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Abstract: Dye effluent damaged the water environment and human health with its massive discharge.
In order to eliminate dye from the water environment, a variety of adsorbents were used to investigate
dye removal. Graphene oxide (GO) attracted extensive attention due to its excellent surface property
in the degradation of dye wastewater. Modified GO with multifunctional groups helped to improve
adsorption performance. 3-Aminopropyltriethoxysilane modified GO (AS-GO) was fabricated for
the removal of Orange G (OG) in this study. The results showed that AS-GO had an excellent
adsorption ability of OG. During the reaction process, the maximum adsorptive capacity of OG
was up to 576.6 mg/g at T = 313 K and pH = 3 with the initial OG concentration of 100 mg/L and
the initial adsorbent dose of 2.5 g/L. The adsorption kinetic process of AS-GO conformed to the
pseudo-second-order and Langmuir models. The spontaneous and endothermic adsorption of OG
occurred in the adsorption process. The main adsorption mechanisms were electrostatic, π–π and
hydrogen bonding interactions in the reaction process. After four cycles of AS-GO, it maintained
high removal efficiency owing to its remarkable stability. The scheme of GO modified with AS could
hinder the agglomeration of GO and provide more active sites, which would further enhance the
adsorption properties and expand its application in water purification.

Keywords: adsorption; Orange G; graphene oxide; 3-aminopropyltriethoxysilane

1. Introduction

Due to the wide application in the dyeing and printing of textiles, paper, paint and
other fields [1,2], dyes had been counted as one of the dominating contaminants in the
hydrographic condition [3]. Dyes can cause some considerable problems, such as the
endangerment of human health, staining of water, and destruction of the ecological environ-
ment [4]. As one of commonly used dyes in the world, azo dyes had lethality, genotoxicity
and oncogenicity on the creatures [5]. People’s gastrointestinal and respiratory tract also
might be irritated if they are exposed to azo dyes sequentially [6]. Thus, dyeing effluent
needed to be decontaminated before it was discharged.

Various technologies, such as advanced oxidation, chemical coagulation, aerobic pro-
cess, anaerobic process and adsorption [5–9], have been used to remove OG in wastewater.
Conventionally, chemical coagulation was used to separate suspended matter and remove
dye contaminant in wastewater. However, the production of large amounts of sludge lim-
ited its application. Biological treatment was cheaper and more environmentally friendly
than physical methods, but high dye concentration inhibited bacterial activity. Although
advanced oxidation had high efficiency and short reaction time, the cost of chemicals was
high [10]. Adsorption, an effective and economically feasible method, was often selected in
practical applications [11]. Many adsorbents, such as alumina nanoparticles [12], activated
carbon [13], MOFs [14], layered double hydroxide [15], etc., had been designed to remove
dyes. Abdelkader et al. [7] synthesized Mg-Fe bimetallic hydroxide to remove OG in simu-
lated wastewater, and the good adsorption efficiency (approximately 300 mg/g) could be
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kept at the pH range of 3–13. Two β-cyclodextrin polymers modified with different amide
groups were reported to achieve good adsorption efficiency of Congo Red and OG (813,
442 and 40,446 mg/g, respectively) [16]. However, low adsorption capacity and stability
limited the practical applications of these materials. There is an urgent need for adsorbent
with high adsorption capacity in the wastewater treatment.

GO has been extensively used in the adsorption of organic contaminants and heavy
metals in liquid solution as a result of its big specific surface area and ample oxygen
species [17,18]. However, some defects, such as easy reunion and hard recycle, limited
its practical application. Various functionalized GO was investigated to improve its prop-
erty [19]. Ethylenediamine triacetin acid-GO (ETDA-GO) had a better adsorption efficiency
of Pb (II) than GO (from 367 to 525 mg/g) [20]. Wang et al. synthesized graphene oxide
modified by persimmon tannin to remove methyl blue in aqueous solution, and the max-
imal adsorption capacity achieved 256.58 mg/g [21]. The amine groups (–NH−) could
enhance the materials’ adsorptive property due to the increase in adsorption sites [22].
3-Aminopropyltriethoxysilane (AS) was an important agent for the introduction of –NH2−.
Both AS-functionalized biopolymers chitin (CTN) and chitosan (CTS) had a fast adsorption
rate, short equilibrium time, and great recyclability [23]. We selected it as a modified
material to hinder the agglomeration of GO. There are no reports about the removal of OG
in water by the AS-GO.

The objective was to present a study of the adsorption of OG on AS-GO in water.
Influence factors such as initial solution pH, adsorbent dosage, temperature, and coexisting
ion were studied in detail. Then, a primary adsorption mechanism was presented in detail.
Finally, the regenerability and stability were also discussed. This research aims to leverage
the advantages of AS-functionalized GO to overcome the shortcomings and achieve the
following innovations: (1) the introduction of AS reduced the reunion of GO; (2) a large
number of amino functional groups were introduced through covalent bonding to improve
the adsorption performance of functionalized materials; (3) the hydrophilicity of GO was
helpful to its dispersibility in water.

2. Experimental
2.1. Reagents

OG and AS (AS ≥ 98%), as well as graphite powder (750–850 mesh), were provided
by Aladdin (Shanghai, China). A fixed amount of OG was dissolved in deionized water to
form a 1000 mg/L OG stock solution. All reagents are of analytical grade.

2.2. Preparation of AS-GO

GO was prepared according to the modified Hummers method [24,25]. Then, 100 mL
GO (3.5 g/L) and 100 mL absolute ethanol were mixed in a flask and sonicated for 1 h.
After, 3.5 mL AS was added to the above dispersion, and it was heated up to 70 ◦C at
1800 rpm/min under the magnetic stirring for 4 h. After the mixture was cooled to indoor
temperature, the suspended solids were isolated, washed and dried at 60 ◦C. Then, AS-GO
was obtained.

2.3. Adsorption Experiment

AS-GO adsorption tests were carried out in a batch system under the following
conditions [26]. First, 0.02 g AS-GO and 250 mL OG solutions (100 mg/L) at pH 3.0 were
added in conical flasks. The conical flask was sealed and placed in a thermostatic shaker
at a temperature of 298 K and a rotational speed of 160 rpm for 24 h. After the reaction
was finished, the mixture was filtered through a 0.22 µm syringe filter, and then, the
concentration of remaining OG was determined at 475 nm by UV-vis spectrophotometry
(Model UV-vis 756, Shanghai Jinghua Instruments Co., Ltd., Shanghai, China). The complex
with the adsorbed OG (AS-GO-OG) could be obtained by centrifuging and drying directly
after reaction. After the adsorption process, adsorbent was centrifuged, rinsed, dried and
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recycled in the fresh OG solution under the same condition for another 3 cycles to evaluate
the regeneration of AS-GO.

2.4. Data Analysis

The pseudo-first-order kinetics can be expressed by the following formula (Equation (1)):

log (qe − qt) = log qe − k1t/2.303 (1)

The pseudo-second-order kinetics can be expressed by the following formula (Equation (2)):

t/qt = 1/k2q2
e + t/qe (2)

where qe and qt are the adsorption capacity (mg/g) of AS-GO to OG at equilibrium and t
time (min). k1 and k2 are the rate constant of the pseudo-first-order and pseudo-second-
order kinetic equation (g·mg−1 min−1). The experimental data were linearly fitted, and the
horizontal and vertical coordinates were t and t/qt, respectively, and k1, k2 and qe were
calculated based on the intercept and slope.

The equation of the Langmuir adsorption isotherm model can be expressed as follows
(Equation (3)):

qe = qmaxKLCe/(1 + KLCe) (3)

The equation of the Freundlich adsorption isotherm model can be expressed as follows
(Equation (4)):

qe = KFCe
1/n (4)

qe and Ce are the equilibrium adsorption amount (mg/g) and solution concentration
(mg/L) when the reaction reaches equilibrium. KF and n are Freundlich constants. The
former is related to the adsorption capacity, and the unit is L/mg. The latter is related
to the adsorption strength. The n value can usually be used to judge the difficulty of the
adsorption process: when 0.1 < 1/n < 1, adsorption is easy; when 1/n > 1, adsorption
is difficult.

The thermodynamic model can be presented via the subsequent formula (Equations
(5) and (6)):

∆G = −RTlnKp (5)

lnKp = ∆H/(RT) + ∆S/R (6)

in which Kp = qe/Ce, where qe and Ce are the equilibrium adsorption quantity and solution
concentration, respectively, when the adsorption reached equilibrium, R is the gas constant
(8.314 J·mol−1·K−1), and T is thermodynamic temperature (K).

2.5. Characterization Methods

FTIR (Fourier Transform infrared spectroscopy) was measured in KBr pellet to research
the functional groups. X-ray diffraction (XRD) was applied to analyze the structure of AS-
GO before and after adsorption. In addition, XRD patterns were recorded with a Bruker D8
advance diffractometer (Karlsruhe, Germany) according to Cu-Ka radiation (λ = 1.5418 Å).

3. Results and Discussion
3.1. Removal Experiments
3.1.1. Effect of Initial pH

The surface charge distribution of AS-GO and the form of pollutants were related to
the initial pH, so it was imperative to consider the influence of the initial pH of the solution.
The test on the effect of pH (from 1.0 to 8.0) was carried out (Figure 1). The adsorption
capacity of OG increased with the promotion of pH (at the range of pH = 1–3) and achieved
up to 418.4 mg/g at pH 3.0. Then, the adsorption capacity decreased with the promotion of
pH from 3 to 8.
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Figure 1. (a) Effect of pH on the removal of OG by AS−GO, (b) Zeta potential of GO and AS−GO.

The pH effect on OG removal could be related to the surface charge of the adsorbent
and the species of OG in solution. The zeta potential value (Figure 1b) demonstrated that
the surface charge of adsorbent was positive at pH < 3.0 [26]. Anionic OG was the main
form in acidic solution [27]. The amino functional group (–NH2) of AS-GO might transform
into a positively charged group (–NH3

+) by protonation and lead to electrostatic interaction
with the negatively charged sulfonic acid group (SO3

−) in OG. At pH > 4.0, the protonated
amino functional groups decreased and the OH- amount gradually increased. Electrostatic
interaction was weakened. When the zeta potential of AS-GO was negative, the adsorption
capacity was decreased to 40 mg/g. These indicated that another reaction mechanism
existed in the reaction system besides electrostatic interaction. To sum up, the electrostatic
interaction between –NH3

+ and SO3
− in OG was one of the adsorption mechanisms. The

forthcoming experiments took place at pH = 3.0.

3.1.2. Effect of Adsorbent Dose

Adsorbent dose also affected the adsorption process (Figure 2). When the adsorbent
dose augmented from 0.1 to 0.35 g/L, the removal rate improved from 49.86% to 94.68%.
This could be explained that the higher dose of adsorbent provided the more adsorption
sites [28]. Adsorption capacity showed a steady decrease from 498.6 to 270.5 mg/g with
the augment of adsorbent dose. The utilization rate of the adsorption site was decreased
with the increasing adsorbent dose. In order to achieve the maximum utilization of the
adsorbent during the adsorption process, 0.25 g/L AS-GO was chosen as the optimal
dosage for further research in detail.
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3.1.3. Effect of Chloride Ionic Strength

Chloride ions with high concentrations were often detected in industrial wastewater.
It might impact the removal efficiency of AS-GO in practical application. In this study,
NaCl was selected as a salt solvent to investigate the effect of chloride ionic strength on
the removal of OG (Figure 3). Cl- ionic had an inhibitory effect on the adsorption process.
OG removal efficiency decreased obviously from 360.1 to 157.2 mg/g, while Cl- ionic
concentration rose from 0 to 100 mmol/L. For one thing, the increasing viscosity and
density of solution hindered the adsorption of OG on AS-GO [29]. For another thing,
the electrostatic interaction between AS-GO and OG was wakened for the neutralization
between the Cl- and the positive adsorption site of AS-GO [30]. The above conclusions
indicated that electrostatic interaction was one of the main adsorption mechanisms.
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3.2. Adsorption Isotherm

The adsorption isotherm of OG for AS-GO at 283–313 K was studied. Langmuir
and Freundlich adsorption isotherm models were used to explore the adsorption process
(Figure 4 and Table 1), respectively. The adsorption capacity was improved with the
increment of the initial concentration of OG and came up to equilibrium finally. Meanwhile,
high temperature resulted in a high adsorption capacity at the same initial concentration
of OG.
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Table 1. Adsorption isotherm parameters for the adsorption of OG onto AS-GO at various
temperatures.

Temperature
(K)

Langmuir Freundlich

qmax (mg/g) KL R2 n KF R2

283 435.8 0.259 0.991 7.81 219.96 0.760
298 512.9 0.240 0.996 6.67 233.59 0.831
313 576.6 0.225 0.991 5.95 242.50 0.875

As can be seen, the Langmuir model was more suitable for the adsorption process
than the Freundlich model (RL

2 > RF
2), indicating that the adsorbed OG was more likely

to be dispersed evenly on AS-GO. As indicated by the n values (0.1 < 1/n < 1), AS-GO
showed a decent adsorption efficiency. Based on the Langmuir model, the maximum
adsorption capacities were 435.8, 512.9, and 576.6 mg/g at temperatures of 283, 298 and
313 K, respectively. Table 2 listed the maximal adsorption capacity of OG on various
materials in liquid solution in recent years. The qmax of most materials were in the range of
5–400 mg/g, illustrating that AS-GO had potential application prospects for the removal of
OG in solution.

Table 2. Comparison of the OG adsorption on various adsorbents.

Adsorbents pH qmax (mg/g) References

graphene–melamine-sponge - 80.51 [1]
activated carbon 2.0 64.93 [2]

MAMPS 3.0 48.98 [3]
Modified P. coccinea 4.0 57.90 [4]

Fe3O4 @catechol/PEI 4.0 192.3 [5]
Fe3O4/MIL-101(Cr) 3.0 200.0 [6]

rGO 2.0 5.98 [7]
Calcined MgAl layered

double hydroxides 4.0 665 [8]

magnetic graphene oxide
nanocomposite 6.0 20.85 [9]

CLDH - 378.8 [10]
AS-GO 3.0 576.6 this work

3.3. Adsorption Thermodynamics

For the purpose of further studying the influence of temperature on the adsorption
process, experiments were carried out in the temperature range of 283−328 K (in Figure 5),
and the thermodynamic parameters including ∆G, ∆H ∆S (in Table 3) were calculated.
Negative ∆G at various temperatures facilitated the spontaneous adsorption process. Mean-
while, its absolute values enhanced with the increasing temperature, demonstrating that the
increase in temperature motivated the adsorption process. A positive value of ∆S implied
that the chaos degree at the solid–liquid interface was increased during the adsorption
process. ∆H with a positive value demonstrated that the reaction was endothermic.

Table 3. Thermodynamic parameters for the adsorption of OG onto AS-GO.

Adsorbent T (K) ∆G (KJ mol−1) ∆H (KJ mol−1) ∆S (J mol−1 K−1) R2

AS-GO

283 −7.80

9.79 62.36 0.980
298 −8.89
313 −9.71
328 −10.63
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3.4. Adsorption Kinetics

The adsorption kinetics of AS-GO was studied with the initial OG concentration of
50 and 100 mg/L. Figure 6 showed that the adsorption capacity of AS-GO increased over
time, ultimately reaching equilibrium within 4 h. When the initial concentration augmented
from 50 to 100 mg/L, the adsorption equilibrium time increased from 110 to 280 min.
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Two adsorption kinetic models, pseudo-first-order and pseudo-second-order kinetic
models, were used to fit the kinetic data to discuss the adsorption mechanisms (Figure 7 and
Table 4). The adsorption of OG was discovered to follow the pseudo-second-order kinetic
model with great linearity (R2 = 0.999). The low magnification constant of the pseudo-
second-order kinetic model explained the rapid adsorption at low initial concentration of
OG. Meanwhile, this illustrated that the adsorption rate of OG on AS-GO depended on the
chemisorption process.

Table 4. Kinetic parameters for OG adsorption onto AS-GO.

C0
(mg/L)

qe,exp
(mg/g)

Pseudo-First-Order Kinetic Model Pseudo-Second-Order Kinetic Model

k1 qe,cal (mg/g) R2 k2 qe,cal (mg/g) R2

50 190.5 7.97 × 10−3 4.4 0.568 5.09 × 10−3 190.8 0.999
100 360.1 7.37 × 10−3 64.3 0.732 0.33 × 10−3 364.9 0.999
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3.5. Probable Mechanisms

A schematic diagram between AS-GO and OG was visually described in Figure 8. As
discussed in the pH effect, electrostatic interaction was one of the adsorption mechanisms.
Based on the characterization and experimental data, there were also other mechanisms
that affected the adsorption progress.
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The FT-IR spectra proved the existence of π–π and hydrogen-bonding interaction
(Figure 9). Firstly, the peaks at 1500 and 1221 cm−1 were corresponding to the bending vi-
bration of -N=N- and symmetric stretching vibration of -O-S-(O2), respectively. It indicated
that OG was adsorbed onto the surface of AS-GO after the reaction [31,32]. Secondly, the
N-H bond characteristic peak (1565 cm−1) shifted to a lower location (1539 cm−1). The peak
intensity weakened after reaction, indicating that surface amino of AS-GO participated in
the adsorption reaction. Thirdly, the characteristic peaks of O-H and C=C bond at 3431
and 1637 cm−1 transferred to 3442 and 1628 cm−1, respectively. π–π interaction might be
carried out between the π electron orbit from the C atom of AS-GO and π electrons from
the benzene rings of OG. Meanwhile, Si-OH functional groups on the surface of AS-GO
might have a hydrogen-bonding interaction with OG [33].
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3.6. Adsorbent Regeneration and Stability

Regeneration and stability of the AS-GO were two key parameters for the evaluation
of the adsorption process. Ethanol and deionized water were used as eluents to carry
out desorption and re-adsorption experiments. The removal efficiency was kept over 86%
after four runs of desorption–adsorption recycling (Figure 10a). Furthermore, there was
no significant change in the XRD and FT-IR patterns of AS-GO and AS-GO-OG except
for the adsorbed OG spectrum (Figures 8 and 10b). It indicated that the adsorbent had
stability. Generally, the AS-GO showed a high potential for the practical application of dye
wastewater treatment.
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4. Conclusions

In this study, the prepared AS-GO was proved to be a desired sorbent for the treatment
of OG effluent in an eco-friendly way. The batch experiments showed that AS-GO had
an optimal adsorptive property at the low pH. The high content of chlorine ion inhibited
the removal of OG. The Langmuir model represented the isothermal adsorption process
better. At 313 K (pH = 3.0), the ceiling amount adsorption capacity was 576.6 mg/g.
Adsorption was spontaneous, feasible and endothermic. The pseudo-second-order kinetic
model precisely described the OG adsorption kinetic on AS-GO. The adsorption process
involved three interactions: Electrostatic interaction, π–π interaction and hydrogen bonding
interaction. Consequently, AS-GO was a promising adsorbent, which could be served as a
stable and durable adsorbent for the efficient removal of OG from effluents.
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