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Abstract: The medicinal plant woundwort (Solidago virgaurea L.) characterizes by diuretic, antimu-
tagenic, anti-inflammatory activity and it has been applied for urinary tract, nephrolithiasis and
prostate disorders treatment. The aim of the present study was to analyze the extraction kinetics of
catechin, epigallocatechin and quercetin from Bulgarian woundwort extracts, to assess the antibac-
terial potential of the medicinal plant extracts against four bacterial strains (Staphylococcus aureus
ATCC25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Bacillus cereus),
their antioxidant capacity and radical scavenging potential. The concentrations of the flavonoids in
the extracts obtained at different extraction conditions (solvent, temperature, extraction time) were
determined by newly-developed by the scientific team RP-HPLC-PDA methodologies. The agar well
diffusion method was applied to evaluate the antibacterial activity of the plant extracts. The 70%
EtOH extracts at 20 ◦C displayed significantly higher antibacterial activity against the foodborne
pathogenic bacteria S. aureus and P. aeruginosa as compared to the 70% and 98% EtOH extracts at
30 ◦C and 20 ◦C, respectively. The medicinal plant exhibited satisfactory antioxidant potential and
radical-scavenging activity.

Keywords: woundwort; catechin; epigallocatechin; quercetin; antimicrobial activity; antioxidant po-
tential

1. Introduction

Modern health conscious lifestyle has been taking advantage of medicines, food ad-
ditives and dietary supplements of natural origin, such as plant extracts containing high
amounts of important groups of secondary metabolites. The latter including flavonoids,
phenolic acids, quinones, tannins, etc., possess diverse structures and functions and have
been putatively recognized to exhibit various biological activities: antioxidant, antimicro-
bial, antiproliferative, anti-inflammatory, antidiabetic, etc. [1–3].

Flavonoids constitute a large class of natural phenolic compounds which are plants
bioactive secondary metabolites. Modern scientific studies report their immunomodulatory,
anti-inflammatory, hepatoprotective, antiviral and anticancer activities [4]. These effects
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emanate from the potential of the polyphenolic compounds to reduce oxidative stress,
inhibit the oxidation of lipoproteins and vasodilation activity [5,6].

The precise elicitation of the mechanisms of the physiological activities of medicinal
plant extracts requires detailed qualitative and quantitative analyses of these multicom-
ponent systems, so that to evaluate the individual biopotency of the components and to
reveal their biochemical pathways and therapeutic potential.

With respect to the growing risk of antibiotic resistance and based on novel scientific
data that medicinal plants flavonoids have been recognized as promising antimicrobial
agents [7], recent scientific studies have been directed towards in-depth investigations in
this field of medicinal chemistry and biomedicine. Modern scientific literature reports an-
tibacterial activity of various plant extracts applying water and numerous organic solvents
(acetone, ethanol, methanol, ethyl acetate) as extracting agents [8]. Gonelimali et al. [9]
reported that roselle (Hibiscus sabdariffa), rosemary (Rosmarinus officinalis), clove (Syzygium
aromaticum), and thyme (Thymus vulgaris) water and ethanol extracts displayed antibacte-
rial and antifungal activities against Gram positive and Gram negative bacterial strains.
These findings were substantiated by the decline in cytoplasmic pH and cell membrane
hyperpolarization [9].

Another study demonstrated high antibacterial potential of O. corniculata extract
against Escherichia coli, Salmonella Typhi, MDR Salmonella Typhi, Klebsiella pneumoniae,
and Citrobacter koseri. and satisfactory activity of Plumbago indica [10], Artemisia vulgaris,
Cinnamomum tamala, and Ageratina adenophora methanolic extracts against Staphylococcus
aureus [11]. The investigations of Owusu et al. [12] demonstrated antimicrobial activity of
water and ethanol extracts of several African Sub-Saharan medicinal plants against MD-R
bacterial pathogens that were previously isolated from post-operative wounds.

Therapies applying antioxidant agents have been suggested as state-of-the-art ap-
proaches to mitigate diseases associated with oxidative stress. Antioxidants are proposed
to exert versatile and multitargeted mechanisms that are associated with either oxida-
tive homeostasis restoration or free radical accumulation. Plant-derived phenolics and
flavonoids in medicinal plants behave as strong free-radical scavengers that prevent the
cell damage caused by oxidative stress [13]. In this respect, significant in vitro and in vivo
antioxidant potential of butanol extract from Ephedra alte in a concentration-dependent
manner were reported by Al-Trad et al. [14]. The water and methanol extracts of P. thonningi
displayed satisfactory in vitro antilipid peroxidation potential, DPPH radical scavenging
activity, and ferric reducing power efficiency [15]. The study of Zagórska-Dziok et al. [16]
demonstrated the potential of M. sativa L. extracts to inhibit free radicals on the external
cell environment as well as to reduce intracellular reactive oxygen species level, thus
contributing to intercellular oxidative stress reduction.

European woundwort (Solidago virgaurea L., Amphiraphis leiocarpa, Amphiraphis pubescens,
Dectis decurrens Raf., Doria virgaurea Scop.) is a representative of the Asteraceae family.
In Bulgaria, the medicinal plant grows all around the country: in wetlands, low mountain
regions, dry grassland, brush woods, from 500 to 2600 m above sea level. The herb
characterizes by versatile bioactivities including cytotoxic, antitumor, anti-inflammatory,
analgesic, diuretic, cardioprotective, etc properties [17]. According to scientific literature
its pharmacological activity is due to the presence of a number of biologically active
substances, among which flavonoids (catechin, epigallocatechin, naringenin, quercetin,
genstein, kaempferol, etc.) are considered the most essential [18].

The aim of the present study was to analyze the extraction kinetics of catechin, epigal-
locatechin and quercetin from Bulgarian woundwort extracts, to assess the antibacterial
potential of the medicinal plant extracts against four bacterial strains (Staphylococcus aureus
ATCC25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Bacillus
cereus), their antioxidant capacity and radical scavenging potential.
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2. Materials and Methods
2.1. Chemicals

The reagents methanol (MeOH, ≥99.9%), ethanol (EtOH, p.a. ≥ 99.8%), acetonitrile
(ACN, ≥99.8%), orthophosphoric acid (H3PO4, 85%), L-ascorbic acid, CH3COOH, NaOH
(p.a., HPLC) and DPPH (2,2-diphenyl-1-picrylhydrazyl) were supplied by Sigma-Aldrich
(St. Louis, MA, USA). Milli-Q water was used to prepare the mobile phase for the HPLC
analyses. The calibration curves of the three analyzed flavonoids were obtained by the
use of the following standard compounds: (+)-catechin hydrate (≥96.0%, HPLC), (−)-
epigallocatechin (analytical standard), quercetin hydrate (≥95%, HPLC) (Sigma Aldrich,
MA, USA) (Supplementary Figure S1).

2.2. Plant Material

Solidago virgaurea L. aerial parts (leaves and inflorescences) were harvested at full
flowering stage from Sredna gora Region, Bulgaria, during the period June–July, 2018. The
raw material was dried in the shade, at a temperature of 20–30 ◦C. The water content of
woundwort after drying was below 5%. The air-dried plant material was mechanically
ground with a laboratory mill to obtain a homogenous powder

2.3. Extraction Procedure

The ground raw material was placed in a stirred batch extraction reactor at liquid/solid
ratio ξ = 0.03 m3/kg and filled with the appropriate solvent by heating in a thermostatic
water bath with constant stirring. The agitation rate was n = 4 s−1 to ensure internal
diffusion mode. The temperature during the experiments in the thermostat was maintained
by means of a contact thermometer and an external cycle with cooling water. After the set
extraction time has elapsed, the samples were carefully filtered.

Four series of woundwort extracts were prepared and analyzed: Series 1—solvent
70% EtOH, extraction temperature T = 20 ◦C (samples designated as S1′–S9′); Series 2—
solvent 70% EtOH, extraction temperature T = 30 ◦C (samples designated as S1–S9); Series
3—solvent 98% EtOH, extraction temperature T = 20 ◦C (samples designated as S1′′–S9′′);
Series 4—solvent H2O, extraction temperature T = 20 ◦C (S1′ ′ ′–S9′ ′ ′). To study the extraction
kinetics nine samples from each series were collected at extraction times 5, 10, 15, 20, 30, 60,
90, 120, 140 and 160 min, respectively.

2.4. RP-HPLC-PDA Analyses

The quantitative analyses of the flavonoids (catechin, epigallocatechin, quercetin)
contents in the four woundwort extract series were determined by newly developed by
the authors liquid chromatographic techniques specific for each of the bioactive substances
analyzed which were described elsewhere [19,20]. In brief, the HPLC system consisted of a
Hypersil BDS C18 column (5 µM, 4.6 × 150 mm), a Surveyor LC Pump Plus pump, a PDA
detector, and an Autosampler Plus autosampler (Thermo Fisher Scientific, Waltham, MA,
USA). All extracts were preliminary filtered through 0.45 µm syringe filters (Hach Lange,
Düsseldorf, Germany). The sample volume was 20 µL. The specific chromatographic
conditions are summarized in Table 1.

All chromatographic analyses were performed in triplicate and the mean values of the
reported concentrations were presented. The experimental HPLC chromatograms were
analyzed with ChromQuestTM chromatography workstation software system Version 4.2
(Thermo Electron Corporation, Waltham, MA, USA). The data from the chromatographic
analyses allowed the study of the extraction process kinetics.
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Table 1. RP-HPLC-PDA conditions for the quantitative flavonoids profile of woundwort extracts.

Flavonoid Quercetin Catechin Epigallocatechin

Mobile phase MeOH:AcCN:H2O = 40:15:45 (v/v/v) (+1% CH3COOH)

Maximum wavelength λ = 360 nm—for solvents water,
70% EtOH and 98% EtOH

λ = 260 nm—for solvent water;
λ = 325 nm—for solvents 70% EtOH and 98% EtOH

Flow rate 0.5 mL/min 0.5 mL/min

Precolumn derivatization + +

Column temperature 30 ◦C 30 ◦C

Detection time t = 5.8 min t = 4.3 min t = 3.5 min

2.5. FT-IR Analyses

The FT-IR spectra of the liquid extracts were obtained with the CaF2 plate technique
in the range 800–4000 cm−1, while the spectra of the solid powdered standard flavonoids
with the KBr disc technique in the range 400–4000 cm−1, using a TENSOR 37 Bruker FTIR
spectrometer (Bruker Optik GmbH, Ettlingen, Germany). The spectra in the range from
4000 to 400 cm−1 were the average of 64 scans at a resolution of 2 cm−1. The ATR signal was
transformed to transmittance and the obtained spectra were normalized after the baseline
correction.

2.6. Antimicrobial Screening

Agar well diffusion method was used to screen the antibacterial activity of the wound-
wort extracts against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseu-
domonas aeruginosa ATCC 27853 and the clinical isolate—Bacillus cereus. In brief, for mea-
suring of antibacterial activity, inoculums were prepared in saline corresponding to 0.5 of
the McFarland standard (1.5 × 108 CFU/mL) from 24 h bacterial colonies incubated on
trypticase soy agar (Himedia, Mumbai, India) supplemented with 5% defibrinated sheep
blood. Twenty mL of molted Mueller Hinton agar (Himedia, Mumbai, India) was added to
each Petri dish. A sterile 6 mm cork borer was used for the formation of the wells after the
inoculum was pre-applictaed with a sterile cotton swab. 100 µL of the extracts in EtOH (70%
and 98%) were added to the wells. A positive control with gentamicin at a concentration of
12.5 µg/mL and a negative one with ethanol (70% and 98%) were performed. The plates
were incubated at 37 ◦C for 24 h under aerobic conditions. Antimicrobial activity was
detected by measuring the inhibition zone (IZ, mm) (including the wells diameter) that
appeared after the incubation period [21].

2.7. In Vitro Antioxidant Activity

To measure the antioxidant activity of the woundwort extracts, four methods with dif-
ferent mechanisms of action were applied: (i) DPPH Radical Scavenging Assay: The DPPH
(2,2-diphenyl-1-picrylhydrazyl) scavenging activity according to Cuendet et al. [22] with
slight modifications [23]; (ii) ABTS•+ assay: The radical-scavenging activity of S. virgaurea
L. extracts against 2,2-azinobis (3-ethylbenzothiazoline–6–sulfonic acid) was determined by
Re et al. [24] with modifications by Adhikari et al. [25]; (iii) Ferric Reducing Power/electron
donation (FRAP) assay: The FRAP assay was performed according to a previously reported
method with a slight modification [26,27]; (iv) NO assay: The presence a stable oxidized
product as a rsults of nitric oxide ion scavenging of the extracts (50 µg/mL) was performed
according to the methodology of Shirwaikar et al. [28] with modification by Karamalakova
et al. [29].

2.8. UV-B Treatment

Two of the ethanol extracts with the highest flavonoid concentrations from Series 1
and 2 were irradiated at a distance from the light source of 25 to 35 cm and a quartz cover
was applied to permit UV transparency and to halt evaporation of the extract and keeping it
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in a horizontal position on UV-B–vis Transilluminator 4000 (Stratagene, La Jolla, CA, USA)
(emitting between 290 nm and 320 nm; peak 309 nm). The experimental UV-B intensity
was calibrated in each experiment. To assess the dose response value of the UV-B radiation
effect, the samples were subjected to UV-B irradiation within the range from 0 to 12 kJ/m2

without visible ray, at less than 291–293 K. The energy of UV-B irradiation was controlled
with 120 min exposure time. Dark, fresh air and 46% relative humidity was circulated in
the illuminator throughout the irradiation course.

To study the effect of UV-B radiation on the antioxidant and free radical scavenging
activity, the samples were stored at 293 K in the dry air/dark and re-examined for 24 h at
the 2nd month of post irradiation.

2.9. Statistical Analysis

The data obtained from the HPLC, kinetics extraction, antimicrobial and in vitro
antioxidant activity studies were expressed as means ± standard deviation (SD) from
three repetitions with Statistica 7.1, StaSoft Inc. (Tulsa, OK, USA), one-way ANOVA. The
statistical significance was determined by Student’s t-test as the post-hoc test. A value of
p < 0.05 was considered as statistically significant. The kinetic data were expressed as the
average of three independent measurements, which were processed using the computer
programs Origin 6.1 (OriginLab Corporation, Northampton, MA, USA) and Microsoft Excel
2010 (Microsoft Corporation, WA, USA).

3. Results and Discussion
3.1. RP-HPLC Analyses of Woundwort Extracts and Extraction Kinetics Curves

The concentrations of catechin (CAT), epigallocatechin (EPI) and quercetin (QUER)
in the four extracts series were determined by RP-HPLC on the basis of the standard
calibration curves of the three flavonoids. The volume of all samples used in the RP-
HPLC assays was 1.5 mL. The RP-HPLC chromatograms of the three biologically active
polyphenols characterized with well resolved peaks presented in Figure 1.

The kinetics of the extraction process is influenced by numerous factors such as
temperature, solvent type, solute and solvent diffusion capacity, etc. It consists of the
release of biologically active compounds from porous or cellular plant matrices into the
solvent through mass transfer [30–32].

The selection and application of water, 70% EtOH and 96% EtOH as solvents for the
extraction of the flavonoids catechin, epigallocatechin and quercetin, on the one hand, was
substantiated by the proven efficiency of these extracting agents as reported by novel scien-
tific investigations. According to Koch et al. [33] polyphenols the extraction of polyphenols
from green tea was the most efficient with ethanol and water and the lowest with ethyl
acetate. The higher efficiency of ethanol and methanol as compared to that of other organic
solvents such as acetone and acetonitrile was reported by Vuong et al. [34], while the study
of Tsai and Chen [35] undoubtedly prove the highest recovery potential of 70% EtOH as
compared to 30% and 50% solutions.

On the other hand, ethanol is characterized with significantly lower toxicity as com-
pared to other organic solvents such as methanol, chloroform, ethyl acetate, etc., applied
as extracting agents, which is of utmost significance for the preparation of herbal extracts
intended for medical purposes.

The main factors affecting solid-liquid extraction of valuable compounds from plant
materials include extraction temperature, type and concentration of the solvents and contact
time between the solid phase and the extraction agent. The assessment of the influence of
these factors on the kinetics of the extraction process allows the optimization of the process
and serves as a powerful tool for the simulation, design, and control of the extraction
process.
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Figure 1. RP-HPLC spectra of: (A). catechin (detection time 4.3 min) and epigallocatechin (detection time 3.5 min), (B). quercetin (detection time 5.8 min) in the
samples from Series 1 woundwort extracts.
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The extraction kinetics curves of the samples from the four series are displayed
in Figure 2A–D. Obviously, the concentrations of catechin in the water extracts series
prevailed that of epigallocatechin. This aberration of the flavonoids contents ratio could be
subjected to the lower solubility of epigallocatechin in water (≈5.0 mg/mL) as compared
to that of catechin (≈7.6 mg/mL). Besides, the maximum measured concentration of
quercetin in the water extracts was approximately 20% lower than that in the 70% EtOH
extracts. The probable reason could also be associated with the low water solubility of the
flavanone which accounts to 2.15 µg/mL [32]. From another aspect, the fact that quercetin
concentration in the water extracts surpassed the water solubility of the anhydrous bioactive
compound could be substantiated by the fact that the water extracts were turbid even after
filtration (which imposed precolumn derivatization during the HPLC analyses) probably
containing colloidal particles with insolubilized flavonoids that were dissolved in the
MeOH containing mobile phase. Besides, the liquid/solid ratio of ξ = 0.03 m3/kg of the
extraction processes is a testament for highly concentrated extracts.
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The highest flavonoids concentrations in all studied extracts were registered at 160 min
extraction time. The samples from Series 2 characterized with the highest average quercetin
and epigallocatechin concentrations, while the concentration of catechin in the samples
from Series 1 and 2 was similar, and slightly higher in the extracts from Series 3 (Figure 3).
The main conclusion that could be withdrawn from the experimental data is that 98% EtOH
is not an appropriate extracting agent of flavonoids from woundwort. Besides, due to the
observed twice lower content of epigallocatechin in the extracts from Series 4 as compared
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to that for Series 1 and 2, on the one hand, and the lower stability of the aqueous extracts as
compared to these in ethanol or methanol, on the other, water could not be accepted as an
appropriate solvent either.
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3.2. FT-IR Analyses

FT-IR spectroscopy is currently one of the most significant analytical techniques
available for quantitative and qualitative analyses of plant extracts due to its sensitivity,
non-destructive nature, small sample quantities, as well as the possibility for simultaneous
determination of various constituents in the same sample from a single measurement [36].

Three samples from Series 2: S3, S4 and S5, obtained at extraction times 20 min, 30 min
and 60 min, respectively, were chosen as representatives of the ethanol woundwort extracts.
The FT-IR spectral data are presented in Figure 4 and the wavelengths of the characteristic
bands together with the corresponding designations—in Table 2.

The bands between 1600 cm−1 and 1500 cm−1 correspond to the C=C stretching of the
aromatic ring. Peaks within this region are characteristic of all extracts which indicates the
presence of the aromatic compounds catechin, epigallocatechin and quercetin. The region
at around 1500–1400 cm−1 represents C–C stretching of aromatic rings and C–H bending
vibrations. The highest peaks are recorded for S5, although the intensities of the bands
for the three samples are not significant. The bands between 1300 cm−1 and 100 cm−1 are
typically assigned to C–O stretching vibrations, C–O–H bending, plane bending vibrations
of phenyl group and C=C–O aromatic ring stretching. The presence of multiple peaks
in the spectra of the extracts, although not as well pronounced as in these of the pure
flavonoids, is indicative of the presence of pyrogallic rings. The low wavenumber region
below 1000 cm−1 represents many molecular vibrations, C–O–C symmetric stretching, C–H
aromatic bending, H out-of-plane deformation of an aromatic ring, aromatic ring vibrations,
C–H alkenes, stretching of the catechol moiety. Significant deviations were not registered
in the bands’ intensities between the pure substances and the extracts.

The comparative analyses between the FT-IR spectra of the extracts and the three pure
flavonoids (Table 2) undoubtedly prove that the herbal medicinal plant contains catechin,
epigallocatechin and quercetin. Besides, the gradual increase of the peak intensities of the
extract samples was directly proportional to the increase of the polyphenols concentrations.
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Table 2. FT-IR absorption bands assignments of ethanol woundwort extracts, powdered pure powdered catechin, epigallocatechin and quercetin [37–40].

Wavenumber Range (cm−1)
Designation

3500–3300
O–H Linkage
of Phenolic

Groups;
Aromatic Ring

Quadrant;
Intermolecular

H-Bonded
Phenolic

-OH Groups

2360–2320
C–H-Stretching

Vibrations in
Aromatic Ring

1690–1670
Medium
Intensity

Band of C=O
Carbonyl

Functional
Group

Stretching

1660–1620
C=C

Aromatic
Ring

Stretching
Vibrations,
Aromatic
Quadrant

Ring Stretch

1600–1500
Aromatic

Semicircle
Ring Stretch;

C=C
Aromatic

Bonds
Stretching

1500–1400
C–C

Stretching of
Aromatic
Rings and

C–H Bending

1400–1300
C–O Alcohol

Vibration;
Aromatic

Ring of the
Phenolic
Moiety;

=C–O–H
Stretching of
the Phenolic
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3.3. Antibacterial Activity of Woundwort Extracts

The antibacterial activity of the woundwort samples from Series 1–3 was evaluated
against four bacterial strains using the agar well diffusion method. We selected the follow-
ing four strains as classical representatives of the two groups of bacteria differing in the
structure of their cell walls—Gram-positive including Staphylococcus aureus ATCC 25923
and Bacillus cereus (clinical isolate) and Gram-negative including Escherichia coli ATCC
25922 and Pseudomonas aeruginosa ATCC 27853, the latter having intrinsic multiple antimi-
crobial resistance. The reference strains are also used as test quality strains in performing
antimicrobial susceptibility tests (CLSI) [41]. In addition, S. aureus, E. coli and P. aeruginosa
are causative agents of mild to severe infections in both human and veterinary medicine,
including on the urinary tract where the woundwort extracts are deemed as potentially
helpful. B. cereus is related to food poisoning, systemic and focal infections in immunocom-
promised patients. All this prompted us to test the antimicrobial properties of woundwort
extracts from Bulgaria against these four strains in the present study.

Gentamicin was selected as a positive control for the antimicrobial investigations as it
displays satisfactory antimicrobial efficiency against the four studied strains. The growth
inhibition zones of gentamicin relative to the reference strains used in the present study are
fully consistent with the CLSI [41] interpretive criteria. Regarding B. cereus, the activity of
gentamicin against this clinical isolate was confirmed in other studies [42].

The values of the corresponding inhibition zones (IZ, mm) are presented in Table 3.
Series 4 extracts were not subjected to antimicrobial screening due to the significantly lower
concentrations of the studied flavonoids, as well as due to the deviations in the modes
of the experimental kinetics curves. The data outlined the potential of the tested extracts
in suppressing microbial growth of food poisoning bacteria with variable activity. It was
established that the samples from Series 1 were the most effective extracts retarding the
microbial growth of P. aeruginosa and S. aureus. The samples from the other two series
exhibited satisfactory efficiency against three of the strains—P. aeruginosa, S. aureus and
E. coli. The general conclusion that could be drawn, however, is that the ethanol woundwort
extracts were ineffective against B. cereus as neither of the samples suppressed the microbial
growth of the strain.
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Table 3. Antimicrobial screening test results (IZ ± SD) of ethanol woundwort extracts against four bacterial strains—S. aureus, P. aeruginosa, E. coli and B. cereus.

Sample
Series 1 IZ Series 2 IZ Series 3 IZ

S. aureus P. aeruginosa E. coli B. cereus S. aureus P. aeruginosa E. coli B. cereus St. aureus P. aeruginosa E. coli B. cereus

S1′/S1/S1′′ 12.8 ± 0.3 ** 25.2 ± 1.0 *** - - - - 8.8 ± 0.8 * - 9.0 ± 0.5 * - 8.5 ± 0.5 * -

S2′/S2/S2′′ 17.2 ± 0.8 *** 24.2 ± 0.8 *** - - 8.7 ± 0.6 * 8.7 ± 0.6 * 8.3 ± 0.6 * - 9.5 ± 0.9 * 8.8 ± 0.3 * 8.7 ± 0.6 * -

S3′/S3/S3′′ 21.0 ± 1.0 *** 21.2 ± 0.8 *** - - 9.2 ± 0.3 * 8.8 ± 0.8 * 8.7 ± 0.6 * - 9.7 ± 0.3 * 8.5 ± 0.9 * 9.5 ± 0.5 * -

S4′/S4/S4′′ 11.7 ± 1.5 ** 14.2 ± 1.0 ** - - 9.2 ± 0.3 * 9.7 ± 0.6 * 9.2 ± 0.8 * - 9.7 ± 0.6 * 9.3 ± 0.6 * 8.8 ± 0.3 * -

S5′/S5/S5′′ 16.8 ± 0.8 *** 11.3 ± 1.5 ** - - 9.7 ± 0.6 * 9.5 ± 0.5 * 8.5 ± 0.5 * - 9.0 ± 1.0 * - - -

S6′/S6/S6′′ 14.8 ± 0.3 ** - - - 10.7 ± 1.2 * 9.2 ± 0.8 * 8.5 ± 0.9 * - 9.2 ± 1.0 * - - -

S7′/S7/S7′′ 15.7 ± 0.6 *** - - - 10.5 ± 0.5 * - 9.7 ± 0.6 * - 10.3 ± 0.8 * - - -

Positive
control

(gentamicin)
17.2 ± 0.8 17.0 ± 0.5 16.2 ± 1.0 18.2 ± 0.8 18.7 ± 0.6 17.3 ± 0.6 16.8 ± 0.3 18.5 ± 0.5 18.2 ± 0.8 16.7 ± 0.6 16.5 ± 0.5 18.7 ± 0.3

Negative
control (70%
EtOH; 98%

EtOH)

8.2 ± 0.3 7.5 ± 0.5 7.8 ± 0.3 10.8 ± 0.8 8.2 ± 0.3 7.5 ± 0.5 7.8 ± 0.3 10.8 ± 0.8 7.2 ± 0.3 7.5 ± 0.5 8.2 ± 0.5 9.8 ± 0.8

IZ—inhibition zone, mm; * low antibacterial activity (IZ = 8–10 mm); ** medium antibacterial activity (IZ = 11–14 mm); *** high antibacterial activity (IZ ≥ 15 mm).
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Regarding the effect of the flavonoids (catechin, epigallocatechin and quercetin) con-
centrations on the antibacterial activity of woundwort, significant correlation and direct
dependence was registered only between the antimicrobial potential of the samples from
Series 2 against the inhibition zones of S. aureus with the maximum coefficient of deter-
mination R2 = 0.893, p < 0.05. Thus these results were graphically represented in Figure 5.
The highest R2 value for Series 1 and 3 were R2 = 0.662 (p < 0.05) and R2 = 0.135 (p < 0.05),
respectively.
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trations on the antibacterial activity of Series 2 woundwort extracts against S. aureus.

The recent investigations suggest that B. cereus was the most resistant strain to wound-
wort followed by E. coli, while S. aureus and P. aeruginosa were the most susceptible microbial
strains to the medicinal plant extract. The latter conclusion is scientifically significant as
scientific data have not reported any results on the antibacterial potential of the plant
extract against B. cereus strain.

3.4. Antioxidant Activity and Radical-Scavenging Potential of Woundwort Extracts

The antioxidant activity and antiradical potential of four woundwort extracts from
Series 1 (samples S8′ and S9′ with quercetin concentration 13.7 and 17.9 µg/mL, respec-
tively) and Series 2 (samples S8 and S9 with quercetin concentration 17.5 and 18.9 µg/mL,
respectively) was studied. Quercetin solution in ethanol (50 µg/mL) was used as a positive
control.

Flavonoids take beneficial place in the UV oxidative stress protection and regulation
due to their antioxidant potential. According to recent studies some plants characterize
with independent photoprotective systems and their exposure to UV-B radiation stimulated
higher levels of flavonoids biosynthesis and ROS removal [43]. The latter observations
provoked the additional subjection to UV-B irradiation of samples S8 and S9 to evaluate its
effect on the antioxidant properties of the medicinal plant extracts.

3.5. DPPH Scavenging Activity

According to the data in Figure 6A the DPPH radical scavenging activities of the tested
woundwort samples were higher than that of the positive control. Sample S9 exhibited
the highest antioxidant activity, which was additionally increased by 7.2% after UV-B
irradiation. The irradiation, however, did not affect the DPPH scavenging activity of S8.
These results were confirmed by the antioxidant activity kinetics experiments (Figure 6B).
Although the antioxidant activity of samples S8′ and S9′ remains relatively stable up to
the 20 min, the kinetics curves clearly outline their significantly lower initial antioxidant
activity as compared to S8 and S9. From another aspect, UV-B irradiator slightly increased
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the antioxidant potential of sample S8 but it did not alter the mode of the kinetics curve. The
plot of sample S9 displayed quite different mode of antioxidant kinetics and the initial part
is indicative of lower stability of the extract up to the 15 min. However, UV-B irradiation
obviously increased this antioxidant stability and activity of the extract and additionally
decreased the rate of DPPH radical scavenging activity loss as the plot slope between 25
and 45 min was smoothened.
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3.6. ABTS•+ Radical Scavenging Activity

The proton-radical analysis (ABTS•+ method) was applied to define the total antiox-
idant activity of the woundwort extracts. The experimental data presented in Figure 6C
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clearly outline that samples S9 and S9′ were more effective in quenching proton radicals in
the system as compared to the control and to samples S8 and S8′. The probable reason is
the higher contents of flavonoids in the samples due to the longer extraction time. Besides,
according to the present investigations after UV-B-irradiation sample S9 has accumulated
active components and maintains ABTS•+ reduction level higher than that of pure quercetin.
The possible explanation is probable stimulation of the production of secondary metabo-
lites and antioxidant potential by UV-B irradiation, which in turn provokes the ability of
adaptation and protection of the extract from the irradiation impact [44].

3.7. Reducing Power Activity

Ferric reducing antioxidant power (FRAP) assay is associated with the antioxidant
potential of plants extracts through the reduction of ferric iron (Fe3+) to ferrous iron (Fe2+)
due to the donation of hydrogen atoms by the antioxidants that are present in the studied
samples [45]. The data of the ferric reducing activity of the four tested woundwort extracts
are presented in Figure 6D. The FRAP activity of samples S9′ and S9 exceeded that of the
positive control and samples S8′ and S8. UV-B irradiation did not influence the reducing
power activity of S8, while it increased the activity of S9 by approximately 25%.

3.8. Nitric Oxide Scavenging Assay

Nitric oxide scavenging assay evaluates the potential of natural biologically active
compounds to counteract the effect of NO• radicals formation, e.g., through arresting the
chain of reactions initiated by excessive NO• generation and in turn assist the prevention of
arising detrimental health effects such as oxidative cell damages and compromised cell NO-
functionality [46]. In this respect, the present study provided evidence of the satisfactory
NO scavenging ability of sample S9 before and after UV-B irradiation, which prevailed that
of the reference standard (Figure 6E). The experimental data indicated commensurable NO
scavenging activity of sample S9′ and quercetin. Considering the lower concentration of
the flavonoid in the sample (17.9 µg/mL) as compared to the pure substance (50 µg/mL),
it could be concluded that the scavenging potential of the extract is higher than the standard.
UV-B irradiation did not affect significantly the NO radical scavenging potential of samples
S8/UV-B and S9/UV-B. The polyphenols quercetin, catechin and epigallocatechin contained
in these extracts serve as donors of hydrophilic scavengers that are able to regulate NO•

production even under UV-B irradiation. According to scientific reports endogenous NO
production is capable of modulating the redox state of the mitochondrial electron transport
chain, primary metabolism and oxidative stress signaling [47,48].

The experimental results emphasized that the antioxidant capacity and radical scav-
enging activity of ethanol woundwort extracts depend directly on the extraction time, i.e.,
on the concentration of the flavonoids quercetin, catechin and epigallocatechin, as well as
on the extraction methodology. Besides, the tested samples S9′ and S9 exhibited satisfac-
tory antioxidant ability which even exceeded that of pure quercetin which concentration
(50 µg/mL) was significantly higher than that determined in two of the analyzed extracts
(S9′—17.95 and S9—18.90 µg/mL). A reasonable explanation is the additional capacity
of the catechins contained in the extract which enhance the activity and stability of the
medicinal plant to oxidative stress even under UV-B irradiation by donating excessive
hydroxyl radicals. The latter determines the role of these bioactive components as potential
effective photoprotectors and ROS/NO scavengers formed through UV-B exposure.

4. Conclusions

The present study assessed the kinetics of catechin, epigallocatechin and quercetin
from Bulgarian woundwort water and ethanol extracts, the antibacterial potential of 70%
and 96% ethanol extracts against four bacterial strains (Staphylococcus aureus ATCC25923,
Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Bacillus cereus), their
antioxidant capacity and radical scavenging potential. According to the RP-HPLC-PDA
data and the FT-IR analyses the contents of the natural flavonoids in the ethanol extracts
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followed the order: epigallocatechin > catechin > quercetin. The kinetics of the extraction
process revealed that the 70% and 96% ethanol extracts were the richest in flavonoids and
were therefore subjected to antimicrobial and antioxidant assays. The plant extracts from
Series 1 (solvent 70% EtOH, extraction temperature T = 20 ◦C), which proved to be poten-
tially effective against S. aureus and P. aeruginosa, can find application as alternative natural
preservatives to control food poisoning diseases and preserve food stuff avoiding the use
of health hazardous chemical antimicrobial agents. It was established that the antioxidant
potential and radical scavenging activity of ethanol woundwort extracts depended directly
on the extraction time, i.e., on the concentration of quercetin, catechin and epigallocatechin,
as well as on the extraction methodology. Two of the tested samples (extracted with 70%
EtOH at 20 ◦C and 30 ◦C) exhibited satisfactory antioxidant ability which even exceeded
that of pure quercetin with higher concentration. Consequently, the ethanol extracts of the
Bulgarian medicinal plant have been proven as efficient radical scavengers which could be
used to minimize oxidative stress caused by reactive oxygen species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/separations9020027/s1, Figure S1: Calibration curves of the standard compounds A. (+)-
catechin hydrate; B. (−)-epigallocatechin and C. quercetin hydrate; Table S1: Concentrations of the
flavonoids quercetin, epigallocatechin and catechin in the samples of the four goldenrod extracts
series.
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