-HPLC sep-
arations was a Hypersil GOLD Amino-LC with a particle size of 1.9 µm and a size of
2.1 × 100 mm (Thermo Fischer Scientific, Bremen, Germany). The mobile phase system
consisted of A. n-heptane (Sigma-Aldrich Chemie GmbH, LiChrosolv HPLC grade) as base
solvent and MTBE (tert-butyl methyl ether) (Sigma-Aldrich Chemie GmbH, CHROMA-
SOLV Plus HPLC) as solvent B. The flow rate was set to a flow of 0.4 mL/min. Gradient
systems are presented in Table 2. Ionization source for these measurements was APPI(+)
with a Krypton-VUV lamp (Syagen, Tustin, CA, USA) emitting at 10.0 and 10.6 eV. The
detector was an Orbitrap Elite mass spectrometer with the specifications mentioned above.

Table 2. Solvent gradients for the different HPLC methods.

Method 1 Method 2
Time (min) B (%) Time (min) B (%)

0 0 0 0
1 0 1 20

1.5 10 8.5 20
5 30 9.5 0
8 30 19 0
10 0
29 0
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Data. All data analysis was carried out with Xcalibur 2.2 software (Thermo Fischer
Scientific, Bremen, Germany).

3. Results

The analytical challenge of analyzing a blend of biodiesel/petrodiesel has, as men-
tioned above, one problem in regards to the dynamic range and another one due to different
polarities. Considering the dynamic range, the standard mixture rate of biodiesel in a blend
is not more than 10%. This 10% is divided among 5 different chemical compounds resulting
in an average concentration of about 2% for each FAME (fatty acid methyl ester). The
remaining 90% is divided among hydrocarbons and related chemicals from the fossil fuel,
which can easily reach more than 10,000 different compounds. This is only an estimation
but it would result in an average concentration of 0.009% per compound. In this estimation,
diverging concentration patterns and response factors that might influence the intensity
distribution were left aside. It reveals, however, that an average difference in concentration
of at least four orders of magnitude, has to be dealt with.

In addition to this, the different compound types exhibit different polarities, a fac-
tor which greatly influences ionization in mass spectrometry. Based on polarity, each of
the three major atmospheric pressure ionization (API) methods will have some type of
discrimination or suppression against certain compounds [44–46]. Therefore, a careful
evaluation of the most suitable ionization technique for this project is necessary. To this
end a biodiesel/petrodiesel blend sample has been used in direct injection experiments
with an Orbitrap Elite mass spectrometer, comparing electrospray ionization (ESI(+)) with
atmospheric pressure photo ionization (APPI(+)) and atmospheric pressure chemical ion-
ization (APCI(+)) as ionization methods. The main results are summarized in Figure 2.
This is a good example for the problems caused by the large differences in polarity and
concentration as mentioned above. For polar substances such as the esters in biodiesel,
an electrospray ionization would be preferred, and indeed the usage of ESI(+) gives high
intensities of all polar compounds in the spectrum, as seen in Figure 2A, but no non-polar
substances were recorded. Alternative ionization methods such as APPI(+) and APCI(+)
reveal a different picture. These ionizations methods are usually the method of choice for
the analysis of non-polar compounds, since these methods are not as dependent on acidity
as ESI(+).
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Figure 2. Spectra of blend 1, measured with different ionization techniques; (A): ESI(+) reveals only
a very limited numbers of non-polar diesel compounds, (B): APPI(+); here some non-polar diesel
compounds can be detected although the polar biodiesel compounds significantly influence the
intensity, (C): APCI(+) shows similar results, as petrodiesel compounds are present in low intensity
while biodiesel compounds appear with higher intensities.

The same blend was measured with APPI(+) and APCI(+) as shown in Figure 2B,C
and the results from both methods show a great variety of hydrocarbon signals, the main
constituent of petrodiesel, but data sets are still dominated by the ester signals, intensity
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wise, and here especially C18:1 is showing the highest intensity. These results show
that, in this application, the small non-polar compounds are still suppressed to a certain
degree. All measured signals represent one mass-to-charge ratio and since high resolution
is used a corresponding elemental composition can be assigned with high confidence. The
assigned formulas were sorted into groups, regarding their functional groups (class) and
are displayed in Figure 3. Population in this case is the number of assigned elemental
compositions and relative intensity represents the sum of intensity for all signals in the
corresponding class. This reveals two major differences between ESI and APPI/APCI.
First, ESI(+) detects oxygen compounds as sodium adducts, as opposed to protonated
molecules in APPI/APCI, and ESI(+) can detect small intensities of compounds with
higher oxygen contents. The population of these compounds is constant and the elemental
compositions show that these are FAMEs with additional oxygen. The second major
difference is that ESI(+) cannot detect pure hydrocarbons. These are only visible in APPI
or APCI measurements. Furthermore, the original stated problem, of high numbers of
compounds with low intensities, is confirmed here. Although APPI/APCI show low
relative intensities for hydrocarbons compared to oxygenated compounds, the population
(the number of assigned compounds) is considerably higher for hydrocarbons than for
oxygen compounds. APPI and APCI produce very similar results and are both effective
methods for the analysis of biodiesel/petrodiesel blends, but since APPI is detecting slightly
more compounds in every class except for O2 [H] it is considered the ionization method of
choice for further HPLC experiments.
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Chromatographic separation. The direct injection experiments illustrated the chal-
lenges of measuring complex mixtures with huge differences in polarities and concentra-
tions. One way to better investigate such blends is if the compound classes that show
different characteristics are not detected together. To achieve this, a chromatographic
separation based on polarity, sorting the constituents of the sample in different polarity
windows, is an effective tool. HPLC offers high versatility with different stationary materi-
als and corresponding mobile phases to adjust to the exact need for specific samples [47,48].
Here, different chromatographic methods that allow a baseline separation of the polar
biodiesel compounds in combination with separating them from the fossil diesel as well,
have been tested beforehand. The best application for this problem seems to be a normal
phase separation with an amino-coated silica column.

De Matos et al. successfully used normal-phase-HPLC (NP-HPLC) for the separa-
tion of adulterants in biodiesel blends which makes it an interesting candidate for this
application [43]. Here, we implemented an aminopropyl-functionalized column, with
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n-heptane as the mobile phase and a MTBE gradient for the separation of the five different
FAME compounds. Using the NP-HPLC (Figure 4) results in a very fast separation, where
the separation is finished after only 4 min. All three unsaturated esters elute in base line
separated sharp peaks and even C16:0 and C18:0 begin to elute separately; the first half of
the split peak at around 2.3 min is dominated by C18:0 and the latter by C16:0.
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Separation of biodiesel/petrodiesel blends. The separation of different FAMEs based
on their polarity is promising, but the major incentive of chromatography is to separate the
polar from the non-polar compounds in blends. This allows for separate mass spectrometric
detection to avoid ionization competition and suppression of some ions. In Figure 5 the
Amino-NP-HPLC separation of a 10% blend of RME in diesel is depicted, which has been
investigated via direct injection earlier. The chromatogram shows that this method can
easily separate the petrodiesel from biodiesel and furthermore is still able to separate the
five esters present in biodiesel, also. The diesel components with low polarity elute first
and are still baseline separated from the first biodiesel components. However, due to
the diesel compounds’ low polarity, which is relatively even among the large number of
compounds, the interaction with the stationary phase is too weak to truly separate singular
diesel components. Since this method is finished after only 4 min, this separation technique
is incredibly fast and allows for the further investigation via mass spectrometry.
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Mass spectrometry. The separation is evaluated in detail (Figure 6) by comparing the
mass spectra of the C18:1 (methyl oleate) peaks seen in Figures 4 and 5 as well as a C18:1
standard. Interestingly enough, in all spectra apart from the main C18:1 (C19H36O2) peak
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in every spectrum there are two more peaks visible, C18H32O and C18H30. After such a
chromatographic separation these substances would not elute together, and they are also
visible in the standard compound. The most likely explanation is that fragmentation can
cause the loss of methanol (C18H32O) and an additional water loss (C18H30). But since all
the spectra look alike, the conclusion is, that this method works for the separation of the
biodiesel components and the esters are cleanly separated and can be measured with MS in
good intensities after separation.
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Mass spectrometry. The separation is evaluated in detail (Figure 6) by comparing the 
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in every spectrum there are two more peaks visible, C18H32O and C18H30. After such a 
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visible in the standard compound. The most likely explanation is that fragmentation can 
cause the loss of methanol (C18H32O) and an additional water loss (C18H30). But since all 
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Figure 6. Spectra of C18:1 Peak: A: RME Min: 2.46–2.73, B: Blend Min: 2.62–2.94, C: Methyl oleate
standard full scan.

The petrodiesel spectra generated from the chromatographic peak in the blend separa-
tion (Figure 5) are compared to the direct injection of the petrodiesel in the MS (Figure 7).
In general, the direct injection measurements of petrodiesel (Figure 7A) show a variety of
signals in the mass range between m/z 200 to 350, mainly representing homologous series
of different hydrocarbons, as expected, since these are the main components of petrodiesel.
After separation from a blend (Figure 7B), all these signals are again visible and the signals
above m/z 350 are in even better intensities compared to the direct injection. This is a
huge success, showing that the separation does indeed improve the mass spectrometric
investigation of blends compared to a direct injection measurement (Figure 2) and reveals a
reasonable representation of the sample.
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After validation, mass spectra for the peak from 0.8–2.0 min (Peak A) and the group of
ester peaks from 2.2–3.6 min (Peak B) were generated and elemental compositions were
assigned based on the exact masses of detected compounds. A class distribution of these
can be seen in Figure 8. Peak A now exhibits highest intensity in the hydrocarbon class,
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with only minor intensities in oxygenated compounds. The population is distributed
more evenly over different groups although still dominated by protonated hydrocarbons.
But most importantly the number of assigned compounds is significantly higher than in
the direct injection of the blend (Figure 3); it was almost doubled from 40 compounds
compared to 92 in the protonated hydrocarbon group alone. Furthermore, many more
oxygen containing diesel components could be detected with one or two oxygen atoms, as
seen in the high population of these two groups in Peak A. These have not been detected
at all in the direct injection. Peak B, representing all FAMEs, shows very similar results
compared to the APPI measurements from direct injection. The peak is still dominated
by O2 compounds, intensity wise. The population pattern shows small changes because,
amongst others, the saturated esters C16:0 and C18:0 are now detected also, though they
have not been detected in direct injection. Detection of oxidized FAME compounds is
still inferior to ESI(+), but overall the chromatographic separation greatly increases mass
spectrometric coverage of molecules in the biodiesel/diesel blend.
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Bulk separation. By further modification of the aforementioned method, namely
increasing the MTBE gradient, the separation can be adjusted to a bulk separation, where
all FAMEs elute together (Figure 9). Separation of diesel and biodiesel compounds is
completed after 3 min and thus this method is useful for faster separations, where no
individual investigation of the FAMEs is necessary. The resulting mass spectra for both
diesel compounds and FAMEs are comparable to what was measured for individual
FAME separation.

The class distribution graphs (Figure 10) also show very similar results to Figure 8, but
with protonated plain hydrocarbons dominating the diesel peak both intensity wise and in
population. Even more protonated hydrocarbon compounds were measured in the bulk
measurement but information was lost on oxygen containing diesel components. The FAME
peak contains nearly the same information as before in regard to mass spectrometry data
and class distribution, although there are lower numbers of oxygenated FAME compounds
detected. All in all, separation Method 2 is fast and delivers very similar information
compared to Method 1, but loses the chromatographic information about the esters.



Separations 2022, 9, 214 9 of 11

Separations 2022, 9, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 8. Comparison of major peaks in blend separation regarding class distribution for different 
hydrocarbon classes with rel. intensities (left) and population (right) which represents the number 
of identified compounds. Classes are describing hydrocarbons with different (amounts of) 
heteroatoms. Square brackets contain the adduct type, no brackets represents radical ions. 

Bulk separation. By further modification of the aforementioned method, namely 
increasing the MTBE gradient, the separation can be adjusted to a bulk separation, where 
all FAMEs elute together (Figure 9). Separation of diesel and biodiesel compounds is 
completed after 3 min and thus this method is useful for faster separations, where no 
individual investigation of the FAMEs is necessary. The resulting mass spectra for both 
diesel compounds and FAMEs are comparable to what was measured for individual 
FAME separation.  

 
Figure 9. Chromatogram of blend, separated via the amino functionalized NP-HPLC with Method 
2. 

The class distribution graphs (Figure 10) also show very similar results to Figure 8, 
but with protonated plain hydrocarbons dominating the diesel peak both intensity wise 
and in population. Even more protonated hydrocarbon compounds were measured in the 
bulk measurement but information was lost on oxygen containing diesel components. The 
FAME peak contains nearly the same information as before in regard to mass 
spectrometry data and class distribution, although there are lower numbers of oxygenated 
FAME compounds detected. All in all, separation Method 2 is fast and delivers very 

Figure 9. Chromatogram of blend, separated via the amino functionalized NP-HPLC with Method 2.

Separations 2022, 9, x FOR PEER REVIEW 10 of 12 
 

 

similar information compared to Method 1, but loses the chromatographic information 
about the esters. 

 
Figure 10. Comparison of major peaks in blend bulk separation regarding class distribution for 
different hydrocarbon classes with rel. intensities (left) and population (right) which represents the 
number of identified compounds. Classes are describing hydrocarbons with different (amounts of) 
heteroatoms. Square brackets contain the adduct type, no brackets represents radical ions. 

4. Conclusions 
Due to the inherent problems of investigating biodiesel/petrodiesel blends, namely 

because of the necessary large dynamic range, and even more importantly, significant 
differences in polarity and concentration, the implementation of HPLC separation into 
HRMS methods was tested to address these problems. Test measurements with different 
ionization methods showed the severe impact of these parameters on detected 
compounds and the suppression effect of oxygenated compounds. Amino-NP-HPLC-
HRMS has been shown to be an adequate tool and provided the clean separation of 
petrodiesel and biodiesel compounds, with additional separation of FAMEs in under 4 
min, with sharp peaks. Contamination free mass spectra could be generated from all major 
eluted peaks. The corresponding class distribution data showed a sharp increase in 
detected compounds compared to direct injection. The number of pure hydrocarbon 
compounds detected has more than doubled. Furthermore, the separation method can 
easily be modified. Here, the gradient was altered, so that the separation resulted in only 
two peaks, one containing all petrodiesel and the other all biodiesel compounds. This 
separation is finished after only 3 min. Class distribution for relative intensities and 
population of the compounds measured within these peaks show very few information 
loss, so this method is a valid and faster alternative if chromatographic separation of the 
different esters is not necessary. 

Author Contributions: Investigation, data interpretation, writing—original draft preparation, D.H.; 
writing—review and editing, supervision, project administration, funding acquisition, W.S. All 
authors have read and agreed to the published version of the manuscript. 

Funding: The authors are thankful for generous financial funding from the Bundesministerium für 
Wirtschaft und Energie through the IGF Project (IGF 19965N by DGMK 791). 

Acknowledgments: The authors thank David Stranz (Sierra Analytics, Modesto, CA, USA) for 
access to new data handling software. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. BP. Statistical Review of World Energy 2020; BP p.l.c.: London, UK, 2020. 

Figure 10. Comparison of major peaks in blend bulk separation regarding class distribution for
different hydrocarbon classes with rel. intensities (left) and population (right) which represents the
number of identified compounds. Classes are describing hydrocarbons with different (amounts of)
heteroatoms. Square brackets contain the adduct type, no brackets represents radical ions.

4. Conclusions

Due to the inherent problems of investigating biodiesel/petrodiesel blends, namely
because of the necessary large dynamic range, and even more importantly, significant
differences in polarity and concentration, the implementation of HPLC separation into
HRMS methods was tested to address these problems. Test measurements with different
ionization methods showed the severe impact of these parameters on detected compounds
and the suppression effect of oxygenated compounds. Amino-NP-HPLC-HRMS has been
shown to be an adequate tool and provided the clean separation of petrodiesel and biodiesel
compounds, with additional separation of FAMEs in under 4 min, with sharp peaks.
Contamination free mass spectra could be generated from all major eluted peaks. The
corresponding class distribution data showed a sharp increase in detected compounds
compared to direct injection. The number of pure hydrocarbon compounds detected has
more than doubled. Furthermore, the separation method can easily be modified. Here, the
gradient was altered, so that the separation resulted in only two peaks, one containing all
petrodiesel and the other all biodiesel compounds. This separation is finished after only
3 min. Class distribution for relative intensities and population of the compounds measured
within these peaks show very few information loss, so this method is a valid and faster
alternative if chromatographic separation of the different esters is not necessary.
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