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Abstract: Astilbin (AST), isoastilbin (ISO), and engeletin (ENG) are the main flavonoids in Rhizoma
Smilacis Glabrae (RSG) and have many biological activities. In this study, the adsorption kinetics of
AST, ISO, and ENG on HPD-300 resin was investigated and their adsorption processes conformed
to a pseudo-second-order kinetics equation. The fitting curves of the intraparticle diffusion model
showed three linear stages and did not pass through the origin, meaning the adsorption process of
the three flavonoids was controlled by boundary layer diffusion and intraparticle diffusion. Their
adsorption isotherms were also constructed and could be well-fitted by the Langmuir equation. A
low temperature was favorable for their adsorption. The relative adsorption capacity of ENG was
significantly higher than those of the other two compounds, indicating that the substitution pattern
on ring B has an important impact on the adsorption of flavonoids with resin. The separation process
was optimized by dynamic adsorption/desorption experiments. After separation, the purities of AST,
ISO, and ENG increased from 5.55%, 1.22%, and 0.45% to 27.46%, 6.14%, and 2.27%, respectively,
and all the recoveries exceeded 75%. After that, the three compounds were further separated by
preparative HPLC and silica gel chromatography. In the final product, the purities of AST, ISO, and
ENG could reach above 98%.

Keywords: adsorption characteristics; flavonoids; purification; macroporous resin; Rhizoma Smilacis
Glabrae

1. Introduction

The dried rhizome of Smilax glabra Roxb. is a famous traditional Chinese medicine with
a long usage history in many countries, often called Rhizoma Smilacis Glabrae (RSG) [1,2].
In China, it is known as “TufuLing”, which has the effects of clearing heat, detoxication,
removing carbuncles and relieving dampness recorded in Chinese Pharmacopoeia [3]. In
clinics, RSG is usually used to treat syphilis, eczema, nephritis, diabetes, and rheumatoid
arthritis [2,4]. Moreover, it has been confirmed that the extract of RSG has many kinds of
physiological activities, including anti-inflammatory, hypoglycemic, antioxidant, anti-
tumor and immunomodulatory effects, and so on [5–7]. Recent studies have shown
that RSG is rich in various chemical components, such as flavonoids, steroid saponins,
phenylpropanoids and phenolic acids, among which flavonoids are one of the main active
components [2,8,9].

Astilbin (AST), isoastilbin (ISO) and engeletin (ENG) are flavonoids with similar
structures (Figure 1) in RSG, of which AST is the index for determining the quality of RSG
because of its highest content [10,11]. The content of AST in RSG shall not be less than 0.45%
according to the Chinese pharmacopoeia [3]. Recent reports confirmed that AST has broad
and varied biological activities including antioxidant, antidepressant, antimicrobial and
insecticidal, immunosuppressive, anti-inflammatory, and anti-diabetic activities, without
any obvious toxicity [11–14]. It has been reported that ENG can relieve osteoarthritis in vivo,
and attenuate oxidative stress and neuroinflammation [15,16]. ISO also showed strong
antioxidant and anti-inflammatory activities [17]. Due to the diverse pharmacological
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activities of flavonoids in RSG, it is necessary to develop an effective preparation method
for purifying these flavonoids with high purity, especially those with low content.
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5.0–5.5 nm. Column chromatography silica gel (200–300 mesh) was provided by the Qing-
dao Haiyang Chemical Co., Ltd. (Qingdao, China). 
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As a separation material with many advantages, such as excellent adsorption and
desorption performance, fast adsorption speed, low cost, and easy regeneration, macrop-
orous resin is widely used in the extraction and separation of many effective components
of traditional Chinese medicine (TCM) [18–21]. It is often used in combination with other
separation technologies such as reversed-phase preparative chromatography, to separate
the effective components [22]. In recent years, we found that HPD-300 resin has a good
separation effect on flavonoids and used it to separate several flavonoids and chromones
from TCM [23–25]. The study was conducted to explore the adsorption thermodynamics
and adsorption kinetics of three flavonoids from RSG on the HPD-300 resin and discuss
the influence of the small differences in structure on the relative adsorption capacities of
flavonoids. In addition, an effective process route for the separation of AST, ISO, and
ENG from RSG with high purities was established using macroporous resin coupled with
preparative HPLC and silica gel column chromatography.

2. Materials and Methods
2.1. Materials and Chemicals

AST, ISO, and ENG (purity > 98%) standards were obtained from the Chengdu Pufei
De Biotech Co., Ltd. (Chengdu, China). RSG was purchased from the Anxing Chinese
Herbal Medicine Co., Ltd. (Anguo, China). Analytical pure ethanol, dichloromethane,
methanol, and chromatographic-grade methanol were purchased from Tian Jin Shi Hui
Hang Hua Gong Ke Ji You Xian Gong Si (Tianjin, China). Chromatographic-grade ace-
tonitrile was provided by Tianjin Kemiou Chemical Reagent Co., Ltd. (Tianjin, China).
Analytical pure phosphoric acid was provided by the Yantai Sanhe Chemical Reagent
Co., Ltd. (Yantai, China). Wahaha purified water (Hangzou Wahaha Group Co., Ltd.
(Hangzhou, China)) was used as HPLC mobile phase. Distilled water was prepared by an
ultrapure water machine (Sichuan ULUPURE Ultrapure Technology Co., Ltd. (Chengdu
China)). Nonpolar HPD-300 resin was obtained from the Cangzhou Bon Adsorber Tech-
nology Co., Ltd. (Cangzhou, China). Its surface area is 800–870 m2/g and pore diameter
is 5.0–5.5 nm. Column chromatography silica gel (200–300 mesh) was provided by the
Qingdao Haiyang Chemical Co., Ltd. (Qingdao, China).

2.2. Extration of RSG

RSG materials were crushed into powders and filtered with a No. 1 sieve (10 mesh).
The powders (3.0 kg) were soaked in 70% ethanol for 24 h for making the solvent penetrate
into the plant cells better, with the material liquid ratio of 1:10. Then, the samples were
extracted twice by ultrasonic extraction using a KQ-400DE ultrasonic cleaner from the Kun
Shan Ultrasonic Instruments Co., Ltd. (Kunshan, China) for 1 h each time. The frequency
was 40 kHz and the power was 400 W. After the extraction was completed, the extract
solution was filtered, merged, and recovered using a rotary evaporator to yield 340 g of
RSG extracts.
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2.3. HPLC Analysis of the Three Flavonoids

A Thermo Fisher U3000 system equiped with a H&E SP ODS-A column (4.6× 250 mm,
5 µm) was employed for determining the concentrations of AST, ISO and ENG. 291 nm was
selected as the detection wavelength. The injection volume was 20 µL. The mobile phase A
was 0.1% phosphoric acid and B was methanol. The flow rate was 1 mL/min. The gradient
elution procedure was as follows: 0–15 min: 40–55% solvent B, 15–16 min: 55–75% solvent
B, 16–18 min: 75–80% solvent B, 18–19 min: 80–100% solvent B. The column temperature
was set to 25 ◦C. According to the above method, the standard curves were established for
the three standards and the retention times were 10.605, 12.925, and 13.982 min for AST,
ISO, and ENG, respectively. The standard curves (Figure S1) of AST, ISO, and ENG were
Y = 0.7601X + 1.6056 (R2 = 0.9995), Y = 0.6558X + 0.5913 (R2 = 0.9997), and Y = 0.7673X −
0.0875 (R2 = 0.9999), respectively, where Y stood for peak area and X was the concentration
(µg/mL).

2.4. Adsorption Kinetics

The HPD-300 resin was pretreated according to the method described in reference [23].
RSG crude extracts were added into distilled water, fully dissolved with ultrasonic assis-
tance, centrifuged at 4000 rpm for 10 min, and the supernatant was taken to obtain crude
extract aqueous solution. The pre-treated HPD-300 resin was accurately weighed at 1.0 g,
placed in a 50 mL conical flask, then 25 mL of RSG aqueous solution with a concentration
of 30 mg/mL was poured. All flasks were placed in a constant-temperature shaker with
a rotating speed of 120 rpm at 25 ◦C for continuous shaking adsorption. Eleven aliquots
(each 200 µL) were taken from the flask when the adsorption time was 15, 30, 45, 60, 120,
180, 240, 300, 360, 480, and 600 min, respectively. The concentrations of AST, ISO, and ENG
in each aliquot sample were measured using the HPLC method. The above experiment
was repeated three times. The adsorption capacities and adsorption rates of AST, ISO,
and ENG on HPD-300 resin at different adsorption times were quantified according to the
following formula:

Qt =
(C0 − Ct)V0

W
(1)

R =
C0 − Ct

C0
×100% (2)

where Qt (mg/g) means the adsorption capacity at different adsorption time; R (%) stands
for the adsorption rate; Ct (mg/mL) is the concentration of flavonoids in the solution at
different adsorption time; C0 (mg/mL) is the initial concentration; V0 (mL) is the volume
of RSG aqueous solution; and W (g) stands for the resin weight.

The adsorption kinetic data of AST, ISO, and ENG were fitted by three kind of adsorp-
tion kinetics models, including pseudo-first-order, pseudo-second-order, and intraparticle
diffusion kinetics models. The formulas of the three kinetic models are as follows:

The pseudo-first-order formula:

ln(Qe −Qt) = ln Qe − K1t (3)

The pseudo-second-order formula:

t
Qt

=
1

K2Qe2 +
t

Qe
(4)

The intraparticle diffusion formula:

Qt = Kit0.5 + C (5)

where t (min) means the adsorption time; Qe (mg/g) is the equilibrium adsorption capacity;
K1 is the constant of the pseudo-first-order model; K2 is the constant of pseudo-second-
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order model; Ki means the constant of the intraparticle diffusion model; and C stands for a
constant of the intraparticle diffusion model.

2.5. Adsorption Isotherms

According to the method in 2.4, the RSG extracts were prepared into aqueous solutions
with concentrations of 15, 20, 30, 40, and 50 mg/mL, respectively. A total of 1.0 g of HPD-
300 resin was put into a series of 50 mL conical flasks, and then 25 mL of RSG aqueous
solutions of different concentrations were added. All conical flasks were put into a constant-
temperature shaker and continuously shaken at different temperatures (25, 35, and 45 ◦C) to
complete adsorption. The shaking speed was 120 rpm, and the shaking time was 12 h. The
initial and equilibrium concentrations of AST, ISO, and ENG in the RSG extracts’ aqueous
solutions were determined using the HPLC method. The adsorption capacities of AST, ISO,
and ENG at different adsorption temperatures were calculated according to Formula (1).
The adsorption isotherm experiment was repeated three times.

The adsorption isotherms of the three compounds were fitted by the Langmuir and
Freundlich equations. The two equations are as follows:

Langmuir equation:
Ce

Qe
=

Ce

Qmax
+

1
QmaxKL

(6)

Freundlich equation:

ln Qe =
1
n
·ln Ce + ln KF (7)

where Qe (mg/g) is the same as that in Equation (3); Ce (mg/mL) stands for the concentra-
tion at adsorption equilibrium; Qmax (mg/g) means the maximum adsorption capacity; KL
(mL/mg) is the adsorption constant of the Langmuir equation; KF stands for the Freundlich
constant; and 1/n is an empirical constant.

2.6. Dynamic Adsorption and Desorption Tests

A total of 8.0 g of HPD-300 resins were filled into a glass column (12 mm × 350 mm)
with a bed volume (BV) of 14 mL. Firstly, RSG extracts were prepared into an aqueous
solution and loaded onto the resin column at a flow rate of 4 BV/h for dynamic adsorption.
After that, the resin column with saturated adsorption was gradient eluted with deionized
water (5 BV), 10% (5 BV), 50% (5 BV), and 70% (5 BV) ethanol at a rate of 4 BV/h, respectively.
The concentrations of AST, ISO, and ENG in the efflux and eluent were determined using
the HPLC method for drawing breakthrough and desorption curves.

2.7. The Purification of Flavonoids by Preparative HPLC and Silica Gel Column Chromatography

In order to obtain high-purity flavonoids, the products purified by the resin were
further separated by preparative HPLC and silica gel column chromatography. The purifica-
tion was firstly carried out on an Aglient SD-1 chromatograph equipped with a YMC-pack
ODS-A column (20 × 250 mm, 5 µm). The mobile phase was acetonitrile (A) and water
(B). The gradient conditions were as follows: 0–35 min, 20–23% solvent A. The flow rate
was 10 mL/min. The detection wavelength was selected as 291 nm. The injection volume
was 1.0 mL. When the peaks of AST, ISO, and ENG appeared on the chromatogram, the
effluents were recovered and evaporated to dryness under reduced pressure, respectively.
The crude products of AST, ISO, and ENG were further separated by silica gel column
chromatography with dichloromethane-methanol (10:1) as eluent, respectively.

2.8. Data Processing

A Graphpad Prism was used for data processing, and data were presented as mean
± standard deviation (SD). One-way analysis of variance (ANOVA) was used to compare
different groups. Differences with p < 0.05 indicated statistical significance.
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3. Results and Discusstion
3.1. Adsorption Kinetics

The adsorption kinetics curves of AST, ISO, and ENG were studied at 25 ◦C and
plotted with the adsorption time as the abscissa and the adsorption capacity as the ordinate.
As observed in Figure 2A, the adsorption capacity of AST on the resin increased rapidly
and showed a linear growth characteristic within the first 1 h. The increase of adsorption
capacity slowed down between 2–4 h and reached adsorption equilibrium in about 5–6 h.
As shown in Figure 2B, ISO and ENG had similar adsorption kinetic curves to AST because
of their similar chemical structure. However, the relative adsorption capacities (i.e., adsorp-
tion rate) on the resin of the three flavonoids were different. As described in Figure 2C, the
relative adsorption capacities of AST and ISO were relatively close in the whole adsorption
process. As shown in Figure 1, ISO is a stereoisomer of AST, and their configurations at C-2
and C-3 positions are different. This indicated that the impact of the C-2 and C-3 positions’
configurations on the relative adsorption capacity was very small. However, the relative
adsorption capacity of ENG was much greater than those of the other two flavonoids. The
structure of ENG is one phenolic hydroxyl group less than those of AST and ISO at C-3′.
Hence, the reason may be that the hydrophobic effect between the B ring of ENG and the
resin was stronger than the other two compounds due to the lack of the C-3′ phenolic
hydroxyl group. The above experimental results indicated that the substitution mode of
the B ring will greatly affect the combination between flavonoids and the HPD-300 resin.
The adsorption kinetic data of the three flavonoids were fitted by three kinetics models,
and their fitting parameters were shown in Table 1. The correlation coefficients (R2) of
the pseudo-second-order kinetic model were greater than 0.9997 for all three compounds,
which were much higher than those of the pseudo-first-order kinetic model. Furthermore,
the calculated Qe values of AST, ISO, and ENG in the pseudo-second-order kinetic model
were closer to those measured in the experiment. In conclusion, the pseudo-second-order
kinetic model was more suitable to describe the adsorption kinetic process of the three
compounds on HPD-300 resin. As shown in Table 1 and Figure 2D, the fitting figures of
the intraparticle diffusion kinetic model for AST, ISO, and ENG presented the character-
istics of the multilinear stage. The whole process of the three compounds was divided
into three stages, including boundary layer diffusion (0–60 min), the gradual adsorption
stage (60–240 min), and the last equilibrium stage. The curves of the three flavonoids did
not cross the origin, indicating that their adsorption process on the HPD-300 resin was
controlled by both boundary layer diffusion and intraparticle diffusion.

Table 1. Adsorption kinetics parameters for AST, ISO, and ENG on the HPD-300 resin.

Kinetics Equations Dynamic Parameters

Pseudo-first-order model

Coumpound Qe (mg/g) K1 R2

AST 18.33 0.0121 0.9925
ISO 3.94 0.0123 0.9895

ENG 1.40 0.0122 0.9853

Pseudo-second-order model

Qe (mg/g) K2 R2

AST 34.60 0.0015 0.9997
ISO 7.54 0.0070 0.9998

ENG 3.20 0.0208 0.9999

Intraparticle diffusion model
(0–60 min)

C Ki R2

AST 9.24 2.0280 0.9993
ISO 1.72 0.4979 0.9958

ENG 0.76 0.2295 0.9891
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3.2. Adsorption Isotherms

The RSG extracts with different concentrations were mixed with the resin to obtain
the adsorption capacities of AST, ISO, and ENG at different temperatures. The adsorption
isotherm was plotted with the equilibrium concentration as the abscissa and the adsorption
capacity as the ordinate. The equilibrium adsorption capacities of the three flavonoids
were increased when the equilibrium concentration rose (Figure 3A–C). At the same initial
concentration, the adsorption capacities of the three flavonoids showed a downward trend
as the temperature was risen from 25 ◦C to 45 ◦C. It meant that the adsorption of the three
flavonoids was an exothermic process. In addition, the effects of temperature on the relative
adsorption capacities of the three compounds were further discussed. It could be seen from
Figure 3D that ENG had a much higher relative adsorption capacity than the other two
compounds at any temperature. It further confirmed the substitution pattern on ring B, as
fewer hydroxyl substituents increase the hydrophobicity of the flavonoid increasing the
adsorption to the resin.

The fitting figures of the Langmuir and Freundlich equations for the adsorption
isotherm data of AST, ISO, and ENG were shown in Figure 4. The adsorption parameters
were calculated and listed in Table 2. It could be seen that the correlation coefficients of
the Langmuir equation of the three compounds are higher than those of the Freundlich
equation, which indicated their adsorption isotherm data conformed to the Langmuir
equation well. In addition, all the values of 1/n in the Freundlich equation were in the
range of 0.1598 to 0.2915, indicating the three flavonoids can be adsorbed easily by HPD-
300 resin.
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Table 2. Langmuir and Freundlich adsorption parameters of AST, ISO, and ENG on HPD-300 resin.

Compounds Temperature
(K)

Langmuir Equation Freundlich Equation

Qmax KL R2 KF 1/n R2

AST
298 35.97 34.75 0.9996 36.39 0.1763 0.9264
308 35.09 23.75 0.9996 34.53 0.1785 0.9269
318 33.78 15.58 0.9997 32.17 0.2051 0.9223

ISO
298 8.07 137.67 0.9991 10.24 0.1598 0.9577
308 7.91 115.00 0.9985 9.88 0.1639 0.9528
318 7.63 72.83 0.9985 9.62 0.1876 0.9575

ENG
298 4.44 250.22 0.9844 9.34 0.2630 0.9675
308 4.41 206.09 0.9811 9.30 0.2697 0.9756
318 4.33 164.79 0.9831 9.43 0.2915 0.9829

3.3. Dynamic Adsorption Tests

The leakage curves of the three flavonoids were drawn by dynamic adsorption tests
when the concentrations of AST, ISO, and ENG were 2.22, 0.49, and 0.18 mg/mL, re-
spectively. Generally, the leakage point is considered to be reached when the sample
concentration in the effluent reaches 1/10 of the sample concentration. As shown in
Figure 5A, the leakage points of AST and ISO were 8 BV, while that of ENG was 10 BV. The
leakage point of ENG appeared later than those of the other two compounds, indicating
that it showed the strongest competitive adsorption capacity in both static and dynamic
adsorption experiments. In order to improve efficiency and avoid sample waste, the sample
loading volume was selected as 7 BV.
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3.4. Dynamic Desorption Tests

For obtaining the best desorption effect, the desorption curves of AST, ISO, and ENG
were drawn by dynamic desorption tests. In the first dynamic desorption test (Figure 5B),
deionized water (5 BV), 10% (5 BV), 50% (5 BV), and 70% (5 BV) ethanol were used as
elution solvent to draw desorption curve. The results showed that AST, ISO, and ENG
were mainly distributed in 50% ethanol eluent. However, 10% ethanol would elute some of
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the three flavonoids. In order to avoid the loss of the target compound, 10% ethanol was
removed and the leakage curve was redrawn. It could be seen from Figure 5C that 50%
ethanol (5 BV) could completely elute the three target compounds, which were not detected
in 70% ethanol eluent. Therefore, the best elution scheme was as follows: first, elute the
unabsorbed samples and impurities using distilled water (5 BV), then elute AST, ISO,
and ENG using 50% ethanol (5 BV). The 50% ethanol eluate was distilled under reduced
pressure to obtain the resin-purified product.

Under the optimal conditions, 3.92 g of RSG crude extract was loaded onto the resin,
washed with 70 mL of distilled water, and then eluted with 70 mL of 50% ethanol to obtain
604 mg of resin-purified product with one treatment. It takes about 4.25 h to complete the
sample loading and elution process. The HPLC chromatograms of the RSG extracts and
resin-purified product are presented in Figure 6. Some high polarity impurities with short
retention time had been removed. In addition, some impurities had no UV absorption and
were not shown in the chromatograms. After separation using the HPD-300 resin under
the best conditions, the purities of AST, ISO, and ENG were increased from 5.55%, 1.22%,
and 0.45% to 27.46%, 6.14%, and 2.27% with recovery yields of more than 75%.
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3.5. The Further Purification of AST, ISO, and ENG with High Purities

In order to further separate the three flavonoids, the resin-purified products (2.8 g)
were separated by preparative HPLC. According to the tagged peaks in Figure 7A, fractions
1–3 were collected and evaporated to obtain the crude products of AST (762 mg), ISO
(167 mg), and ENG (56 mg) with a round of preparative HPLC separation, respectively. The
color of the three flavonoids obtained by preparative HPLC was dark, so silica gel column
chromatography was used for further refining. After purification by silica gel column
chromatography, the yields of the three compounds were 583, 112, and 39 mg, respectively,
with recovery yields of more than 60%. As could be seen from Figure 7B–D, the purities of
all three compounds could reach above 98% in the final product.
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4. Conclusions

In this work, the adsorption properties of three flavonoids AST, ISO, and ENG in
traditional Chinese medicine RSG on HPD-300 resin were studied. The adsorption process
of the three compounds could be better described by the pseudo-second-order kinetic model.
The adsorption isotherm of the three compounds conformed to the Langmuir equation and
the adsorption was an exothermic reaction. At 25–45 ◦C, the relative adsorption capacity of
ENG was significantly higher than those of AST and ISO because the lack of a phenolic
hydroxyl group on its B ring increase the hydrophobicity of the flavonoid with the resin.
Moreover, an effective method for the enrichment of AST, ISO, and ENG from RSG was
developed using the HPD-300 resin. After separation under the optimal condition, the
purities of AST, ISO, and ENG increased from 5.55%, 1.22%, and 0.45% to 27.46%, 6.14%,
and 2.27% with recovery yields of more than 75%. After further purification by preparative
HPLC and silica gel column chromatography, the purities of AST, ISO, and ENG could
reach above 98% with recovery yields of more than 60%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations9120431/s1, Figure S1: The standard curves of AST
(A), ISO (B), and ENG (C).
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