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Abstract: The methanolic extract from the flowers of Mesua ferrea Linn. (Calophyllaceae) showed
significant hyaluronidase inhibitory activity. Following a bioassay-guided separation of the extract,
two biflavonoids, viz., mesuaferrone-A (1) and mesuaferrone-B (2), were isolated, along with ten
flavonoids (3–12), two xanthones (13 and 14), three triterpenes (15–17), a phenylpropanoid (18),
and five aromatics (19–24). Among the isolates, 1 and 2 (IC50 = 51.1 µM and 54.7 µM, respectively)
exhibited hyaluronidase inhibitory activity equivalent to that of the commercially available antialler-
gic agents disodium cromoglycate (64.8 µM) and ketotifen fumarate (76.5 µM). These biflavonoids
(1 and 2) are 8-8” linked dimers that are composed of naringenin (1a) or apigenin (3), with their corre-
sponding monomers lacking inhibitory activity (IC50 > 300 µM). In addition, 1 and 2 (IC50 = 49.4 µM
and 49.2 µM, respectively) inhibited the release of β-hexosaminidase, which is a marker of antigen-
IgE-mediated degranulation, in rat basophilic leukemia (RBL-2H3) cells. These inhibitory activities
were more potent than those of the antiallergic agents tranilast and ketotifen fumarate (IC50 = 282 µM
and 158 µM, respectively), as well as one of the corresponding monomers (1a; IC50 > 100 µM).
Nonetheless, these effects were weaker than those of the other monomer (3; IC50 = 6.1 µM).

Keywords: Mesua ferrea; mesuaferrone; biflavonoid; hyaluronidase inhibitor; degranulation inhibitor;
Calophyllaceae

1. Introduction

Mesua ferrea Linn. (Ceylon ironwood in English and locally known as “bunnak” in
Thai), of the Calophyllaceae family, is a tropical tree that is widely distributed across
Southeast Asia, Thailand, India, and Sri Lanka [1–5]. In traditional Indian medicine, dif-
ferent aerial parts of the plant and their extracts are used to manage a wide range of
bodily disorders, such as the use of essential oils to treat skin diseases and rheumatism.
In addition, powders from the flowers and fruit of the plant, when mixed with butter, are
applied locally for the management of piles, while the seeds are used for treating pain and
inflammatory conditions such as arthritis [2]. Previous studies of the chemical constituents
from the rhizomes of this plant have led to the isolation and characterization of numerous
compounds, including biflavonoids [4–6], xanthones [2,4,5], coumarins [4,5,7], flavanone
glycosides [8], cyclohexanedione derivatives [9], triterpenes [10], and essential oil [11].
Furthermore, the biological effects of the extract and constituents have been reported, such
as the antioxidant [4], antibacterial [5], anti-inflammatory [5], and antitumor [12] properties.
During our characterization of the bioactive constituents of plants in Thailand [13–26],
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a methanolic extract of the M. ferrea flower was found to inhibit hyaluronidase activity.
Following the use of a bioassay-guided separation technique, two 8-8” linked biflavonoids,
mesuaferrone-A (1) and mesuaferrone-B (2), were isolated, along with ten flavonoids (3–12),
two xanthones (13 and 14), three triterpenes (15–17), a phenylpropanoid (18), and five aro-
matics (19–24). Herein, we report on the isolation, structure elucidation, and antiallergic
activities, such as the hyaluronidase and degranulation inhibitory properties, of the isolates.

2. Materials and Methods
2.1. General

The following instruments were used to obtain spectroscopic data: specific rotation,
JASCO P-2200 polarimeter (JASCO Corporation, Tokyo, Japan, l = 5 cm); UV spectra,
Shimadzu UV-1600 spectrometer; IR spectra, IRAffinity-1 spectrophotometer (Shimadzu
Co., Kyoto, Japan); 1H NMR spectra, JNM-ECA800 (800 MHz), JNM-LA500 (500 MHz),
JNM-ECS400 (400 MHz), and JNM-AL400 (400 MHz) spectrometers; 13C NMR spectra,
JNM-ECA800 (200 MHz), JNM-LA500 (125 MHz), JNM-ECA400 (100 MHz), and JNM-
AL400 (100 MHz) spectrometers (JEOL Ltd., Tokyo, Japan) by using tetramethylsilane as
the internal standard; ESIMS and HRESIMS, Exactive Plus mass spectrometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA).

Instruments and tools for analytical determinations included the following: HPLC
detectors, the Shimadzu RID-6A refractive index (RI) and SPD-10A UV-VIS detectors, and
a Shodex OR-2 optical rotation detector; HPLC columns, Cosmosil 5C18-MS-II (Nacalai
Tesque, Inc., Kyoto, Japan), Cosmosil Πnap (Nacalai Tesque, Inc., Kyoto, Japan), and
Wakopak Navi C30-5 (FUJIFILM Wako Pure Chemical Co., Osaka, Japan). Columns with
4.6 mm i.d. × 250 mm and 20 mm i.d. × 250 mm were used for analytical and preparative
purposes, respectively.

The following experimental chromatographic materials were used for column chro-
matography (CC): highly porous synthetic resin, Diaion HP-20 (Mitsubishi Chemical Co.,
Tokyo, Japan); normal-phase silica gel CC, silica gel 60 N (Kanto Chemical Co., Ltd.,
Tokyo, Japan; 63–210 mesh, spherical, neutral); reversed-phase ODS CC, Chromatorex ODS
DM1020T (Fuji Silysia Chemical, Ltd., Aichi, Japan; 100–200 mesh); TLC, precoated TLC
plates with silica gel 60F254 (Merck, Darmstadt, Germany, 0.25 mm) (normal-phase) and
silica gel RP-18 WF254S (Merck, 0.25 mm) (reversed-phase); reversed-phase HPTLC, pre-
coated TLC plates with silica gel RP-18 WF254S (Merck, 0.25 mm). Detection was performed
by spraying with 1% Ce(SO4)2–10% aqueous H2SO4, followed by heating.

2.2. Plant Material

The flowers of M. ferrea (loss on drying: 4.35% at 105 ◦C for 6 h) were collected from
the Nakhon Si Thammarat Province of Thailand in September 2006. The plant material was
identified by one of the authors (Y.P.). A voucher specimen (2006.09. Raj-07) of the plant is
on file in our laboratory.

2.3. Extraction and Isolation

Dried flowers (986.2 g) of M. ferrea were extracted three times following reflux with
methanol for 3 h. Solvent evaporation from the combined extracts under reduced pressure
yielded an aqueous acetone extract (156.8 g, 15.9%). An aliquot (127.0 g) was partitioned
in an EtOAc–H2O (1:1, v/v) mixture to furnish an EtOAc-soluble fraction (75.68 g, 9.47%)
and an aqueous phase. The aqueous phase was subjected to Diaion HP-20 CC (2.0 kg,
H2O→MeOH) to yield H2O-eluted (40.89 g, 5.12%) and MeOH-eluted (10.43 g, 1.31%)
fractions. An aliquot (60.20 g) of the EtOAc-soluble fraction was subjected to normal-phase
silica gel CC [3.00 kg, n-hexane–EtOAc (20:1→5:1→1:1→1:2, v/v)→EtOAc→MeOH] to
yield seven fractions [Fr. E1 (0.49 g), Fr. E2 (2.02 g), Fr. E3 (19.70 g), Fr. E4 (11.10 g), Fr. E5
(4.67 g), Fr. E6 (1.17 g), and Fr. E7 (16.10 g)]. Fraction E2 (2.02 g) was subjected to reversed-
phase silica gel CC [70.0 g, MeOH–H2O (80:20→95:5, v/v)→MeOH] to yield ten fractions
[Fr. E2-1 (77.0 mg), Fr. E2-2 (163.7 mg), Fr. E2-3 (62.4 mg), Fr. E2-4 (87.1 mg), Fr. E2-5
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(46.0 mg), Fr. E2-6 (91.9 mg), Fr. E2-7 (192.0 mg), Fr. E2-8 [=lupeol (15, 430.1 mg, 0.068%)],
Fr. E2-9 (133.7 mg), and Fr. E2-10 (430.8 mg)]. Fraction E2-7 (436.8 mg) was analyzed using
HPLC [detection: RI, MeOH-1% aqueous AcOH (95:5, v/v)] to yield 15 (7.1 mg, 0.0011%).
Fraction E3 (19.7 g) was subjected to reversed-phase silica gel CC [600.0 g, MeOH–H2O
(80:20→90:10, v/v)→MeOH] to yield eight fractions [Fr. E3-1 (78.0 mg), Fr. E3-2 (181.3 mg),
Fr. E3-3 (127.2 mg), Fr. E3-4 (583.1 mg), Fr. E3-5 (193.1 mg), Fr. E3-6 (12.6 g), Fr. E3-7
(348.5 mg), and Fr. E3-8 (1.78 mg)]. Fraction E3-2 (181.3 mg) was analyzed using HPLC
[detection: RI, MeOH-1% aqueous AcOH (60:40, v/v)] to yield 1,7-dihydroxyxanthone (13,
12.1 mg, 0.019%). Fraction E3-7 (348.5 mg) was purified by HPLC [detection: RI, MeOH-1%
aqueous AcOH (95:5, v/v)] to yield betulinaldehyde (16, 15.5 mg, 0.0024%). Fraction E4
(11.05 g) was subjected to reversed-phase silica gel CC [330.0 g, MeOH–H2O (80:20→90:10,
v/v)→MeOH] to yield 11 fractions [Fr. E4-1 (58.1 mg), Fr. E4-2 (473.6 mg), Fr. E4-3
(189.4 mg), Fr. E4-4 (799.1 mg), Fr. E4-5 (2301.3 mg), Fr. E4-6 (72.5 mg), Fr. E4-7 (920.0 mg),
E4-8 (723.5 mg), E4-9 (254.6 mg), E4-10 (1050.0 mg), and Fr. E4-11 (734.2 mg)]. Fraction
E4-1 (58.1 mg) was analyzed using HPLC [detection: UV (254 nm), MeOH-1% aqueous
AcOH (20:80, v/v)] to yield p-hydroxybenzoic acid (19, 20.1 mg, 0.00080%), protocatechuic
acid (20, 18.2 mg, 0.0018%), protocatechuic aldehyde (22, 5.6 mg, 0.0019%), and vanillic
acid (21, 7.8 mg, 0.00074%). Fraction E4-2 (473.6 mg) was analyzed using HPLC [detection:
UV (254 nm), MeOH-1% aqueous AcOH (50:50, v/v)] to yield quercetin (10, 27.2 mg,
0.00428%) and trans-cinnamic acid (18, 8.1 mg, 0.00128%). Fraction E4-3 (189.4 mg) was
analyzed by HPLC [detection: UV (254 nm), MeOH-1% aqueous AcOH (50:50, v/v)]
to yield 1,3,7-trihydroxyxanthone (14, 3.2 mg, 0.0020%). Fraction E4-4 (624.1 mg) was
analyzed using HPLC [detection: UV (254 nm), MeOH-1% aqueous AcOH (60:40, v/v)] to
yield apigenin (3, 8.6 mg, 0.0020%). Fraction E4-10 (300.0 mg) was analyzed using HPLC
[detection: UV (254 nm), MeOH-1% aqueous AcOH (90:10, v/v)] to yield ursolic acid (17,
20.1 mg, 0.0048%). Fraction E5 (4.67 g) was subjected to reversed-phase silica gel CC [150 g,
MeOH–H2O (40:60→60:40→70:30→80:20, v/v)→MeOH] to yield eight fractions [Fr. E5-1
(480.0 mg), Fr. E5-2 (250.0 mg), Fr. E5-3 (60.0 mg), Fr. E5-4 (110.0 mg), Fr. E5-5 (870.0 mg),
Fr. E5-6 (420.0 mg), Fr. E5-7 (0.51 mg), and Fr. E5-8 (1.18 g)]. Fraction E5-1 (230.0 mg)
was analyzed using HPLC [detection: UV (254 nm), MeOH-1% aqueous AcOH (5:95,
v/v)] to yield 20 (71.0 mg, 0.0113%) and gallic acid (23, 37.6 mg, 0.0149%). Fraction E5-5
(300.0 mg) was characterized using HPLC [detection: UV (254 nm), MeOH-1% aqueous
AcOH (60:40, v/v)] to yield mesuaferrone-A (1, 85.3 mg, 0.0387%), mesuaferrone-B (2,
99.8 mg, 0.0452%), and luteolin (4, 7.0 mg, 0.0032%). Fraction E5-6 (420 mg) was analyzed
using HPLC [detection: UV (254 nm), CH3CN-1% aqueous AcOH (50:50 v/v)] to yield
2 (13.9 mg, 0.0022%). Fraction E7 (16.1 g) was subjected to reversed-phase silica gel CC
[60.0 g, MeOH–H2O (40:60→60:40→70:30→80:20, v/v)→MeOH] to yield ten fractions
[Fr. E7-1 (0.097 g), Fr. E7-2 (1.22 g), Fr. E7-3 (0.48 g), Fr. E7-4 (0.74 g), Fr. E7-5 (1.04 g),
Fr. E7-6 (3.55 g), Fr. E7-7 (2.33 g), E7-8 (2.05 g), E7-9 (1.70 g), and Fr. E7-10 (1.50 g)].
Fraction E7-4 (300.0 mg) was analyzed using HPLC [detection: UV (254 nm), MeOH-
1% aqueous AcOH (30:70, v/v)] to yield orientin (6, 13.9 mg, 0.0032%). Fraction E7-5
(500.0 mg) was characterized using HPLC [detection: UV (254 nm), MeOH-1% aqueous
AcOH (30:70, v/v)] to yield vitexin (5, 14.6 mg, 0.0126%). Fraction E7-6 (500.0 mg) was
analyzed using HPLC [detection: UV (254 nm), MeOH-1% aqueous AcOH (50:50, v/v)]
to yield 5 (12.7 mg, 0.0140%), saponaretin (7, 89.5 mg, 0.100%), and quercetin-3-O-α-L-
rhamnopyranoside (12, 135.4 mg, 0.151%). Fraction E7-7 (500.0 mg) was analyzed using
HPLC [detection: UV (254 nm), MeOH-1% aqueous AcOH (40:60, v/v)] to yield 12 (17.0 mg,
0.011%) and kaempferol-3-O-α-L-rhamnopyranoside (11, 48.5 mg, 0.033%). An aliquot
(8.20 g) of the MeOH-eluted fraction was subjected to reversed-phase silica gel CC [500 g,
MeOH–H2O (35:65→50:50→70:30→90:10, v/v)→EtOAc→MeOH] to yield seven fractions
[Fr. M1 (0.80 g), Fr. M2 (0.78 g), Fr. M3 (1.13 g), Fr. M4 (1.72 g), Fr. M5 (1.46 g), Fr. M6
(0.39 g), and Fr. M7 (1.48 g)]. Fraction M4 (500.0 mg) was subjected to HPLC [detection:
UV (254 nm), MeOH-1% aqueous AcOH (50:50, v/v)] to yield five fractions {Fr. M4-1
(13.4 mg), Fr. M4-2 (3.4 mg), Fr. M4-3 (31.2 mg), Fr. E4-4 [=5 (51.7 mg, 0.028%)], and Fr. E4-5
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[=7 (11.1 g, 0.0061%)]}. Fraction M4-3-1 (31.2 mg) was analyzed using HPLC [detection:
UV (254 nm), MeOH-1% aqueous AcOH (35:65, v/v)] to yield homoorientin (8, 3.7 mg,
0.0020%). Fraction M5 (500.0 mg) was analyzed using HPLC [detection: UV (254 nm),
MeOH-1% aqueous AcOH (50:50, v/v)] to yield 5 (21.5 mg, 0.040%), 6 (10.7 mg, 0.020%), 7
(31.1 mg, 0.0582%), and apigenin-7-O-rutinoside (9, 23.7 mg, 0.044%) (Figure 1).

Separations 2022, 9, 127 4 of 13 
 

 

(254 nm), MeOH-1% aqueous AcOH (35:65, v/v)] to yield homoorientin (8, 3.7 mg, 0.0020%). 
Fraction M5 (500.0 mg) was analyzed using HPLC [detection: UV (254 nm), MeOH-1% aque-
ous AcOH (50:50, v/v)] to yield 5 (21.5 mg, 0.040%), 6 (10.7 mg, 0.020%), 7 (31.1 mg, 0.0582%), 
and apigenin-7-O-rutinoside (9, 23.7 mg, 0.044%) (Figure 1). 

 
Figure 1. Isolation protocol of the chemical constituents (1–23) from the flowers of M. ferrea. 

2.4. Hyaluronidase Inhibitory Activity 
Hyaluronidase inhibitory activity was determined in accordance with a previously 

reported method [27], with slight modifications. Briefly, the assay was performed in 96-
well microplates. Preincubation of 10 µL hyaluronidase enzyme (Type IV-S from bovine 
testes; 340 NF unit/mL, Sigma-Aldrich Co. LLC, St. Louis, MO, USA) or a blank buffer (0.1 
M acetate buffer, pH 3.5) with 20 µL of sample or control was performed at 37 °C for 20 
min. Calcium dichloride (20 µL, final concentration: 2.0 mM) was added to the buffer, and 
the mixture was incubated at 37 °C for 40 min. Next, 50 µL of hyaluronic acid potassium salt 
(final concentration: 0.6 mg/mL, Sigma-Aldrich Co. LLC, St. Louis, MO, USA) was added, 
and the mixture was incubated at 37 °C for 40 min. The reaction was stopped by the addition 
of 0.4 M NaOH (10 µL) and 0.08 M borate solution (pH 9.1, 10 µL), and was immediately 
heated using boiling water for 3 min. The reaction solution (20 µL) was transferred to an-
other 96-well microplate. p-Dimethylaminobenzaldehyde (80 µL, final concentration: 8.0 
mg/mL, Wako Pure Chemical Industries Ltd., Osaka, Japan) acetate solution was added to 
the reaction mixture and incubated at 37 °C for 20 min. The optical density (OD) of the re-
action mixture was measured using a microplate reader (SH-9000, CORONA ELECTRIC 
Co., Ltd., Ibaraki, Japan) at a wavelength of 585 nm (reference 670 nm). The final concentra-
tion of dimethyl sulfoxide (DMSO) in the test solution was 1.0%, and no influence of DMSO 
on the inhibitory activity was detected. All experiments were performed in quadruplicate, 
and IC50 values were determined graphically. Disodium cromoglycate (DSCG), ketotifen 
fumarate, and tranilast, which are clinically prescribed antiallergic medicines, were used 
as the reference compounds. Equation (1) below was used to calculate the percentage in-
hibition. 
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2.4. Hyaluronidase Inhibitory Activity

Hyaluronidase inhibitory activity was determined in accordance with a previously
reported method [27], with slight modifications. Briefly, the assay was performed in 96-well
microplates. Preincubation of 10 µL hyaluronidase enzyme (Type IV-S from bovine testes;
340 NF unit/mL, Sigma-Aldrich Co. LLC, St. Louis, MO, USA) or a blank buffer (0.1 M
acetate buffer, pH 3.5) with 20 µL of sample or control was performed at 37 ◦C for 20 min.
Calcium dichloride (20 µL, final concentration: 2.0 mM) was added to the buffer, and the
mixture was incubated at 37 ◦C for 40 min. Next, 50 µL of hyaluronic acid potassium
salt (final concentration: 0.6 mg/mL, Sigma-Aldrich Co. LLC, St. Louis, MO, USA) was
added, and the mixture was incubated at 37 ◦C for 40 min. The reaction was stopped
by the addition of 0.4 M NaOH (10 µL) and 0.08 M borate solution (pH 9.1, 10 µL), and
was immediately heated using boiling water for 3 min. The reaction solution (20 µL) was
transferred to another 96-well microplate. p-Dimethylaminobenzaldehyde (80 µL, final
concentration: 8.0 mg/mL, Wako Pure Chemical Industries Ltd., Osaka, Japan) acetate
solution was added to the reaction mixture and incubated at 37 ◦C for 20 min. The optical
density (OD) of the reaction mixture was measured using a microplate reader (SH-9000,
CORONA ELECTRIC Co., Ltd., Ibaraki, Japan) at a wavelength of 585 nm (reference
670 nm). The final concentration of dimethyl sulfoxide (DMSO) in the test solution was
1.0%, and no influence of DMSO on the inhibitory activity was detected. All experiments
were performed in quadruplicate, and IC50 values were determined graphically. Disodium
cromoglycate (DSCG), ketotifen fumarate, and tranilast, which are clinically prescribed
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antiallergic medicines, were used as the reference compounds. Equation (1) below was
used to calculate the percentage inhibition.

Inhibition (%) = [(OD (C) − OD (N)) − (OD (T) − OD (B))]/(OD (C) − OD (N)) × 100 (1)

Control (C): enzyme (+), test sample (−); Test (T): enzyme (+), test sample (+); Blank
(B): Missouri, enzyme (−), test sample (+); Normal (N): enzyme (−), test sample (−); OD,
optical density.

2.5. Inhibitory Effects on the Release of β-Hexosaminidase from RBL-2H3 Cells

Inhibitory effects on the release of β-hexosaminidase in RBL-2H3 cells [Cell No.
JCRB0023, obtained from the Health Science Research Resources Bank (Osaka, Japan)]
were evaluated by using a previously reported method [28,29]. Briefly, RBL-2H3 cells in
24-well plates (2 × 105 cells/well in minimal essential medium (MEM) containing 10%
fetal bovine serum (FBS), penicillin (100 units/mL), and streptomycin (100 µg/mL)) were
sensitized with anti-dinitrophenyl immunoglobulin E (anti-DNP IgE, 0.45 µg/mL). The
cells were washed with Siraganian buffer (119 mM NaCl, 5 mM KCl, 0.4 mM MgCl2,
25 mM piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES), and 40 mM NaOH, pH 7.2)
supplemented with 5.6 mM glucose, 1 mM CaCl2, and 0.1% bovine serum albumin (BSA)
(incubation buffer), and then incubated in 160 µL of the incubation buffer for 10 min at
37 ◦C. Next, 20 µL of the test sample solution was added to each well and was incubated
for 10 min, followed by an addition of 20 µL of antigen (DNP-BSA, final concentration:
10 µg/mL) and incubation at 37 ◦C for 10 min to stimulate cell degranulation. Subsequently,
the reaction was stopped by cooling in an ice bath for 10 min. The supernatant (50 µL)
was then transferred into a 96-well plate and incubated with 50 µL of substrate (1 mM
p-nitrophenyl-N-acetyl-β-D-glucosaminide) in 0.1 M citrate buffer (pH 4.5) at 37 ◦C for 1 h.
The reaction was stopped by adding 200 µL of stop solution (0.1 M Na2CO3/NaHCO3,
pH 10.0). The absorbance was measured by using a microplate reader set at a wave-
length of 405 nm. The test sample was dissolved in DMSO, and the solution added to
incubation buffer (final DMSO concentration: 0.1%). The inhibition (%) of the release of
β-hexosaminidase by the test samples was calculated using Equation (2), and IC50 values
were determined graphically:

Inhibition (%) = [1 − (T − B − N)/(C − N)] × 100 (2)

Control (C): DNP-BSA (+), test sample (−); Test (T): DNP-BSA (+), test sample (+);
Blank (B): DNP-BSA (−), test sample (+); Normal (N): DNP-BSA (−), test sample (−).

To ascertain whether the antiallergic effects of the samples were due to the inhibi-
tion of β-hexosaminidase release, and not due to a false positive from the inhibition of β-
hexosaminidase activity, we performed the following test. The cell suspension (5 × 107 cells)
was placed in 6 mL of phosphate-buffered saline and sonicated. The solution was then
centrifuged, and the supernatant was diluted with the incubation buffer and adjusted to
equal the enzyme activity of the above-tested degranulation. The enzyme solution (45 µL)
and test sample solution (5 µL) were transferred into a 96-well microplate, and the enzyme
activity was examined as described above (Equation (2)). Under these conditions, the total
β-hexosaminidase activity of the cell suspension after sonication was calculated from the
cells in the control groups. Tranilast and ketotifen fumarate, which are clinically prescribed
antiallergic medicines, were used as the reference compounds.

2.6. Statistics

All data are expressed as means ± standard error of the mean. One-way analysis of vari-
ance, followed by Dunnett’s test, were used for statistical analysis. Probability (p) values < 0.05
were considered statistically significant.
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3. Results and Discussion
3.1. Inhibitory Effects of the M. ferrea Flower Methanolic Extract and Its Fractions on Hyaluronidase

Hyaluronidases are enzymes that break down hyaluronic acid, which is a mucopolysaccharide
that is related to inflammation, through the release of histamine from mast cells. Hyaluronidase
inhibitors are effective therapies for the suppression of allergies and inflammation [30–32].
It is known that DSCG, which is a commercially available antiallergic agent, exhibits a
strong inhibitory effect against hyaluronidase [31]. Therefore, a close relationship has been
defined between allergic reactions and hyaluronidase inhibitory activity [31,32].

The dried flowers of M. ferrea were used to obtain a methanol extract (15.9% from the
dried material). The methanol was partitioned by using EtOAc–H2O (1:1, v/v) to yield an
EtOAc-soluble fraction (9.47%) and an aqueous phase. The aqueous phase was subjected
to Diaion HP-20 CC (H2O→MeOH) to yield MeOH- and H2O-eluted fractions (5.12%
and 1.31%, respectively). As shown in Table 1, the methanolic extract was found to have
hyaluronidase inhibitory activity [inhibition (%): 52.1 ± 4.6 at 1000 µg/mL]. Following the
use of a bioassay-guided separation procedure, the EtOAc-soluble and the MeOH-eluted
fractions were found to be the active fractions (IC50 = 430 and 360 µg/mL, respectively),
while the H2O-eluted fraction showed no notable activity.

Table 1. Hyaluronidase inhibitory activity of the MeOH extract and its fractions obtained from
flowers of M. ferrea.

Inhibition (%)

0 µg/mL 125 µg/mL 250 µg/mL 500 µg/mL 1000 µg/mL

MeOH extract 0.0 ± 8.1 5.1 ± 6.8 10.7 ± 5.6 24.2 ± 6.4 52.1 ± 4.5 b

EtOAc-soluble fraction 0.0 ± 3.3 19.6 ± 7.7 a 27.2 ± 5.1 b 52.8 ± 3.8 b 72.0 ± 3.7 b

MeOH-eluted fraction 0.0 ± 8.4 16.6 ± 4.8 44.9 ± 5.1 b 61.9 ± 4.7 b 79.6 ± 1.4 b

H2O-eluted fraction 0.0 ± 10.0 −5.7 ± 8.4 11.7 ± 7.7 12.1 ± 7.0 6.9 ± 7.4

Each value represents the mean ± S.E.M. (N = 4). Significantly different from the control, a p < 0.05, b p < 0.01.

3.2. Chemical Constituents of the M. ferrea Flower

The EtOAc-soluble fraction was subjected to normal-phase silica gel and reversed-
phase ODS column CC, and finally to HPLC to obtain the following: two 8-8” linked
biflavonoids, mesuaferrone-A (1, 0.039%) [33] and mesuaferrone-B (2, 0.0047%) [34]; eight
flavonoids, apigenin (3, 0.0020%), luteolin (4, 0.0032%), vitexin (5, 0.032%) [35], orientin
(6, 0.015%) [36], saponaretin (7, 0.16%) [37], quercetin (10, 0.0043%), kaempferol 3-O-
α-L-rhamnopyranoside (11, 0.033%) [38], and quercetin 3-O-α-L-rhamnopyranoside (12,
0.16%) [39]; two xanthones, 1,7-dihydroxyxanthone (13, 0.0024%) [40] and 1,3,7-trihydro-
xyxanthone (14, 0.0019%) [41]; three triterpenes, lupeol (15, 0.069%) [42], betulinaldehyde
(16, 0.0048%) [43], and ursolic acid (17, 0.048%) [44]; a phenylpropanoid, trans-cinnamic
acid (18, 0.0013%); and five aromatics, p-hydroxybenzoic acid (19, 0.0008%), protocatechuic
acid (20, 0.013%), vanillic acid (21, 0.00074%), protocatechuic aldehyde (22, 0.0019%) [45],
and gallic acid (23, 0.19%). From the MeOH-eluted fraction, five flavonoids, 5 (0.068%),
6 (0.020%), 7 (0.064%), homoorientin (8, 0.0020%) [46], and apigenin 7-O-rutinoside (9,
0.044%) [47], were isolated (Figure 2 and Table S1). The isolates were identified by a
comparison of their physical and spectral data with those of commercially available samples
(3, 4, 10, 18–21, and 23), or with reported values [33–47].
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3.3. Inhibitory Effects of M. ferrea Flower Isolates (1–23) on Hyaluronidase

In previous studies of compounds from natural medicines that possess hyaluronidase
inhibitory activity, it was reported that a phenylethanoid glycoside that was isolated from
the flowers of Mimusops elengi L. (Sapotaceae) [20], aporphine- and benzylisoquinoline-
type alkaloids from the flowers of Nelumbo nucifera Gaertn. (Nelumbonaceae) [27], and
iridoids from the rhizomes of Picrorhiza kurroa Royle ex Benth. (Plantaginaceae) [48] possess
this property. To add on to these findings, the hyaluronidase inhibitory activity of the
isolates from the flowers of M. ferrea were examined. Among the isolates, the two 8-8”
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linked biflavonoids mesuaferrone-A (1, IC50 = 51.1 µM) and B (2, IC50 = 54.7 µM) exhibited
hyaluronidase inhibitory activity that was equivalent to that of the commercial antiallergic
agents DSCG (64.8 µM) and ketotifen fumarate (76.5 µM), which are therapeutically effec-
tive owing to their inhibitory activity on degranulation [49] (Table 2). These biflavonoids
(1 and 2) are 8-8” linked dimers that are composed of naringenin (1a) or apigenin (3).
However, their corresponding monomers did not show similarly potent inhibitory activity
(IC50 > 300 µM).

Table 2. Inhibitory effects of the isolates (1–23) from the flowers of M. ferrea on hyaluronidase.

Inhibition (%) IC50

0 µM 12.5 µM 25 µM 50 µM 100 µM (µM)

mesuaferrone-A (1) 0.0 ± 8.1 10.2 ± 14.6 26.5 ± 7.3 48.8 ± 6.8 b 71.1 ± 1.4 b 51.1

mesuaferrone-B (2) 0.0 ± 4.3 7.3 ± 1.9 23.6 ± 2.5 b 46.6 ± 0.9 b 54.5 ± 1.4 b 54.7

Inhibition (%) IC50

0 µM 32.5 µM 75 µM 150 µM 300 µM (µM)

naringenin (1a) 0.0 ± 8.8 −0.4 ± 5.3 −8.8 ± 2.0 0.4 ± 2.2 20.5 ± 1.7 —

apigenin (3) 0.0 ± 6.2 15.8 ± 7.7 27.5 ± 8.1 32.9 ± 8.2 38.3 ± 6.4 b —

luteolin (4) 0.0 ± 4.6 5.7 ± 2.8 8.9 ± 3.8 10.5 ± 3.5 12.3 ± 3.4 —
vitexin (5) 0.0 ± 8.3 0.4 ± 8.2 −7.0 ± 7.9 −11.7 ± 3.8 −10.9 ± 5.2 —

orientin (6) 0.0 ± 9.3 4.9 ± 5.9 5.9 ± 3.2 9.0 ± 2.9 13.2 ± 2.6 —
saponaretin (7) 0.0 ± 3.5 1.1 ± 2.0 4.8 ± 3.1 4.6 ± 3.0 2.2 ± 2.4 —

homoorientin (8) 0.0 ± 7.9 −7.1 ± 8.5 −2.9 ± 7.6 −5.0 ± 4.0 1.7 ± 5.9 —
apigenin 7-O-Rut (9) 0.0 ± 7.6 4.4 ± 4.5 3.8 ± 2.1 2.5 ± 3.1 1.3 ± 2.4 —

quercetin (10) 0.0 ± 3.7 −1.0 ± 1.4 −4.3 ± 5.2 −4.3 ± 3.8 0.7 ± 4.5 —
kaempferol 3-O-Rha (11) 0.0 ± 1.2 0.5 ± 2.5 −4.7 ± 3.6 −1.2 ± 3.7 6.3 ± 3.1 —

quercetin 3-O-Rha (12) 0.0 ± 4.3 1.4 ± 4.2 4.0 ± 2.3 5.9 ± 3.3 13.2 ± 2.6 —
1,7-dihydroxyxthantone (13) 0.0 ± 3.0 3.3 ± 3.0 0.4 ± 1.4 −1.8 ± 3.6 5.4 ± 3.9 —

1,3,7-trihydroxyxthantone (14) 0.0 ± 7.7 7.8 ± 2.7 4.7 ± 1.8 11.1 ± 2.7 18.4 ± 1.9 —
lupeol (15) 0.0 ± 1.1 10.3 ± 3.2 9.4 ± 2.8 0.8 ± 2.2 −0.4 ± 6.2 —

betulinaldehyde (16) 0.0 ± 3.6 −3.9 ± 2.1 0.2 ± 1.9 1.0 ± 1.9 5.3 ± 5.6 —
ursolic acid (17) 0.0 ± 1.3 0.7 ± 1.5 0.5 ± 0.7 2.4 ± 1.5 −5.7 ± 2.8 —

trans-cinnamic acid (18) 0.0 ± 1.4 2.4 ± 0.9 −1.7 ± 4.7 −4.0 ± 5.1 −1.2 ± 5.0 —
p-hydroxybenzoic acid (19) 0.0 ± 5.0 −2.8 ± 2.2 −0.7 ± 1.4 2.6 ± 2.7 −0.2 ± 4.3 —

protocatechuic acid (20) 0.0 ± 2.5 1.0 ± 2.5 −2.1 ± 1.5 4.0 ± 2.3 5.6 ± 4.2 —
vanillic acid (21) 0.0 ± 3.8 4.0 ± 1.4 2.3 ± 3.1 −0.7 ± 3.3 5.7 ± 3.2 —

protocatechuic aldehyde (22) 0.0 ± 1.0 0.7 ± 1.8 4.1 ± 1.1 4.7 ± 3.0 1.5 ± 0.8 —
gallic acid (23) 0.0 ± 1.4 −0.6 ± 1.6 −0.3 ± 3.1 3.6 ± 3.5 4.4 ± 4.2 —

disodium cromoglycate [48] 0.0 ± 2.0 4.0 ± 2.4 14.4 ± 0.4 a 39.0 ± 4.9 b 69.1 ± 2.2 b 64.8
ketotifen fumarate [48] 0.0 ± 6.1 11.9 ± 1.9 26.7 ± 4.9 36.4 ± 2.9 b 54.6 ± 2.5 b 76.5

Each value represents the mean ± S.E.M. (N = 4). Significantly different from the control, a p < 0.05, b p < 0.01.

3.4. Inhibitory Effects of 1 and 2 on the Release of β-Hexosaminidase in RBL-2H3 Cells

Basophils and mast cells play important roles in both the immediate- and late-phase
reactions of type I allergies. The aggregation of high-affinity Fcε receptor I (FcεRI) by
antigens results in tyrosine phosphorylation, Ca2+ release from intracellular Ca2+ stores,
and Ca2+ influx via release-activated Ca2+ channels. The levels of intracellular free Ca2+

([Ca2+]i) play an essential role in the degranulation process [49–52]. Histamine, which is a
chemical mediator that is released from mast cells and basophils when they are stimulated
by an immunoglobulin E (IgE)-antigen complex or a degranulation inducer, is usually
considered to be a degranulation marker of immediate allergic reactions in in vitro experi-
ments. β-Hexosaminidase is also stored in the secretory granules of cells and is released
concomitantly with histamine when the cells are immunologically activated. Therefore,
the enzymatic activity of β-hexosaminidase can be used as a marker for the degranu-
lation of the cells [53]. Previously, our studies on compounds from natural medicines
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that possess degranulation inhibitory activity have shown that phenylpropanoids [54],
neolignans [49], flavonoids [52,55], stilbenoids [28,56,57], diarylheptanoids [29,58,59], ter-
penoids [55,60–63], and alkaloids [64,65] have this property. In addition, it has been found
that there is a close relationship between allergic reactions and hyaluronidase inhibitory
activity [31,32]. Therefore, the degranulation inhibitory activities of mesuaferrone-A (1) and
mesuaferrone-B (2), which have hyaluronidase activity, were examined. Our findings show
that 1 (IC50 = 49.4 µM) and 2 (C50 = 49.2 µM) inhibited the release of β-hexosaminidase,
which is a marker of antigen-IgE-mediated degranulation in RBL-2H3 cells (Table 3). These
inhibitory activities were more potent than those of tranilast (282 µM), ketotifen fumarate
(158 µM), and one of the corresponding monomers (1a; >100 µM), but they were weaker
than that of the other monomer (3; 6.1 µM). Next, to confirm that these observations were
definitely the result of inhibiting the release of β-hexosaminidase, and not a false positive
from inhibiting the enzymatic activity of β-hexosaminidase, the effects of the abovemen-
tioned active degranulation inhibitors on the enzyme activity were examined. The results
show that none of the investigated molecules significantly inhibited β-hexosaminidase
activity at a concentration of 100 µM (data not shown).

Table 3. Inhibitory effects of mesuaferrone-A (1) and B (2) on the release of β-hexosaminidase in
RBL-2H3 cells.

Inhibition (%) IC50

0 µM 3 µM 10 µM 30 µM 100 µM (µM)

mesuaferrone-A (1) 0.0 ± 7.1 24.9 ± 6.6 a 24.8 ± 1.6 a 37.8 ± 5.6 b 86.0 ± 7.8 b 49.4

mesuaferrone-B (2) 0.0 ± 9.5 13.8 ± 5.3 4.2 ± 4.4 5.6 ± 6.2 113.0 ± 10.1 b 49.2

Inhibition (%) IC50

0 µM 30 µM 100 µM 300 µM 1000 µM (µM)

tranilast [49] 0.0 ± 1.7 8.2 ± 1.8 22.4 ± 2.5 a 56.9 ± 3.4 b 75.0 ± 0.6 b 282

ketotifen fumarate [49] 0.0 ± 1.8 7.7 ± 1.5 27.6 ± 2.2 a 80.7 ± 1.8 b 100.7 ± 1.1 b 158

Each value represents the mean ± S.E.M. (N = 4). Significantly different from the control, a p < 0.05, b p < 0.01.

4. Conclusions

In conclusion, we found that the methanolic extract of the flowers of M. ferrea in-
hibits the enzymatic activity of hyaluronidase. Through a bioassay-guided separation of
the extract, two biflavonoids, mesuaferrone-A (1) and mesuaferrone-B (2), were isolated,
along with ten flavonoids (3–12), two xanthones (13 and 14), three triterpenes (15–17), a
phenylpropanoid (18), and five aromatics (19–24). Among the isolates, the biflavonoids
mesuaferrone-A (1, IC50 = 51.1 µM) and B (2, IC50 = 54.7 µM) were identified as the ac-
tive constituents. Their inhibitory activities were equivalent to those of the antiallergic
medicines DSCG (64.8 µM) and ketotifen fumarate (76.5 µM). As for the corresponding
monomer flavonoids, naringenin (1a) or apigenin (3), they did not show similar inhibitory
activity (IC50 > 300 µM). In addition, 1 (IC50 = 49.4 µM) and 2 (IC50 = 49.2 µM) were
found to possess degranulation inhibitory activities. These inhibitory activities were more
potent than those of the antiallergic medicines tranilast (IC50 = 282 µM) and ketotifen
fumarate (158 µM), and one of the corresponding monomers (1a; >100 µM), but they were
weaker than that of the other monomer (3; 6.1 µM). These results suggest that the presence
of a biflavonoid skeleton may be important for antiallergic properties through both the
hyaluronidase and degranulation inhibitory pathways. Further studies on the mecha-
nisms of action of these constituents, as well as the associated structural requirements, are
in progress.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/xxx/s1. Figures S1–S10: NMR spectra of mesuaferrone-A (1) and mesuaferrone-B (2);
and Table S1: List of the isolates (1–23) from the flowers of M. ferrea.
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