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Abstract: The study provides a review of various applications of biomass-derived biochars, waste-
derived biochars, and modified biochars as adsorbent materials for removing dyestuff from process
effluents. Processing significant amounts of dye effluent discharges into receiving waters can supply
major benefits to countries which are affected by the water crisis and anticipated future stress in
many areas in the world. When compared to most conventional adsorbents, biochars can provide an
economically attractive solution. In comparison to many other textile effluent treatment processes,
adsorption technology provides an economic, easily managed, and highly effective treatment option.
Several tabulated data values are provided that summarize the main characteristics of various biochar
adsorbents according to their ability to remove dyestuffs from wastewaters.
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1. Introduction

Dyestuffs color and pollute receiving waters, streams, and rivers as a result of inade-
quate processing of the industrial effluents by a variety of industrial applications including
the food and beverage companies, paper and pulp processing, paint manufacturing, phar-
maceutical processing, printing, textiles, dyeing, and printing [1]. Many dyes pose a grave
danger to the water environmental ecosystem due to their chemical properties, with se-
rious consequences for human health, animal, and plant ecosystems [2,3]. Aside from a
limited number of studies indicating that specific dyes are toxic, the presence of dyestuffs
into receiving waters reduces the photosynthetic process by inhibiting light from passing
through [4]. During the degradation process, dyes consume the dissolved oxygen con-
centrations of the receiving water, therefore decreasing the water quality standards for
aquatic species. This has detrimental visual aesthetic impacts which may result in health
reproductive issues in fishes [5]. Specific dyes have a negative impact on the skin, kidneys,
liver, reproductive system, heart, brain, and nervous system, and some may be carcinogenic
or mutagenic.

Data on dyestuff effluent discharge volumes and production quantities are not readily
available or recorded around the world. According to available data, 700,100 tons of
dyestuffs are produced every year for 10,000 dyes. According to industry figures, the global
dyestuffs produced yearly is 1.8 to 1.9 × 106 tons with more than 11,000 dye pigments
applied primarily in the food, textile, cosmetics, leather, paper, and plastics industries [6].
Depending on the type of dyestuff and the process technology used, 1–10% of dye is not
used in the dyeing process, indicating that significant amounts of dye are discharged to the
water bodies via various means [7].

The majority of dyestuffs have specific characteristics such as chemically stable and
light fastness [8]. Furthermore, the dye color reduces light penetration in streams and
rivers, therefore reducing photosynthesis and dissolved oxygen content. They prevent a
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variety of chemical functions based on the material to which they are applied and the color
they impart (Figure 1). All of these properties are advantageous to the dye user and are
enhanced by dyestuff manufacturers. However, the huge volumes of effluent makes the
treatment of these dyes to comply with environmental effluent discharge standards very
problematic. In addition, water can be colored in certain cases with dye concentrations
as little as 1 ppm. The majority of dyeing applications employ copious amount of water
during the dyeing, washing, and rinsing stages [9,10].

Separations 2022, 9, x FOR PEER REVIEW 2 of 33 
 

 

rivers, therefore reducing photosynthesis and dissolved oxygen content. They prevent a 

variety of chemical functions based on the material to which they are applied and the color 

they impart (Figure 1). All of these properties are advantageous to the dye user and are 

enhanced by dyestuff manufacturers. However, the huge volumes of effluent makes the 

treatment of these dyes to comply with environmental effluent discharge standards very 

problematic. In addition, water can be colored in certain cases with dye concentrations as 

little as 1 ppm. The majority of dyeing applications employ copious amount of water dur-

ing the dyeing, washing, and rinsing stages [9,10]. 

 
(A) (B) 

Figure 1. (A) Dye house discharge. (B) River quality affected by dyestuffs. 

The majority of recent review publications have focused on the biochar manufactur-

ing process and dye removal by adsorption. However, there is a lack of data on the clas-

sification of dyes and their properties, as well as the removal of such dyes using biochar 

as an adsorbent material. This review examines the classification and qualities of dyestuffs 

in this setting. This article provides a rapid overview of various wastewater treatment 

systems, followed by a detailed explanation of the benefits of using adsorption technol-

ogy. The key properties and applications of standard and modified (altered) biochars for 

color removal are also highlighted in the review. The investigations on the research re-

ported in the directions of biochar modification and application marked a step toward the 

practical application of biochar. 

2. Dye Classifications 

Dyes are colored molecules or ions that can be applied to a wide range of materials 

including food, beverages, and textiles in solution or as a dispersion. Most dyes have a 

high-water solubility, and often contain a sulfonic acid group, usually in the form of a 

sodium salt, which is responsible for the solubility of many water-soluble dyestuffs [11]. 

Dye colors are created by chemical groups absorbing light of various wavelengths in the 

visible region of the spectrum. Different unsaturated chemical groups on chromophores 

promote this key distinguishing property. Figure 2 depicts the more common ones. 

Figure 1. (A) Dye house discharge. (B) River quality affected by dyestuffs.

The majority of recent review publications have focused on the biochar manufacturing
process and dye removal by adsorption. However, there is a lack of data on the classification
of dyes and their properties, as well as the removal of such dyes using biochar as an
adsorbent material. This review examines the classification and qualities of dyestuffs
in this setting. This article provides a rapid overview of various wastewater treatment
systems, followed by a detailed explanation of the benefits of using adsorption technology.
The key properties and applications of standard and modified (altered) biochars for color
removal are also highlighted in the review. The investigations on the research reported in
the directions of biochar modification and application marked a step toward the practical
application of biochar.

2. Dye Classifications

Dyes are colored molecules or ions that can be applied to a wide range of materials
including food, beverages, and textiles in solution or as a dispersion. Most dyes have a
high-water solubility, and often contain a sulfonic acid group, usually in the form of a
sodium salt, which is responsible for the solubility of many water-soluble dyestuffs [11].
Dye colors are created by chemical groups absorbing light of various wavelengths in the
visible region of the spectrum. Different unsaturated chemical groups on chromophores
promote this key distinguishing property. Figure 2 depicts the more common ones.
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Figure 2. Color-producing chromophores or groups.

Auxochromes are groups that can also enhance the water solubility and improve the
dye absorption potential for adsorbing material; examples include substituted sulfonic,
hydroxyl, carbonyl, or amino groups. Dyes can be classified based on their chemistry or
their types of application. As a result, the chemical structure and type of dye must be a
primary consideration in determining which dye wastewater process treatment technology
should be applied for effluent removal, as well as determining what adsorbent properties
are required for the adsorption of the specific dyestuff type.

2.1. Reactive Dyes

Reactive dyes are used extensively in the dyeing of cellulosic textile fibers, namely, flax
and cotton. Due to their high adhesion to a substrate, they can also be used to dye linen,
viscose, and silk [12,13]. These reactive compounds in the dye can form chemical bonds
with textile uptake of fibers. The uptake of the dichlorotriazine type of reactive dye which
becomes attached to the cellulose fiber by displacing the chloride grouping is depicted in
the mechanistic schemes below. One or both chlorides may be present. Figures 3 and 4
show the typical dye uptake mechanisms for dyeing cellulosic materials.
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Due to reactive dyes having a strong bonding affinity for cellulose, consequently,
the hydroxyl group containing biosorbents have demonstrated a very strong dye uptake
capacity to remove reactive dye compounds from textile dyehouse effluents [14].

2.2. Disperse Dyes

Disperse dyes are non-ionic substances that are commonly applied to polyesters but
can be used in acetate or nylon fabrics. These dyes are water soluble and can be used for
these fibers by diffusion into the fibers at increased temperatures. As there are no basic
chemical groups, there are no attractive sites for acid dye groups, despite a weak attraction
for basic dyes. The dye attachment mechanism is based on weak Van der Waals forces and
dipole-dipole interactions, implying that like mechanisms may occur during the removal of
disperse dyes onto biochar adsorbents [15]. Figure 5 depicts disperse blue 6 as an example
of this class.
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Figure 5. Disperse Blue 6 dye compound.

The dispersed dyestuff occurs typically as a fine suspension that can be filtered from
the effluent discharge by biochar.

2.3. Vat Dyes

The majority of vat dyes have a ketonic style chromophore which may be applied
to color cellulosic fibers and materials such as viscose, cotton, and linen. This is a broad
category of dyes that includes indanthrones, anthraquinones, carbazoles, benzanthrones,
polycyclic quinones, and acridones.

Figure 6 shows the structures of a typical vat dye [16].
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The large anthraquinone groups suggest that the removal process may involve electron
clouds of the anthraquinone dye by adsorption onto the positively charged surface groups
and adequately sized pore diameters of biochars.

2.4. Direct Dyes

Direct dyes or substantive dyes, as there is no fixation phase necessary, may be
applied to color cotton yarn, viscose, and loose cotton of fabrics [17]. Mordant chemicals,
such as chromium compounds that can undergo complexation by attaching substrate to
chromophore to form an insoluble color, are used in some direct dyes, but not all, to fix the
dye and improve color fastness. In the case of dark color shades such as black or navy blue
dyes, this technique has proven to be cost-effective in achieving high color fastness. These
dyes are now being reviewed due to environment and safety concerns which have limited
their use. The mechanism for the application of direct dyes involves establishing non-ionic
forces to attach the dyestuff to the textile fiber material [18]. The structure of direct yellow
24 dye is depicted in Figure 7.
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Direct dyestuffs produce negatively charged ions in solution and can be adsorbed
onto positive sites on biochars.

2.5. Basic Dye

Congo red (CR) is a member of the very large group of basic dyes that are characterized
by the color, high tinctorial strength, and brilliance. These basic dyes are most commonly
used on acrylic fibers, but they can also be used on other fibrous textiles when mordants are
used. Furthermore, basic dyes are soluble media but not soluble in alkaline solutions. These
dyes are primarily made up of imino or amino groups that are linked to triarylmethane or
xanthene; they are also used in typewriter ribbon, carbon paper, and inks [19]. Monoazo,
methane, and oxazine are the three main subclasses. Figure 8 depicts the structure of a
basic CR dye.
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Since most basic dyes ionize in water, they have a positively charged colored ion or
cationic species. These dyes are commonly classified as cationic dyes and adsorb most
effectively onto negatively charged functional groups on the biochars [20].

2.6. Acid Dye

Acid dyestuffs possess a high color fastness and have a strong affinity for protein
molecules, therefore, they are ideal for nylon, and wool, as well as silk. The majority
of acidic dyestuffs are sodium salts based on sulfonic acid of organic species [21]. They
are distinguished by various groupings of unsaturated aromatic rings known as the chro-
mophore [22]. Concentrations of acidic dyes, even as low as 1 ppm, in the effluent raise the
chemical oxygen demand (COD) level of the receiving waterbody and cause a visual dis-
turbance to the environment [23]. Several dyes (i.e., arylamine-based types) are hazardous
as they are carcinogenic or toxic [24]. The anthraquinone group is a major group of acid
dyes. Figure 9 shows an example of the acid dye.
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Figure 9. Structure of the acid blue 78 dye.

As the colored section is the anion of a sodium salt, acid dyes are frequently referred
to as anionic dyes, possessing a colored ion based on sulfonic acid groups or, possibly, a
carboxylic acid group which has the capability for adsorbing onto positive biochar sites.

2.7. Azo Dyes

Azo dyes account for over half the world’s yearly dye production. They are broadly
utilized in different industries, including food processing, pharmaceutical, leather, cosmetic,
and textile dyeing applications. As shown in Figure 10, the azo dyes possess one or more azo
functional groups (-N=N-) as the chromophoric species and are very frequently occurring in
synthetic dyes with the aromatic conjugate ring structure [25]. When azo dyes are absorbed,
they are metabolized by the intestinal microflora of the liver, resulting in the formation of
aromatic amines which are a health hazard; furthermore, the azo dyes themselves, if water
soluble, may become carcinogens.
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Consequently, a number of countries have enacted legislation governing the manu-
facture, handling, and use of azo dyestuffs. The implemented legislation for azo dyes has
been divided into two categories (i) those capable of producing metabolic carcinogens, and
(ii) those not capable of producing carcinogenic species [26].

2.8. Sulfur Dyes

Sulfur dyes are widely produced and used in cotton-related industries because they are
simple to apply, possess high color fastness, and are inexpensive. At room temperature, the
dyes are insoluble in water; however, in an alkaline pH in the presence of a reducing agent
and high temperature, these dyes become water soluble, allowing them to be adsorbed
onto and thus dyeing the fabric. Environmentally, sulfur containing dyes are very polluting
because of dye effluents and, as a result, are steadily losing favor [27]. Figure 11 depicts a
typical sulfur dye.
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Figure 11. Structure of the sulfur blue 7.

Due to there being an abundance of lone pairs of electrons due to oxygen, sulfur, and
nitrogen, sulfur dyes can be adsorbed onto the positive surface sites, especially in the case
of chelating groups acquiring lone electron pairs.

2.9. Aniline Dyes

The aniline class of synthetic dyes are predominantly made from coal tar that contains
one or several phenyl groups. Around them, a new dye production industry was developed
many years ago, manufacturing several of the most widely applied and well-known
dyestuffs, such as malachite green (MG) and CV. The dye is found in the form of fine
powders. Aniline dyestuffs are soluble in water and are produced in a variety of colors
suitable for wood, leather, and fabric [28]. Some aniline dyestuffs have recently been
linked to an increased cancer risk factor, according to research. Figure 12 depicts a typical
aniline dye.
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As these dyestuffs are a cationic species [20], they can adsorb well on negative biochar
groups. Additionally, electron clouds on aromatic ring species and nitrogen lone electron
pairs are drawn to the positive sites on biochars.

2.10. Metal Complex Dyes

Metal complex dyes, also known as premetallized dyes, are insoluble in water. Such
dyes are primarily monoazo compounds that are used to color wool, polyamides, silk, and
nylon. The typical structure contains monoazo basic functional groups with some attached
hydroxyl, amino, and carboxyl groups, giving these dye compounds a strong bond-forming
capacity as well as the ability to produce coordination compounds with various transition
metals such as cobalt, chromium, nickel, and copper. However, because their effluent
discharges contain unfixed dye and their associated metal species, these metal complex
dyes are now the cause of health, environmental, and safety concerns [15]. Figure 13 depicts
the structure of a dithiolene metal complex dye.
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Figure 13. Structure of the dithiolene metal complex dye.

These dyes can ionize in water, forming colored anionic species that may be adsorbed
onto positive biochar sites; however, removing the toxic heavy metal counter ion, which
requires negative sites on the biochar adsorbent is of greater concern.

2.11. Mordant Dyes

Most naturally occurring dyes cannot attach and fix strongly to many textile fibers
and must be combined with a mordant compound that binds to both dye and the fiber.
This can be used on both the fiber and the dye itself and it can be applied to both wood and
nylon. This mordant substance creates a bond between the fiber and the dye molecule [29],
however, other dyes have begun to replace mordants in recent years, in particular, direct
dyes. The structure of mordant red 11 is depicted in Figure 14.
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Mordant dyes ionize in solution, producing colored anionic species, necessitating
adsorbing treatment with positive functional sites on the biochar.

3. Dye Removal Technologies

A variety of treatment processes are used in typical dyehouse effluent treatment
technologies. These are generally classified into three types: chemical, biological, and
physical processes. These technologies can be employed separately or collectively to achieve
the best balance of multiple criteria including economic feasibility and process efficiency.

3.1. Physical Process Treatments

Adsorption [30] and biosorption [31] mechanisms describe the method of attraction
of dyes onto the periphery of adsorbents in the form of particulates, granules or powders
by physical bonding, strong chemical affinities, Van der Waals forces, or exchange of ions
with surface functional sites on the adsorbent material surfaces via chemisorption or high
energy chemical affinities.

To remove pollutants and colors from wastewater, flocculation and coagulation have
long been utilized. This involves adding chemicals to dirty wastewater, often with ag-
itation, and then permitting the pollutant-laden coagulants/flocculants to settle at the
vessel bottom. Additional tertiary treatment or recycling may be applied to the refined
water overflow that is discharged into water streams. The dye is adsorbed on the periph-
ery/surface of the flocculant/coagulant without undergoing any chemical decomposition,
similar to adsorption. Two typically utilized materials are ferrous sulfate and alum [32]. A
high settling time for cleared water, the large amount of dye-laden flocculant/coagulant
produced and requiring dumping, and the economics involved with the drying of highly
wet slurry preceding landfill dumping are all disadvantages.

Electrokinetic coagulation and irradiation [33] are two other alternatives. The use
of aluminum electrodes in electrocoagulation has been extensively studied. They un-
leash charged aluminum ions in solution [34], resulting in additional active or charged
adsorption sites. However, they also have the drawbacks of coagulation. Catalytic irra-
diation/irradiation for removal of color has been researched in some circumstances. The
efficacy of methylene blue (MB) removal was examined. The removal effectiveness for
the maximum involvement of Pd catalyst reached around 86.4 percent after 120 min of
irradiation [35], showing a five-fold improvement in removal rate. The two procedures
were highly effective in removing some dyes but less so at removing others [36]. A more
detailed examination into these procedures is required in order to verify them.

Membrane filtration is the process of physically separating soluble colors in water
effluents using permeable membranes under pressure [37]. The techniques such as ul-
trafiltration and nanofiltration are also gaining popularity [38,39]. The aforementioned
traditional pathways are analogous to membrane technology. Osmosis (forward and re-
verse) [39–41] and filtration (ultra/nano) [40,41] may both separate molecules larger than
1 nm. The high cost of pumping energy and the likelihood of membrane pore obstruction
are two of membranes’ major flaws. In case the dye effluents were previously employed for
dyeing clothing/textiles, textile threads and fine particles are the ones that are commonly
cleared along with the spent liquid. A pre-filtration stage probably is advantageous in
these situations to prevent blockage and early membrane fouling [42]. If a condensed dye
coat formed, the net process efficiency drops as the flow rate is reduced. Furthermore, the
expense of filter media becomes increasingly significant as the unit’s capacity increases.
Several recent researches [43,44] have employed photocatalysis and ultrasonics to increase
dye adsorption on solid particulates, particularly when magnetic biochars and nanoparti-
cles were used. One drawback of utilizing photocatalytic processes to remove dye at full
scale is the preparation of the photocatalysts, which can significantly change the cost of
the process, whereas ultrasound treatment has the disadvantage of consuming very high
amounts of energy.
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3.2. Chemical Process Treatments

Ultraviolet light degradation has little effect on dyes. Most chemical techniques for
the treatment of dye-polluted streams seek to knock down the intricate dye particles into
simpler and less hazardous chemicals such as CO2 or H2O through a sequence of oxidative
reactions. For example, chlorine, wet air oxidation (WAO), ozonation, and other advanced
oxidation processes (AOP).

Although WAO [45] is found to be efficient in the treatment of dye effluents, catalysts
have been suggested as a way to improve process effectiveness [46,47]. Ozone is commonly
employed in commercial AOP’s for the elimination of organics and color [48]. Ozonation
catalysts are being investigated [49]. Other powerful oxidizing reagent chemicals viz.
sodium hypochlorite, chlorine, and hydrogen peroxide are being utilized commercially
in the oxidation of dye-polluted streams [50,51]. These reagents break down dyes into
simpler compounds [52]. Nonetheless, there are evidences that the benefits of utilizing
chlorinated reagents may be exceeded by the production of harmful byproducts (such as
chloroanilines) [53]. Oxidized byproducts and bromoforms are also of concern and are
extensively used in the area of ozonation [54], and several studies have investigated their
toxic characteristics [55].

For dye removal from wastewater effluents, several catalysts such as TiO2 or Fenton’s
reagents have been used as an alternate to typical oxidizers in AOP [56]. Through the appli-
cation of biochar as a support [57,58] and, more recently, co-catalytic nanoparticles/carbon
dots [59,60] as co-catalysts, TiO2-based photocatalysts can improve dye removal perfor-
mances by enabling synergistic adsorption and degradation. The AOP technique has been
shown to have a high dye removal efficiency [61]. However, one significant disadvantage
is the intricacy of the resulting ferrous sludge [62]. Many AOP procedures are in place. It
is possible to remove up to 90% of the dye; however, a suitable pH level balance and the
sludge treatment process must be considered. When using typical titanium dioxide for
removing colors, photochemical deterioration [63] is a continuous subject of attention, but
it is limited by the technique. Electrochemical treatment was applied to commercial azo
dye effluents [64].

3.3. Biological-Based Processes

Traditional aerobic techniques viz. activated sludge has proved successful in treating
polluted streams, nonetheless, they are unsuccessful at removing colors. Dye compounds
are frequently hydrophilic and have a low affinity for biomass, resulting in early applica-
tion [65]. Dyes are frequently resistant to microbial breakdown due to their poisonous and
stable molecular structures. Dye molecules are broken down into soluble organics in the
absence of oxygen, then to CH4 and H2S by a sequence of microbial processes. Although
reasonable results for reactive, azo, and diazo dye decolorization were documented [66],
the procedure had no effect on hazardous aromatic amines in the treated stream [67].

4. Adsorption Process Technologies

Adsorption is a popular process for purification purposes at large scales. Various con-
taminants in solution and in gaseous emission streams may be removed by being attracted
to the surfaces of several solid phase materials, referred to as adsorbents. Adsorbents have
been made from a variety of materials for a variety of uses, including water treatment, dye
separation, indicators, desiccants, and catalysis. An effective adsorption system may be
capable of removing all the pollutants, releasing a contaminant-free fluid.

Due to its simplicity, ease of operation, simple design, and ease of scaling up, the
adsorption process is considered a better alternative in the treatment of dye from industrial
effluents. It also has a high capacity and a favorable rate, and it is insensitive to harmful
chemicals [68]. It can also help to resolve the challenges of high energy input (used in
reverse osmosis and UV sterilization), which is a problem in many developing countries.
Adsorption is preferable to photocatalytic and ultrasound treatment processes because
photocatalyst preparation is expensive and ultrasound treatment consumes a lot of energy.
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4.1. Adsorbent Properties and Adsorption Mechanism

Adsorbent materials with high selectivity and porosity are required. Activated carbon
materials have demonstrated tremendous removal of organics such as dyes [30,69,70]. The
diffusion of dye on the surface of adsorbents is either by physical phenomena or chemical
means. The dye materials bind to the adsorbent periphery by hydrogen bonding or Van
der Waals forces in physisorption mechanism [71]. In chemisorption, the dye ions or
molecules form chemical bonds with certain surface functional sites or groups. Section 2
describes various dye functional sites or groups that can involve in multiple adsorptive
bonds on different adsorbents. Section 5 of this article explains dye removal via adsorption
mechanism using biochar materials.

4.2. Adsorbents

The choice of adsorbent is largely determined by the uptake potential of the adsorbent
material for a particular adsorbate. Preferably, the adsorbent material shall meet the
following criteria [70,72]:

i. Reasonably a decent surface area and pore volume;
ii. Appropriate pore size dissemination and pore network;
iii. Adsorbent functional groups of the surface charge and appropriate type;
iv. Surface functional group types and charge on colored dye ions/group;
v. pH of the solution that is appropriate for uptake.

As many dyestuffs are large molecules, it is critical to compare the dye particle di-
mensions to the pore (aperture) size distribution of biochar in the first two categories to
make certain that the dye particles can penetrate across the pores easily. Furthermore, dye
molecules frequently form larger groups or micelles by interacting with one another. As
a result, mesoporous adsorbents may be preferable to those with a microporous design
and a decent surface area. A high surface area, on the other hand, are usually beneficial. A
broad mesoporous network benefits adsorption kinetics and process design by allowing
for quicker diffusion.

Clay, silica, kraft lignin, fly ash, sludge, slag, and red mud are some of the most often
utilized natural adsorbents. Activated carbon [73], activated alumina [74,75], silica gel,
and zeolites are commercially available adsorbents [76]. Agricultural residues/wastes viz.
sugarcane bagasse, rice brans, lignocellulosic biomasses, fruit stones, and nut hulls [77–80],
inorganic materials viz. clay, Fuller’s earth, bentonite, lignite coal, peat, chitosan, and io-
exchange resin materials [81] are also used as adsorbents. New adsorbent materials such as
CNTs, MCM-41 [82,83], and molecular sieves [82] have been discovered in recent literature.

As long as the appropriate adsorbent materials with decent adsorption potential are
accessible at a reasonable price, adsorption is an attractive color removal method because
it uses large amounts of water and has relatively low dye concentrations. Consequently,
biochars have a good chance of being used to remove dyes from effluent. As opposed
to activated carbons, biochar is generated through pyrolysis technique at temperatures
between 623 and 873 K, and by employing inexpensive biomass materials. Numerous
operational factors, including feedstock type and pyrolysis temperature, influence biochar
attributes, resulting in products with such a broad range of specific surface area, pore
volume, carbon content, volatile content, ash, pH, and cation exchange capacity (CEC). The
formation of biochar with a highly evolved high porosity, specific surface area, pH, carbon,
and ash content, but low CEC and volatile content, is aided by a high pyrolysis temperature,
which is most closely attributable to a high level of breakdown of organic materials. Even
at greater pyrolysis temperatures, biochars made from animal and solid wastes have lower
carbon content, volatile content, CEC, and surface areas than biochars made from woody
biomass and agricultural residues [84]. The reason for this discrepancy is because the
content of lignin and cellulose, as well as the moisture content of biomass, varies greatly
among plant biomass wastes [85]. During the preparation phase of biochars, modifying
agents are also added to create highly charged surface properties. Several instances of
altered and unmodified biochar materials are included in Section 5.
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5. Adsorption of Dye onto Biochar Materials for Dye Removal
5.1. Biochar as a Dye Removal Adsorbent

Activated carbons are amorphous carbon-based substances with decent porosity and
large internal surface area. Its feedstock can be almost any organic substances with a
relatively decent carbon composition, covering traditional materials such as hard and
softwood, coconut hull, peat and lignite coal, natural and artificial polymers. Surface areas
for marketable carbons typically fall between the 500–1500 m2/g range [86] and can even
reach 3000 m2/g. Carbon materials are again classified into two sub-categories based on
whether they are used to remove pollutant particles from fluids.

The first ones are typically microporous with a pore size of 2 nm diameter and are
usually granular, whilst the latter are mesoporous materials with a pore size ranging
between 2–50 nm diameter and are usually in powder form [71]. Both types are useful in
wastewater treatment, where they aid in decolorization, odor removal, metal recovery, and
organics adsorption. The pore volume, internal surface area, and size distribution are all
proportional to its adsorption capacity.

Organics have been reported to adsorb in pores just fitting the adsorbate molecule [45].
Humic acids and dyes with size ranging between 1.5 and 3.0 nm that support adsorption
phenomenon in mesopores are examples [87]. As a result, the biochar’s pore size dissemi-
nation influences its adsorption potential for ions of varying size and shape. The electric
strength between the adsorbate and the adsorbent (carbon surface) has proven to improve
dye removal efficacy greatly.

The dissociation equilibria and functionality of specific functional sites on biochar
material surfaces, such as carboxylic-lactonic groups, phenolic-alcolohic hydroxyl groups,
aromatic-heterocyclic carbons, ketone-carbonyl groups, pyridinic-N, pyrollic-N, and
quaternary-N nitrogen species, can influence adsorption. These potential biochar sur-
face sites are influenced by several factors, including biomass source, pyrolysis parameters
such as heating rate, temperature, residence time, nature of pyrolysis, etc.

Despite that activated and modified carbons are broadly used as adsorbent materials,
they are relatively expensive due to the high costs of raw materials, energy, and chemical
production. As a result, many researchers have focused on developing novel, high-capacity,
low-cost adsorbents obtained from biomass residues. Metal organic frameworks and
nano-adsorbent substances have lately been used to create highly efficient adsorbents [88];
however, the cost of treatment renders these materials prohibitively expensive.

As a result, in recent years, several low-cost adsorbents known as biochars have
been produced by biomass pyrolysis and used in polluted water treatment applications.
The technique is affordable and cost-effective only when the adsorbent is inexpensive
and copious [89]. Pyrolysis of biomass leftovers into value-added biochar materials is a
cost-effective process that produces high-value-added products: syngas and bio-oil. The
pyrolysis process requires energy to run, but the process is driven by the by-products of
the side reactions, and biochars possess a larger surface area and pore volume, as well as
chemically functional moiety content, making them a much more potent adsorbent material
than the biomass feedstock [90–93].

There are over a thousand papers on color removal in the literature, with over a
hundred of these based on dye elimination employing biochar substances, including biochar
products derived from vermicompost, cabbage residues, algae, and animal litters [94–98].
There have also been numerous publications on the synthesis and usage of altered biochar
materials for dye color elimination. The dye potentials of unmodified/unaltered biochars
and others are shown in Tables 1 and 2.

Table 1 shows the adsorption properties for cationic dye uptake onto unmodified
biochars. MG [99–103], MB [104–109], rhodamine B (Rh B) [99], basic red 9 (BR 9), and
CV [103,110] values are included in the data. Many citations only present the quantity of
dye removed (in %) [99,100,104,106,110,111], which is valuable, however, this value varies
with adsorbent quantity, dye concentration, and adsorbate volume.
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Table 1. Basic dyes (cationic) and their adsorption onto biochars.

Dye Biochar
Feedstock

Pyrolysis Conditions
Pore Volume

(cm3/g)
BET Surface
Area (m2/g)

Adsorption
Capacity (mg/g) or
Dye Removal (%)

Isotherm
Type

Kinetic
Model

Parameters

Mechanism ReferenceTemperature
(K)

Heating Rate
(K/min) Time (min) pH Equilibrium

Time (min)

MB Date palm
fronds 973 - 240 0.134 430 205 - - 6 36 - [104]

MG Tapioca peel 1073 10 180 - - 32% Langmuir,
Freundlich

Pseudo
I-order,

Pseudo-II
order

2–10 0–180 - [99]

Rh B Tapioca peel 1073 10 180 - - 66% Langmuir,
Freundlich

Pseudo
I-order,

Pseudo-II
order

2–10 0–180 - [99]

MB Chlorella sp.
microalgae

MW heating
(2450 MHz,

800 W)
- - - 3 110 Freundlich,

Temkin

Pseudo
I-order,

Pseudo-II
order, Elovich

2–10 7200
Boyd,

Intraparticle
diffusion

[105]

MG Rice husk 673–873 - 60 - - 65 Langmuir,
Freundlich

Pseudo
I-order,

Pseudo-II
order, Elovich

2, 4, 6, 8 1440 - [100]

MG Crab shell 1073 - 120 0.086 82 12,500 Langmuir Pseudo-II
order 7 2

Electrostatic
attraction,
Hydrogen

bonding, π-π
interactions

[101]

MB Areca leaf 473 5 60 - 21 120 Langmuir,
Freundlich

Pseudo
I-order,

Pseudo-II
order

7 720 Electrostatic
attraction [106]

MB Wodyetia
Bifurcate 973 10 30 - - 150 Sips

Pseudo
I-order,

Pseudo-II
order

- 30 - [107]

MG
Waste wheat
straw/wheat

bran
1073 15 90 - - 1740 Langmuir Pseudo-II

order 2, 4, 6, 8, 10 -
Electrostatic
interaction,

Chemisorption
[102]

CV
Waste wheat
straw/wheat

bran
1073 15 90 - - 175 Langmuir Pseudo-II

order 2, 4, 6, 8, 10 -
Electrostatic
interaction,

Chemisorption
[102]

MB Switchgrass 873 - 60 0.029 255 40 Langmuir Pseudo-II
order 6 - Intraparticle

diffusion [108]
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Table 1. Cont.

Dye Biochar
Feedstock

Pyrolysis Conditions
Pore Volume

(cm3/g)
BET Surface
Area (m2/g)

Adsorption
Capacity (mg/g) or
Dye Removal (%)

Isotherm
Type

Kinetic
Model

Parameters

Mechanism ReferenceTemperature
(K)

Heating Rate
(K/min) Time (min) pH Equilibrium

Time (min)

MB Switchgrass- 1173 - 60 0.058 640 200 Langmuir Pseudo-II
order 6 - Intraparticle

diffusion [108]

CV Mango leaves 1073 - 60 - 170 180 - 8 48 - [110]

MG Ulothrix
zonata algae 1073 15 90 - 130 5300 Freundlich Pseudo-II

order 2, 4, 6, 10 840 Chemisorption [103]

CV Ulothrix
zonata algae 1073 15 90 - 130 1220 Freundlich Pseudo-II

order 2, 4, 6, 10 840 Chemisorption [103]

BR 9 Bovine bones 1073 10 60 0.271 90 50 Langmuir,
Freundlich

Pseudo-II
order 7 180 - [111]

BR 9 Bovine bones 1073 10 180 0.193 95 50 Pseudo
I-order 7 180 - [111]

MB Sugarcane
bagasse 773 10 90 - 260 70 Langmuir,

Freundlich

Pseudo
I-order,

Pseudo-II
order

7.4 180 Intraparticle
diffusion [109]
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MB adsorption capacities (Table 1) are 110, 150, 38, and 195 mg/g for biochar materials
derived from microalgae [105], Wodyetia [107], and switchgrass at 873 and 1173 K [45,108],
respectively. Pyrolysis temperature significantly influences the adsorption potential of switch-
grass biochar. MB adsorption capacity values in the literature for sugarcane bagasse [109],
phosphoric acid-treated olive seed carbon [112], and bamboo cane active carbon [113]
are 110, 135, and 455 mg/g, respectively. Biochar adsorption capacities for MG dye
are remarkably decent, with values of 12,500 mg/g on crab shell [101], 1740 mg/g on
wheat/bran straw-fed larvae biochar [102], and 5300 mg/g on biochar synthesized from
Ulothrix algae [103].

The adsorbent potential values reported in the literature for activated carbon made
from grape processing residue [114], shrimp shell [115], and plastic waste [116] are 665,
320, and 1430 mg/g, respectively. The amount of Rh B adsorbed on the surface of biochar
sourced from tapioca shell is 33 mg/g [99] compared to reported values of 77 using Acacia
mangium wood-derived carbon [117] and 30–40 mg/g on activated carbons from carnauba,
macauba, and pine nut wastes activated using calcium chloride and phosphoric acid [118].

On biochar from mango leaves [102] and Ulothrix zonata algae [103], two capacities
for the removal of CV are listed: 175 mg/g and a quite high value of 1220 mg/g. The
capacity values reported in the literature range from 600 mg/g for a bentonite-alginate
composite [119] to 75 mg/g for chitosan hydrogel beads [120]. Table 1 shows the final values
for the adsorption of BR9 onto biochar materials from animal residue [111] after 1 and 3 h
of heat treatment. At one (90 m2/g) and three hours (95 m2/g), the BR9 capacities were
50 and 52 mg/g, respectively. The general trend in surface areas and pyrolysis times was
followed by these capacities. Literature values are slightly lower but of relative magnitude,
for example, 29 and 15 mg/g for sepiolite [121] and fish bone [122], respectively.

Table 2 shows the anionic dye adsorption properties on unmodified biochars. Acid
orange 7 (AO 7) [104], CR [96,97,101–103,105,108,123–126], reactive red RR 120 [127], Re-
mazol violet 5R (RV5R), Remazol orange 3R (RO 3R), Remazol blue R (RBR) [128], orange
G (OG) [108], and methyl orange (MO) [129] are some of them.

Table 2 shows only the dye removal composition (%) for the adsorption of AO7 using
biochar derived from groundnut shell. Only a few instances of AO7 adsorption capacity
potential are documented in articles, and they range from 50 to 180 mg/g on fly ash [130],
oxihumolite [131], and chemically reactivated sawdust [132].

As CR is one of the most researched anionic dyestuffs, the citations in Table 2 are merely
illustrative. Adsorption capacity potential of biochars derived from chlorella microalgae
species [105], phoenix dactylifera [125], cotton stalk [126], orange skin [123], carapace (crab
shell) [101], activated carbon [124], spirulina algae species [96], wheat bran larvae [102],
switchgrass (charred at 873 K and 1173 K) [108], and Ulothrix algae species [103] are 160,
25, 250, 90, 20,315, 230, 85, 8, 23, and 345 mg/g. The study on switchgrass indicated that at
elevated pyrolysis temperatures, a high-quality biochar is generated.

Most investigations have found that the CR dye adsorption capacity potential is
below 100 mg/g. The maximum value was observed from pyrolyzed crab shell with
80 m2/g surface area. This result was achieved at a pH of 4 and volume to mass ratio
of 2; nonetheless, at a CR concentration above 20 g/L. The activated carbon obtained
from date stone exhibited a low adsorption capacity potential of 35 mg/g. The huge dye
molecular size (695 g/mol) and the total pore volume of 0.086 are responsible for the poor
capacities. CR dye, unlike other anionic acid dyes, is a direct dye with no anionic bonding
characteristics [133,134]. The significance of examining adsorbent pore size distribution is
shown by this phenomenon [135]. Microwave treatment was used following phosphoric
acid activation to synthesize mesoporous activated carbon. The carbon showed a higher
surface area and a 350 mg/g adsorption capability.
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Table 2. Acid dyes (anionic) and their adsorption onto biochars.

Dye Biochar
Feedstock

Pyrolysis Conditions
Pore Volume

(cm3/g)
BET Surface
Area (m2/g)

Adsorption
Capacity (mg/g) or
Dye Removal (%)

Isotherm Type Kinetic Model
Adsorbent Parameters Mechanism Reference

Temperature
(K)

Heating Rate
(K/min) Time (min) pH Equilibrium

Time (min)

CR Chlorella sp.
microalgal

MW heating
(2450 MHz,

800 W)
- - - 3 160

Langmuir,
Freundlich,

Temkin

Pseudo I-order,
Pseudo II-order,

Elovich
2–10 240

Boyd,
Intraparticle

diffusion
[105]

CR Rice husk 773 5 180 - - 66–97% Langmuir,
Freundlich - 2, 4, 6, 7, 9, 11 5760 - [97]

RR 120 Eucheuma
spinosum 573–873 10 120 - - 330

Langmuir,
Freundlich,

Temkin

Pseudo I-order,
Pseudo II-order,

Elovich
3–9 20

Electrostatic
interaction, Ion
exchange, Metal

complexation,
Hydrogen
bonding

[127]

CR
Phoenix

dactylifera
leaves

673 - - - 1 25 Langmuir,
Freundlich

Pseudo I-order,
Pseudo II-order 5.8 120 - [125]

CR Cotton stalks 673 8 90 - - 250

Langmuir,
Freundlich,

Temkin,
Dubinin-

Radushkevich

Pseudo I-order,
Pseudo II-order 2–10 180 Electrostatic

attraction [126]

CR Orange peel 1073 15 15 - 20 - - - - [123]

Remazol BV
5R

Green marine
algae (Caulerpa
scalpelliformis)

573–773 5 120 - - 70%
Langmuir,
Freundlich,

Sips, T

Pseudo I-order,
Pseudo II-order 2–5 - - [128]

Remazol BO
3R

Green marine
algae (Caulerpa
scalpelliformis)

573–773 5 120 - - 77%
Langmuir,
Freundlich,

Sips, Temkin

Pseudo I-order,
Pseudo II-order 2–5 - - [128]

Remazol BO
3R

Green marine
algae (Caulerpa
scalpelliformis)

573–773 5 120 - - 75%
Langmuir,
Freundlich,

Sips, Temkin

Pseudo I-order,
Pseudo II-order 2–5 - - [128]

Remazol BO
3R Crab shell 1073 - 120 0.086 82 20,315 Langmuir Pseudo I-order,

Pseudo II-order 4 2

Electrostatic
attraction,
Hydrogen

bonding, π-π
interactions

[101]

CR Activated
Carbon 723 20 120 - - 230 Freundlich - 2–10 120 - [124]

CR Spirulina
platensis algae 723 20 120 - - Freundlich - 2–10 120 - [96]

CR
Waste wheat
straw/wheat

bran
1073 15 90 - - 90 Langmuir Pseudo II-order 2, 4, 6, 8, 10 -

Chemisorption,
Electrostatic
interaction

[102]

OG Switchgrass 873 - 60 0.029 255 8 Langmuir Pseudo II-order 6 - Outer boundary [108]

CR Switchgrass 873 - 60 0.029 255 8 Langmuir Pseudo II-order 6 - Outer boundary [108]

CR Switchgrass 1173 60 0.058 640 20 Langmuir Pseudo II-order 6 - Outer boundary [108]

CR Ulothrix zonata
algae 1073 15 90 - 130 345 Freundlich Pseudo II-order 2, 4, 6, 10 840 Chemisorption [103]

MO Corn cob 873 15 120 - 470 90 Freundlich Pseudo II-order 5.6 - Physiochemical [129]
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At temperatures between 513 to 553 K and reaction durations varying from 0.5 to 6.0 h,
many bamboo biochars were generated [136]. Their CR absorption capabilities ranged from
30–100 mg/g, with the maximum values seen in biochars generated at high temperatures of
513 K and 553 K, as well as the longer treatment times of 5 and 6 h. After only 4 h at 523 K,
an activated carbon obtained from apricot seeds [134] had a low CR capacity of 33 mg/g.
This was ascribed to the small pyrolysis temperature and specific surface area. The latter
two investigations’ adsorption capacity potential was similar to that of date seed carbon.
More research into the production of biochars through microwave and plasma pyrolysis
techniques should be conducted.

Anionic reactive red (RR) 120 was adsorbed at a high (330 mg/g) capacity on biochar
synthesized from Eucheuma spinosum [127]. Fe3O4-activated magnetic nanoparticles [137]
and activated carbon [138] have high capacity values in the literature, exhibiting adsorption
capacity potentials of 165 and 255 mg/g, respectively. Biochar made from green sea
algae [128] has been reported to remove brilliant violet 5R, Remazol, and brilliant orange
3R dyes with removal percentages of more than 70%. On coffee shell activated carbon [139]
and calcined eggshell [140], the reported figures for Remazol dyes are relatively low, at 65
and 15 mg/g for brilliant orange 3R and brilliant violet 5R, respectively.

Table 2 demonstrates that biochar derived from switchgrass [108] generated at 873 K
displayed a poor orange G adsorption capacity of 8 mg/g. The poor surface area (255 m2/g)
of the char could have contributed to this low capacity. Other published values include
9 mg/g for activated carbon derived from Thespesia populnea [141] and 19 mg/g for
nanoporous activated carbon [142]. All of these values indicate that orange G dye is one to
be treated. When it came to adsorbing MO, corn cob char [129] had an adsorption capacity
potential of 85 mg/g, while amidoxime char [143] had a potential of 140 mg/g.

5.2. Dye Removal Using Adsorption onto Modified Biochars

Several investigations are now being conducted to improve the adsorption efficacy of
biochars. Many papers on various biochar modification techniques are available. Treatment
or activation of biochar with bases and acids, chemical impregnation, size alteration,
and encapsulation are some of the modification techniques. The cationic dye adsorption
characteristics and performance properties are shown in Table 3, whereas the anionic dye
adsorption characteristics and performance properties are shown in Table 4.
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Table 3. Basic dyes (cationic) and their adsorption onto modified (altered) biochars.

Dye
Modified
Biochar

Feedstock

Pyrolysis Conditions
Pore Volume

(cm3/g)
BET Surface
Area (m2/g)

Adsorption
Capacity (mg/g)

or Dye
Removal (%)

Isotherm
Type

Kinetic
Model

Adsorbent Parameters Mechanism Reference

Temperature
(K)

Heating Rate
(K/min) Time pH Equilibrium

Time (min)

MB Date palm
fronds 1073 20 240 - 70 210 - - 7 180 - [144]

MG Tapioca peel
+ S- doped 1073 10 180 - 145 30 Langmuir,

Freundlich

Pseudo
I-order,
Pseudo
II-order

2–10 1080 - [99]

Rh B Tapioca peel
+ S- doped 1073 10 180 - 145 30 Langmuir,

Freundlich

Pseudo
I-order,
Pseudo
II-order

2–10 1080 - [99]

MB Areca leaf +
K2FeO4

− 473 5 60 - 20 250 Langmuir,
Freundlich

Pseudo
I-order,
Pseudo
II-order

7 720 Electrostatic
attraction [106]

MG
Chitosan-

tapioca peel +
S-doped

873 - 120 - 120 50 Langmuir,
Freundlich

Pseudo
I-order,
Pseudo
II-order

2–12 160

Electrostatic
attraction,
Hydrogen
bonding

[145]

Rh B
Chitosan-

tapioca peel +
S-doped

873 - 120 - 120 40 Langmuir,
Freundlich

Pseudo
I-order,
Pseudo
II-order

2–12 160

Electrostatic
attraction,
Hydrogen

bonding, π-π
interactions

[145]

MB
Sugarcane
bagasse +

steam
1073 10 120 0.356 570 5220 Langmuir,

Freundlich - 7.4 180 - [146]

MB
Date palm

fronds with
Fe/Mn

973 3 240 - 430 300 Langmuir,
Freundlich

Pseudo
I-order,
Pseudo
II-order,

Intraparticle
diffusion,
Elovich

4–10 240

Surface
adsorption,

π-π
interactions,

Ion exchange,
Pore-filling

[147]

MB

Wakame
Undaria

pinnatifida
leaves with
calcination

1073 10 120 - 1160 840 Langmuir,
Freundlich

Pseudo
I-order,
Pseudo
II-order

2–12 300

Surface
adsorption,
Hydrogen

bonding, π-π
interactions,
Pore-filling

[148]
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Table 3. Cont.

Dye
Modified
Biochar

Feedstock

Pyrolysis Conditions
Pore Volume

(cm3/g)
BET Surface
Area (m2/g)

Adsorption
Capacity (mg/g)

or Dye
Removal (%)

Isotherm
Type

Kinetic
Model

Adsorbent Parameters Mechanism Reference

Temperature
(K)

Heating Rate
(K/min) Time pH Equilibrium

Time (min)

Rh B

Wakame
Undaria

pinnatifida
leaves with
calcination

1073 10 120 - 1160 530 Langmuir,
Freundlich

Pseudo
I-order,
Pseudo
II-order

2–12 300

Surface
adsorption,
Hydrogen

bonding, π-π
interactions,
Pore-filling

[148]

MG

Wakame
Undaria

pinnatifida
leaves with
calcination

1073 10 120 - 1160 4065 Langmuir,
Freundlich

Pseudo
I-order,
Pseudo
II-order

2–12 300

Surface
adsorption,
Hydrogen

bonding, π-π
interactions,
Pore-filling

[148]

MG Corn straw 773 - 180 - 35 520
Langmuir,
Freundlich,

Temkin

Pseudo
I-order,
Pseudo

II-order, Intra
diffusion

2–9 20 [76]

MG Rice husk +
Cu + Al 353 - 60 0.350 200 470 Langmuir,

Freundlich 9 200
Pore-filling,

π- π
interactions

[149]

MG Litchi peel +
HC 1123 60 0.588 1010 2470 Freundlich Elovich 8 720

Hydrogen
bonding, π-π
interactions,
Pore-filling,
Electrostatic
interaction

[150]

MG
Sugarcane
bagasse +

ZnCl2

1073 - 120 0.0235 50 90 Freundlich Pseudo
II-order 8 - Boyd [124]
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On Fe/Mn impregnated fronds pyrolyzed at 973 K [147] and 1073 K thermally treated
fronds [144], the biochar from date palm frond [104] exhibited an MB adsorption capacity
of 205 mg/g, whereas the biochars obtained from modified date frond demonstrated
capacities of 300 and 210 mg/g. Biochar made from tapioca skin has a 30% MG removal
capacity and a 65% Rh B elimination potential [99]. The removal capacity of biochar made
from sulfur-doped tapioca peel was 75 and 90%, respectively [99]. 30 and 33 mg/g were
reported as the greatest adsorption potential.

The sulfur-doped tapioca skin was coated with chitosan at 873 K, which raised the dye
absorption capabilities to 50 mg/g for MG and 40 mg/g for Rh B, respectively [145]. Unal-
tered areca plant biochar showed an MG capacity of 190 mg/g [106]. After activating with
K2FeO4, the adsorption potential of biochar prepared from wakame increased to 250 mg/g.
The biochar sourced from chlorella microalgae displayed an MG adsorption capacity of
110 mg/g and is one among many seaweed/algae species biochars with potentials lying
between 25 and 130 mg/g. The adsorption capability of MG on biochar obtained from
chlorella was close to 80 mg/g [151].

Only 10 mg/g capacity of Rh B was accepted by seaweed biochar. Biochar made
from calcined wakame seaweed, on the other hand, has extraordinarily high adsorption
capabilities for MG, Rh B, and MB, with 4065, 840, and 530 mg/g, respectively [148].
Biochar generated from rice husk had an MG adsorption capacity of 65 mg/g [100]; after
alteration with Cu + Al [149], the potential elevated to 470 mg/g. Biswas et al. [109] found
that biochar made from sugarcane bagasse had a potential of 70 mg/g, while biochars
made from steam-activated bagasse and ZnCl2-modified bagasse had capacities of 5220
and 90 mg/g, respectively [109].

Table 4 shows the anionic dye adsorption properties on a variety of modified biochars.
Biochar was prepared from rubber seeds and treated with NaOH at 1073 K. The adsorption
potential of CR rose from 225 mg/g to 460 mg/g after activation [152]. The shorea robusta
leaf extract offered a removal potential of only 2 mg/g for CR with an exceedingly poor
surface area of 1.5 m2/g after heating at 573 K [153]. The addition of Ag nanoparticles to
this biochar raised its capacity and surface area to 23 mg/g and 21 m2/g, respectively [153].

A biochar made from magnetic food waste with a removal potential of 23% was
produced for application in a Fenton-style wastewater treatment system [43]. The biochar
adsorption potential increased by 33% after ultrasonic treatment. Finally, ultrasonics +
H2O2 + biochar achieved a 97% removal in 3 h. Table 2 shows that dactylifera leaf biochar
(without any modification) exhibited a CR adsorption potential of 25 mg/g before Mn
activation, however, it increased to 120 mg/g after Mn activation [125]. Marine chlorella
vulgaris algae were transformed to biochar at temperatures of 723, 823, and 923 K [154],
yielding surface areas of 265, 350, and 150 m2/g, respectively. This adsorbent’s adsorp-
tion potential for the anionic RY-45 dye was 48 mg/g (experimental) and 58 mg/g at
823 K (Langmuir).
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Table 4. Acid dyes (anionic) and their adsorption onto modified (altered) biochars.

Dye
Biochar

Modified
Feedstock

Pyrolysis Conditions
Pore Volume

(cm3/g)
BET Surface
Area (m2/g)

Adsorption
Capacity (mg/g) or
Dye Removal (%)

Isotherm
Type

Kinetic
Model

Adsorbent Parameters

Mechanism ReferenceTemperature
(K)

Heating Rate
(K/min) Time (min) pH Equilibrium

Time (min)

CR Rubber seeds
+ NaOH 1073 - 360 - - 460

Langmuir,
Freundlich,

Dubinin-
Radushkevich

- 6–7 120 - [152]

CR
Shorea robusta
leaf extract +

Agnps
573 - 180 - 21 20

Langmuir,
Freundlich,

Temkin,
Dubinin-

Radushkevich

Pseudo
I-order,
Pseudo
II-order,

Intraparticle
diffusion,
Elovich

2–10 90

Electrostatic
attraction,
Hydrogen
bonding

[153]

CR Shorea robusta
leaf extract 573 - 180 - 1 2 - 2–10 60 Electrostatic

attraction [153]

MO
Food waste +
ultrasound +

H2O2

573 5 420 - - 69% - 7 60 - [43]

CR
Phoenix

dactylifera
leaves + Mn

673 - - - - 120 Langmuir,
Freundlich

Pseudo
I-order,
Pseudo
II-order

2.5, 4.5, 5.8,
8.2, 11.2 120 Electrostatic

interaction [125]

Reactive
yellow
(RY)

Marine
Chlorella +
ultrasound

723–923 10 60 - 350 50
Langmuir,
Freundlich,

Temkin

Pseudo
I-order,
Pseudo
II-order

2.0–10.0 2

Electrostatic
interaction,
Electrostatic

repulsion

[154]

Reactive
blue (RB
19)/Acid

orange
(AO)

II/Direct
red

Sludge-rice
husk

composite
773 7 120 0.058 30 39, 42, 60

Langmuir,
Freundlich,

Temkin,
Dubinin-

Radushkevich

Pseudo
I-order,
Pseudo
II-order,

Intraparticle
diffusion,
Elovich

7 1440 - [155]

CR
Arjuna

(Terminalia
Arjuna) seeds

- - - - 170 92 ± 5% - - - - [156]

CR Cotton stalks 673 8 90 - - 560

Langmuir,
Freundlich,

Temkin,
Dubinin-

Radushkevich

Pseudo
I-order,
Pseudo
II-order,

Intraparticle
diffusion

2–10 180 Electrostatic
attraction [126]
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Table 4. Cont.

Dye
Biochar

Modified
Feedstock

Pyrolysis Conditions
Pore Volume

(cm3/g)
BET Surface
Area (m2/g)

Adsorption
Capacity (mg/g) or
Dye Removal (%)

Isotherm
Type

Kinetic
Model

Adsorbent Parameters

Mechanism ReferenceTemperature
(K)

Heating Rate
(K/min) Time (min) pH Equilibrium

Time (min)

CR Orange peel +
CO2 + steam 973 - 10 - 305 140 Freundlich Pseudo

II-order 2–3 1440 Electrostatic
interaction [123]

CR
Litchi peel +

hydro-
thermal

1123 60 0.588 1005 400 Freundlich Elovich 4 720

Hydrogen
bonding, π-π
interactions,
Pore-filling,
Electrostatic
interaction

[150]

CR Spirulina/alginate/paper723 20 120 - - 40

Langmuir,
Freundlich,

Temkin,
Dubinin-

Radushkevich

Pseudo
I-order,
Pseudo
II-order,

Intraparticle
diffusion

6–8 0–120

Electrostatic
attraction,
Hydrogen
bonding,
π-π,

[157]

Acid
chrome

blue/MO
Pine nutshell 973 10 120 - - 30, 10 Langmuir,

Freundlich

Pseudo
I-order,
Pseudo
II-order

3 1200

Electrostatic
interaction,

π-π
interactions

[158]
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Biochars made from sludge have been extensively studied [159]. The Langmuir
capacity of the anionic Remazol BB R dye is 125 mg/g [160]. A biochar made out of
rice husk-sludge composite prepared at 773 K removed AO II, and the two additional
anionic dyes, DR 4BS and RB 19, from solution exhibited adsorption potentials of 42, 60
and 39 mg/g successfully [155].

The separation of 90% of CR from the dye solution was achieved by utilizing a
hybrid technique devised by using Arjuna seeds + microorganisms and the ozonation
process [156]. Cotton stalk waste is copious around the world. The biochar from cotton
waste has been employed to eliminate CR with a 250 mg/g capacity. The addition of
ZnO nanoparticles to this biochar increased its adsorption potential to 555 mg/g [126].
The CR dye adsorption capacity of biochar made from orange peel was about 15 mg/g,
nonetheless, two tailored biochars made by using steam and CO2 exhibited capacities
of 135 and 90 mg/g, respectively. A one-hour hydrothermal carbonisation of litchi skin
at 1073 K produced an altered biochar with a surface area of 1005 m2/g and a good CR
adsorption potential of 400 mg/g [156].

Spirulina, paper, and seaweed alginate have been combined to create a modified
biochar [157]. The goal of this research was to see if algae biorefinery waste and wastepaper
could be used to make cost-effective and ecologically friendly xerogels for CR elimination.
At the ideal pH value of 6–8, the produced biosorbents possessed a light and porous
network structure and a quick dye uptake. The adsorption potential of CR was 40 mg/g.

Biochar was made from raw pine nut husks using fast pyrolysis at 973 K for 3 h [158].
Acid chrome blue K dye sorbates and anionic MO were used to examine the dye ad-
sorption capabilities of the biochar. Before being exposed to a final FeCl3 alteration, the
unaltered biochar was treated with modified magnetic biochar and cetyl trimethyl am-
monium bromide. Acid chrome blue K and MO have adsorption potentials of 16 and
1 mg/g, respectively, on unaltered biochar. Following the modification, the capacities for
acid chrome blue K and MO were 25 and 10 mg/g, respectively.

6. Conclusions

This review study discussed the use of biochars and modified biochars for dye removal
from effluents. There are several hundred studies on this subject in the literature, and some
of them have been cited and detailed in this review. Chemical species, chemical groups, and
dyestuff qualities were discussed in this article. A quick overview of treatment technologies
followed by a full discussion of the advantages of employing adsorption technology was
also covered in this review. The review also highlighted the main features and applications
of regular and modified (altered) biochars for color removal.

Certain performance trends can generally be observed and correlated with biochar
properties, for example, when using the same raw material source as the fuel source:

â The dye adsorption potential/capacity is highly linked to surface area, therefore, the
greater the pyrolysis temperature, the greater the dye adsorption capacity;

â The biochar yield decreases as the temperature rises. However, this is only true up to
roughly 1073 K;

â As the micropore and small mesopore walls burn away at temperatures beyond
1073–1123 K, pore volume increases, resulting in fewer but larger pores;

â It is important to consider the reaction conditions of temperature, time, and heating
rate based upon the type of dyestuff as well as the pyrolysis temperature. The
thickness of the pores is also affected by both the type of raw materials and the
pyrolysis temperature—dye molecules vary enormously in size, and even small dye
molecules are relatively large in comparison to many chemical molecules;

â Dye is strongly attracted to oppositely charged sites, so the nature of surface sites on
the biochar, depending on raw material and temperature, is extremely important;

â Slow pyrolysis yields the best biochar and has the best property control because it
produces more biochar, guarantees better pore development, and has a narrower
spectrum of pore size distribution.
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There are so many different types of modified biochars that it is impossible to list them
all; instead, a few brief examples are provided:

â Acid or alkali chemical treatment produces biochars with negative and positive
surface sites or groups; at temperatures above 823 K, these biochars are known as
activated carbons;

â Before pyrolysis treatment, sulfur doping of the feedstocks generates biochars carbons
with a decent affinity for hazardous heavy metal ions;

â Iron oxide-doped modified chars have demonstrated to be particularly attractive
adsorbents for both anions and metal cations, as well as chromate, using ion exchange;

â Coating the biochars has been exceedingly successful; for instance, coating with
chitosan provided adsorption capabilities of 5-fold and 20-fold w/w, placing these
altered biochars in the super-adsorbent category.

The future of biochar technology appears bright overall. Several biochars are made
from waste biomass resources and are therefore carbon neutral, making them a cost-
effective and environmentally friendly product with many potential applications. The
cited literature contains numerous gaps that will be essential to address for designing
treatment plants for dyehouse effluent biochar. However, recent articles have addressed
the “tomorrow’s path” which should be followed in future adsorption studies.
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