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Abstract: Conventional cancer treatments normally involve chemotherapy or a combination of radio-
and chemotherapy. However, the adverse effects of synthetic medicines encouraged the exploration of
novel therapeutic medications of a bio-friendly nature. In an effort to explore anticancer compounds
from natural resources, crude extract of Peganum harmala (seeds) was fractionated on the basis of
polarity, and the fractions were further tested for anticancer activity. Brine shrimp lethality assays
and potato disc antitumor assays were used to test each fraction for cytotoxic and antitumor potential.
The ethyl acetate fraction was found to be most potent, with LC50 and IC50 values of 34.25 µg/mL
and 38.58 µg/mL, respectively. Further activity-guided fractionation led to the isolation of the
bioactive compound PH-HM-10 which was identified and characterized by Mass Spectroscopy
(MS), Infrared Spectroscopy (IR), Proton Nuclear Magnetic Resonance Spectroscopy (1HNMR),
Carbon Nuclear Magnetic Resonance Spectroscopy (13CNMR) and Heteronuclear Single Quantum
Correlation (HSQC). Anticancer aspects in the isolated compound were determined against six
human cancer cell lines with a maximum anticancer effect (IC50 = 36.99 µg/mL) against the tested
human myeloid leukemia (HL-60) cell line, followed by the human lung adenocarcinoma epithelial
cell line (A549) and the breast cancer cell line (MCF-7) with an IC50 of 63.5 µg/mL and 85.9 µg/mL,
respectively). The findings of the current study suggest that the isolated compound (Pegaharmine E)
is significantly active against the tested cancer cell lines and can be further investigated to develop
future novel anticancer chemotherapeutic agents.

Keywords: Peganum harmala; anticancer; cell lines; compound isolation; NMR

1. Introduction

Cancer is a primary public health crisis for mankind. Cancer patients frequently expe-
rience various unpleasant side effects from chemotherapy and radiotherapy [1]. Although
plants and plant-based medication were used for centuries, the toxicity issues linked with
synthetic chemotherapeutic agents further increased the interest of the scientific community
in this field. Another reason for using plant derivatives in therapeutic applications is their
availability, potentiality and low cost in comparison with modern therapeutic medicines [2].
Almost 20% of plants located in different regions worldwide were tested biologically or
pharmacologically, with considerable proportions being introduced into the market as new
medicines [3]. Currently, about 50% of therapies in use are directly derived from plants
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and 25% of the prescribed drugs have their source in tropical plants. These noteworthy
attributes improved their importance as precursor substrates for the development of other
drugs [4].

After a twenty-year hiatus, natural product research is now assuming fresh promi-
nence. Natural products are a considerable source of useful active compounds. Modern
analytical and genetic techniques such as metabolomics, molecular docking, and molecular
networking, etc., make it significantly easier to find compounds for various uses—for
example, antibiotics and pesticides. Equipped with a collection of sensitive and quick
bioassays and analytical procedures, the natural product researcher is now more able than
ever to explore nature’s huge frontier of bioactive chemical wonders [5]. The bioassay-
guided isolation approach to obtain bioactive compounds is time consuming and involves
exhaustive efforts compared with non bioassay-guided isolation; this is because it requires
testing activity for each individual fraction to trace the most active one. Additionally, active
fractions may present in very minute quantities—too small for spectroscopic analysis and
bioassays. This approach is still a basic but economical practice for characterizing natural
products with distinct biological potential. Bioassay-guided isolation, however, can trace
the most potent compounds responsible for the bioactivity of an extract. This approach also
led to the development of methods for the isolation of active compounds. This approach
provided a new recipe and established a protocol for other researchers [6].

Modern anticancer therapeutics are also vital for minimizing the numerous compli-
cations faced by cancer patients, but the prevalence of drug resistance resulted in the
development of a growing interest in natural products [7,8]. Peganum harmala is an herba-
ceous, perennial plant with many reported pharmacological activities: it is carminative,
diuretic, antithrombotic and analgesic. It also demonstrated numerous medicinal effects
and shows antidiabetic, cardiovascular, neurologic, antimicrobial, gastrointestinal, insec-
ticidal, antineoplasmic and antiproliferative effects [9]. The present study assessed the
cytotoxic and antitumor activity of different fractions of P. harmala, followed by isolation
and characterization of the bioactive compounds from the most bioactive fraction showing
potential anticancer activity.

2. Material and Methodology
2.1. Sample Preparation

Seeds of P. harmala were washed, rinsed and air dried at a temperature of 25 ± 2 ◦C
under shade by spreading in thin layers. Dried plant material was then homogenized to
fine powder and stored for further utilization.

2.2. Fractionation

Fractionation was performed through the suspension of extracts in 250 mL water,
followed by separation using organic solvents, including hexane, chloroform, ethyl acetate
and methanol in a separating funnel, and by changing the polarity. Methanol was separated
from the aqueous fraction by simple distillation [10]. Each of the fractions was dried through
rotary evaporation of the solvent and stored at 4 ◦C for future analysis [11].

2.3. Brine Shrimp Lethality Test (BSLT)

The Artemia salina lethality bioassays were performed in accordance with the method-
ology proposed by Meyer et al., [12] to discover the toxicity of the plant extracts. The
assays were performed in 0.45 µm multiwell plates. Seawater (5 mL) was poured into
individual wells as the saltwater solution and evaporated. These bioassays were con-
ducted in a temperature-controlled room at 28 ◦C under a continuous light regime. Various
concentrations (1000–15.625 µg/mL) of fractions were tested with vincristine, potassium
dichromate and etoposide as the positive controls. Hatched nauplii (10 per vial, with 12 h
age) were exposed to P. harmala extract for 12 and 24 h. The mortality (100%) of the nauplii
was calculated for those receiving treatment and the controls, through the given formula:

Mortality (%) = Survival in control (%) − Survival in treatment (%).
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Logarithmic regression analysis was performed to determine the LC50 values for
various fractions and the positive controls used.

2.4. Antitumor Assays

The antitumor assays were executed using the standard procedure of Yildirim et al. [13].
Agrobacterium tumefaciens was cultured on Yeast Extract Media (YEM) and a 48 h old culture
was used to test the samples. Different concentrations 15.625–1000 µg/mL of all fractions
of P. harmala were used to determine antitumor activity, while vincristine and etoposide
were used as positive controls. Briefly, red-skinned potatoes were surface-sterilized with
0.1% HgCl2 solution and disks were prepared. A total of 10 discs were placed in each Petri
plate and 50 µL inoculum was poured on each disc and incubated for 21 days in the dark at
28 ◦C. After the incubation period (21 days), the potato discs were stained with Lugol’s
solution (10% KI, 5% I2). Tumor inhibition was calculated using the following formula:

Tumor inhibition (%) = (1 − Number of tumors in the sample/Number of tumors in control) × 100

2.5. MTT Cytotoxic Assays

The MTT assays were performed to determine the cytotoxic effects of different concen-
trations of the isolated compound against 6 human cancer cell lines HL-60, PC-3, SGC-7901,
MCF-7, HCT116 and Lung A549 [14]. After exposure to different concentrations of bioactive
compounds, the metabolically active cells were determined by the intensity of purple color
(formazan product), and quantitative assessment was conducted using a spectrophotometer
at the 590 nm wavelength [15]. Cell viability (%) and inhibition (%) were calculated using
the following formula:

Cell viability (%) = (Absorbance of treated cells/Absorbance of cells with vehicle solvent) × 100

Percentage inhibition = 100 − % cell viability

2.6. Isolation and Characterization of Compound (PH-HM-10)

Column chromatography was used for the purification of the bioactive components [16].
The most bioactive fraction, the ethyl acetate fraction, was further purified by a silica gel
column sequentially eluted with a stepwise gradient of increasing solvent. Different com-
ponents eluted by the column were analyzed using TLC. Isolated fractions were examined
on a TLC plate using the solvent-vapor-saturated TLC chamber, and air dried in a fume
hood to visualize spots within 1–2 min. TLC plates were visualized at UV–254 nm. Elutions
showing the same patterns were pooled together and used for future analysis [17]. Being
the most active, Group No. 5 was processed for HPLC analysis with a photodiode array
detector and a column of 150 × 4.6 mm. Petroleum ether as mobile phase A and ethanol
as mobile phase B were used with a 0.5 mL/min flow rate. Analysis was performed as
gradient with mobile phase A (90%), decreasing to 10% for a 5 min period; the column was
equilibrated to initial conditions after the elution was completed. Elute with a concentra-
tion of 22.75 µg/mL (IC50 value) was subjected to HPLC analysis. A total of 45 eluents
were collected in vials, rotary evaporated and then subjected to thin-layer chromatography.
Finally, the eluents 1–6 were also subjected to chromatography with ether and the ethyl
acetate solvent mixture; 37 eluents were collected in a vial and elutions 7–22 yielded a
white amorphous powdered form of the purified compound PH-HM-10. A summary of
the isolation of compound PH-HM-10 is given in Figure 1.

The isolated components were characterized by spectroscopic techniques, specifi-
cally, Mass spectra (MS), Infrared (IR) Spectroscopy and Nuclear Magnetic Resonance
Spectroscopy (NMR) [18].
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Figure 1. Scheme used for the isolation of PH-HM-10. EAF = Ethyl acetate fraction; meOH = Methanol;
ethOH = Ethanol.

3. Results
3.1. Brine Shrimp Cytotoxicity

The cytotoxicity of all the tested fractions (n-hexane, chloroform, ethyl acetate, methanol
and aqueous) indicated a dose-dependent effect after 12 h and 24 h of exposure (Figure 2).
The n-hexane and ethyl acetate fractions showed 100% mortality in the brine shrimps
after 12 h and 24 h of exposure at concentrations of 1000 µg/mL and 500 µg/mL. At a
concentration of 250 µg/mL, 91 and 92% mortality were observed after 12 h and 24 h of
treatment for the hexane extract, and 75 and 81% mortality were recorded for the ethyl
acetate fraction. Similarly, the chloroform and methanol fractions of P. harmala seeds also
exhibited 100% mortality in brine shrimp nauplii. At a concentration of 500 µg/mL of
chloroform fraction, 90 and 98% mortality in brine shrimp larvae were observed after
12 and 24 h of exposure, while 90 and 92% mortality were observed for the methanol
extract of P. harmala (s) at a concentration of 500 µg/mL. The aqueous fraction of the plant
was found to be the least toxic with a maximum of 90 and 92% cytotoxic effects at a
concentration of 1000 µg/mL after 12 and 24 h of treatment. However, the cytotoxicity
decreases significantly at concentrations of 500 µg/mL to 31.25 µg/mL, indicating 67 to
24% and 67 to 30% after exposure to 12 and 24 h of treatment.

Of the five fractions of P. harmala seed extract, the ethyl acetate fraction was found to
be the most active with an LC50 value of 34.25 µg/mL, followed by methanol and hexane
fractions with IC50 values of 38.14 and 40.66 µg/mL, respectively (Table 1). The results of
the study correspond to the findings of Khan et al., [19] who reported the cytotoxicity of the
n-hexane extract of P. harmala seed extract. The chloroform and aqueous fractions showed
LC50 values of 42.63 and 74.29 µg/mL, respectively, in comparison with the positive control
vincristine sulphate (LC50 = 2.28 µg/mL), etoposide (LC50 = 3.49 µg/mL) and potassium
dichromate (LC50 = 16.55 µg/mL). The findings of this study accord with the reported
literature that potassium dichromate, etoposide and vincristine sulphate are extremely
toxic as per Clarkson’s lethality criterion [20]. The LC50 values for different concentrations
of P. harmala seed extract fall within the category of bioactive metabolites, confirming their
use as pharmacological agents [21].
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Figure 2. Cytotoxicity of (a) n-hexane, (b) ethyl acetate, (c) chloroform, (d) methanol, (e) aqueous, (f)
vincristine sulphate, (g) etoposide and (h) potassium dichromate against logarithmic concentration
after 12 and 24 h of exposure.

Table 1. Cytotoxicity of different fractions of P. harmala (S) extract; LC50 and R2 values determined
through logarithmic regression analysis.

Sample LC50 µg/mL Regression Equation R2

n-hexane 40.66 y = 18.446ln(x) − 18.348 0.961

Ethyl acetate 34.25 y = 15.56ln(x) − 4.9881 0.956

Chloroform 42.63 y = 17.931ln(x) − 17.289 0.947

Methanol 38.14 y = 15.767ln(x) − 7.4118 0.977

Aqueous 74.29 y = 17.57ln(x) − 25.69 0.962

Vincristine 2.28 y = 9.1714ln(x) + 42.432 0.925

Etoposide 3.49 y = 9.5836ln(x) + 38.013 0.951

K2Cr2O7 16.55 y = 12.366ln(x) + 15.293 0.950

3.2. Antitumor Activity of P. harmala Fractions

The results for the antitumor activity of P. harmala extract indicate dose-dependent
antitumor activity for all fractions. The ethyl acetate fraction exhibits the highest percentage
of tumor inhibition, i.e., 100% at a concentration of 1000 µg/mL, followed by 93.74% tumor
growth inhibition at a concentration of 500 µg/mL. At lower concentrations, i.e., 250,
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125, 62.5, 31.25 and 15.625 µg/mL, 85.69, 62.19, 52.14, 46.33 and 40.28%, inhibition of
tumor galls was observed. The n-hexane fraction exhibits 93.85 and 86.83% inhibition and
10 induced crown gall tumors at dosage concentrations of 1000 and 500 µg/mL, respectively.
The inhibition potential fell from 73.66 to 30.37% with a decrease in concentration from
250 to 15.625 µg/mL. This indicates that the inhibition of tumor development is strongly
correlated with the concentration of the extract (Figure 3). The same trend was observed
throughout the antitumor assay among all the tested fractions. Similarly, the chloroform
fraction also indicates strong potential to control tumor growth in a dose-dependent manner,
with its best activity being 90.06% inhibition at 1000 µg/mL of extract concentration. At
the lowest concentration of chloroform extract, i.e., 15. 625 µg/mL, 28.84% inhibition of
tumor development was observed. The methanolic fraction also exhibits 96.10% control of
tumor development at 1000 µg/mL, indicating assimilation of bioactive principles with
antitumor activity in this solvent. The aqueous fraction of P. harmala seed extract exhibits the
least activity among all fractions, with 80.18% inhibition of tumor growth at 1000 µg/mL
concentration, indicating the nature and solubility of bioactive components.
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concentrations.

Positive controls were significantly able to inhibit crown gall tumors completely
(100% mortality) at a range of concentrations between 1000 and 250 µg/mL (Figure 4).
The current bioassays show no substantial difference was detected in the bioactivity of
vincristine and etoposide, although minor variations in the percentage inhibition were
noticed along different concentrations. The 7.81µg/mL concentrations of both positive
controls were capable of more than 50% inhibition of crown gall tumors. A minimum tumor
percentage inhibition of 52.84% was observed against vincristine sulphate at a concentration
of 3.91 µg/mL, while the same concentration of etoposide exhibited 48.55% inhibition of
crown gall tumors.
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Figure 4. Percentage Inhibition of tumors by positive controls at different concentrations.

IC50 values were calculated through logarithmic regression analysis for all the five
fractions of P. harmala (S) extracts to check their crown gall tumor inhibition potential. The
difference in the IC50 values of the five different fractions of the P. harmala (S) extracts
indicate a clear difference in their potential to inhibit crown gall tumors. The minimum
IC50 value (38.58 µg/mL) was shown by the ethyl acetate fraction, while the maximum
IC50 (81.36 µg/mL) was noted for aqueous fractions, indicating the lowest effectiveness.
The chloroform fraction indicated an IC50 value of 65.3 µg/mL, while the methanol fraction
was able to inhibit 50 % tumor growth at a concentration of 42.23 µg/mL. The positive
controls, vincristine sulphate and etoposide, exhibited 50% inhibition of tumor formation
at 3.14 µg/mL and 4.31 µg/mL, respectively (Table 2).

Table 2. Antitumor activiy IC50 and R2 values determined through logarthmic regression analysis.

Samples Regression Equation R2 Value IC 50

N-hexane y = 15.36ln(x) + 10.917 0.9837 50.94

Ethyl acetate y = 15.847ln(x) + 14.078 0.9596 38.58

Chloroform y = 15.966ln(x) + 5.408 0.9830 65.30

Methanol y = 16.206ln(x) + 11.725 0.9483 42.43

Aqueous y = 15.163ln(x) + 4.6878 0.9188 81.36

Vincristine y = −4.042ln(x) + 22.582 0.9945 3.14

Etoposide y = −4.353ln(x) + 24.316 0.9945 4.31

3.3. Isolation and Characterization of Compounds
3.3.1. Isolation of PH-HM-10

A silica gel column (Sephadex, 75 × 3) packed in chloroform was used for the chro-
matography of the ethyl acetate fraction of Peganum harmala. A total of thirty elutions
were collected in a conical flask with chloroform and methanol solvents as the mobile
phase, with a gradual change in the polarity of the mobile phase (100:0, 90:10, 80:20, 70:30,
60:40, 50:50, 40:60, 30:70, 40:60, 30:70, 20:80, 10:90, 100:0). All the eluents were vaporized to
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dryness using a rotary evaporator at 40 ◦C under reduced pressure and then subjected to
thin layer chromatography using chloroform: methanol as the solvent system. Based on
TLC profiling, the elutions were combined into Groups 1 to 5. These five groups were tested
for their bioactivity; Group 5 was the most cytotoxic, with an LC50 value of 17.31 µg/mL
and demonstrating significant effectiveness in inhibiting crown gall tumorigenesis. Having
an IC50 value of 22.75 µg/mL, it was subjected to HPLC analysis that led to the isolation of
compound PH-HM-10.

3.3.2. Characterization of Isolated Compound PH-HM-10

PH-HM-10 was a white amorphous powder with an observed rosy odor. The PH-HM-
10 compound was soluble in methanol, water and DMSO. The mass spectra of PH-HM-10
were recorded and the molecular formula was assigned as C15H18N2O4 in agreement with
the [M + Na]+ ion peak at m/z 305.61340 by HRESIMS (Figure 5). The IR spectrophotometer
indicated a broad band at 3048 cm−1, suggesting the presence of aromatic hydrogen and
revealing the presence of an amide (3502 cm−1) in the structure (Figure S1). The analysis of
the 1H NMR spectrum of PH-HM-10 measured in DMSO-d6 indicated low-field signals at
δH 6.74 (H-8, dd), δH 6.87 (H-10, d), δH 7.24 (H-2, t) and δH 7.56 (H-7, d), which are peculiar
to aromatic protons in the molecule (Figure S2). One exchangeable proton signal appeared
at δH 11.30 (s) and was due to the NH-12 group present in the compound. Furthermore,
a proton NMR X signal at δH 2.52 (s) was assigned to the CH3-15; one methoxy group
showed a singlet at δH 3.51 (OCH3-1); another methoxy group δH 3.78 (s, OCH3-9) was
observed in the spectrum. 13C NMR spectroscopic examination (DMSO-d6) of PH-HM-10
showed signals down field in the spectrum: C-8 (δC 111.5), C-5 (δC 120.3), C-7 (δC 122.3),
C-6 (δC 121.7), C-13 (δC 131.4), C-11 (δC 137.4), C-1 (δC 156.8) and C-9 (δC 158.7); these were
attributed to the aromatic carbons in the compound (Figure S3). HSQC analysis indicated a
heteronuclear single quantum correlation or heteronuclear single quantum coherence. The
experiment revealed the number of particular protons in the compound attached to specific
carbon atoms. The HSQC of the isolated compound PH-HM-10 is provided in Figure S4.
The HSQC of the PH-HM-10 revealed that C-5 with resonance at δC 120.3, C-6 (δC 121.7),
C-9 (δC 158.7), and C-14 with a chemical shift at δC 189.7 were not attached to any of the
protons [22]. Moreover, C-7 (δC 122.3) was linked with two protons, showing signals at
δH 7.56 (H-7, d). C-8 (δC 111.5) was attached to a proton with a signal at δH 6.78 (H-8, dd)
and C-10 showed resonance at δC 93.7. In addition, CH correlates with a proton signal at
δH 6.87 (H-10, d), showing resonance in the downfield region in the isolated molecule of
PH-HM-10 in the HSQC correlation (Table 3). The structure of the isolated compound was
established (Figure 6) with the help of vin characterization techniques and identified as
Pegaharmine E [23].

3.4. Anticancer Potential of PH-HM-10

The cytotoxicity of the isolated compound PH-HM-10 was examined at five different
concentrations ranging from 31.25 µg/mL to 500 µg/mL (Figure 7). Results reveal that com-
pound PH-HM-10 was the most effective against human myeloid leukemia (HL-60), with
an IC50 value of 36.99 µg/mL; it was also effective against the human lung adenocarcinoma
epithelial cell line (A549), with 50% inhibition at 63.5 µg/mL. PH-HM-10 was least active
against human gastric cancer (SGC-7901), with a maximum IC50 value of 123.44 µg/mL.
The isolated compound PH-HM-10 showed moderate activity on the human colorectal
tumor cell line (HCT-116). A percentage inhibition of the human colorectal tumor cell
line was observed from 30.44 to 76%, exhibiting moderate effectiveness in the compound.
PH-HM-10 also showed moderate activity against the breast cancer cell line (MCF7), with a
minimum absorbance value of 0.218 nm at the 500 µg/mL concentration of PH-HM-10 and
with 26.65% cell viability of the breast cancer cell line. The maximum percentage inhibition
against the MCF-7 cell line, observed at this concentration, was 73.35%. The IC50 value
against the breast cancer cell line (MCF7) was observed to be 85.90 µg/mL (Table 4). This
result implies that the PH-HM-10 compound has considerable anticancer activity against
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multiple cancer cell lines, indicating that PH-HM-10 is a prominent candidate for future
drug development.
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Table 3. NMR (1H and 13C) chemical shifts value of PH-HM-10.

Position
13C

δC (ppm)

1H
δH (ppm)

HSQC

1 156.822 - C

2 - 7.244 (t) NH

3 41.403 3.165 (m) CH2

4 25.527 3.155 (m) CH2

5 120.319 - C

6 121.713 - C

7 122.263 7.562 (d) CH

8 111.468 6.738 (dd) CH

9 158.681 - C

10 93.702 6.872 (d) CH

11 137.409 - C

NH-12 - 11.302 (s)

13 131.351 - C

14 189.729 - C

15 28.173 2.523 (s) CH3

OCH3-9 55.568 3.784 (s) CH3

OCH3-1 51.209 3.512 (s) CH3
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Table 4. Regression analysis and IC50 values of anticancer activity.

Cell Lines LC50 Regression Equation R2

HL-60 36.99 y = 12.893ln(x) + 3.4476 0.9684

PC-3 73.61 y = 15.326ln(x) − 15.883 0.9437

SGC-7901 123.44 y = 15.538ln(x) − 24.827 0.9959

MCF-7 85.9 y = 13.951ln(x) − 12.126 0.9701

HCT116 93.84 y = 17.055ln(x) − 27.456 0.9907

Lung A549 63.5 y = 17.037ln(x) − 20.721 0.9965
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4. Discussion

Plant-derived bioactive components proved to be effective medication for treatment
of various ailments. Based on ethno-medicinal and several earlier scientific reports on
P. harmala, seeds were subjected to fractionation. All five fractions obtained after solvent-
solvent fractionation were tested for cytotoxicity against brine shrimp nauplii with sig-
nificant results, suggesting the role of seeds in the toxic properties of P. harmala. This
further strengthened the speculation about the capability of the plant to produce anticancer
agents [24]. Earlier findings confirmed plants with cytotoxic potential as a chief source
of bioactive principles [25]. Chloroform extract significantly increases nauplii mortality
so current findings assist in the prediction of bioactive compounds and anticancer poten-
tial [26]. The results of the cytotoxicity assays were in accordance with Khan et al. [27],
indicating a dose-dependent response. Potassium dichromate, vincristine sulphate and
etoposide were used as positive controls for the BSLT and were categorized as extremely
cytotoxic in these assays, as per Clarkson’s lethality criterion [20]. Brine shrimp lethality is
helpful for analyzing different plant extracts for confirmation of their cytotoxic potential.
The pharmacological perspective suggests a strong relationship between the brine shrimp
lethality test and the discovery of bioactive principles [28]. The ethyl acetate fraction is
known to be significantly cytotoxic, which helps predict the presence of the bioactive
principles responsible for anticancer activity [26]. A strong relationship exists between the
extract samples and the capability of an extract to control the development of crown gall
tumors on potato discs [27]. The most potent ethyl acetate fraction led to the isolation of the
bioactive compound PH-HM-10, following which, characterization was performed. ESI-MS
spectral analysis of PH-HM-10 revealed that the dynamic energy of MS2 from protonated
PH-HM-10 [M + Na]+ at 305.61340 m/z afforded the fragment ion at m/z 287.79560 by
the loss of one water molecule (18Da). C-O stretching mostly appears in the range of
1500–1800 cm−1, which is the characteristic band range in organic compounds [29]; thus,
the characteristic signal at 1780 cm−1 might signify the presence of saturated carbonyl
conformation in PH-HM-10; stretching olefinic groups (1643 cm−1) were identified from the
IR spectrum. The C-N group in the structure of the isolated bioactive compound was con-
firmed through Fourier Transform infrared spectroscopy by the characteristic absorbance
peak at 1081 cm−1 in the spectrum [30]. Methyl, methylene and aliphatic sharp asymmetric
and symmetric stretching were mostly observed in the range of 2900–2800 cm−1, which val-
idates current output [31]. The values for the chemical shifts were shifted in the downfield
regions δH 6.00 ppm to δH 9.00 ppm for the aromatic hydrogen in the H-NMR spectrum,
confirming the current results [32]. A diverse range of isolated bioactive compounds is clear
evidence of the singlet signal existing at the chemical shift δH 10–11ppm range and which
corresponds to the N-H proton of the indole nucleus, reinforcing the analysis of the current
spectrum [33]. The signal that appeared in the upfield region of the 13C NMR spectra was
assignable to one methyl carbon resonance at the chemical shift value of δC 28.173 ppm,
appearing in the aliphatic region at the (CH3-15) position. The peaks observed in the
upfield of the 13C NMR spectra in the aliphatic region between δC 10 and 25 ppm can be
fairly assigned to carbon atoms in the compound with a methyl group, so this authenticates
the presence of methyl in the structure [34]. 13C NMR spectra also revealed the presence
of two carbons (OCH3-9 and OCH31) in the structure, bearing one methoxy group at δC
55.568 ppm and another at δC 51.209 ppm, which endorsed the C-O bond in the isolated
compound. On the basis of current output and literature values, the resonance signal in the
13C NMR spectrum in the range of δC 50–58 ppm could be due to the carbon bearing one
methoxy group present in the structure of the compound, so this coincides with the current
spectrum [35]. PH-HM-10 compound (Pegaharmine E) was analyzed for its anticancer
activity against six selected human cancer cell lines using 3-(4, 5-dimethylthiazol-2-yl)-2,
5- diphenyltetrazolium bromide (MTT) assays [36]. The results of the study suggest the
already reported trend of a strong correlation between dosage and the inhibition of cancer
cell growth [37]. The absorbance level was affected by the concentration of the compound,
hence it validated the relationship between concentration and absorbance [38]. The current
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results coincide with former research outcomes related to anticancer potentiality tested
against breast cancer cell lines [39]. The anticancer activity of isolated compounds may be
due to the alteration in the redox balance that is essential for the survival of cancer cells, or it
might be due to the induction of the ROS level or inhibiting the ROS level in selected cancer
cells [40]. The results of the study indicate a difference in the cytotoxic effects of PH-HM-10
against different cell lines, with the best effects being observed against human myeloid
leukemia (HL-60); this may be due to the differential sensitivity of cancer cells that results
in different responses. Many cancers carry individual markers; therefore, the relatively
higher sensitivity of some cells, such as HL-60, to this extract of some selected cells, is
a reflection of their unique genetic nature [41]. The results of the present study provide
dependable evidence that the P. harmala extract carries promising anticancer compounds,
worthy of further investigation for the development of anticancer drugs.

5. Conclusions

The findings of the present study reveal that the isolated compound of P. harmala is
Pegaharmine E, and bioassays proved its significant anticancer properties against multiple
human cancer cell lines. Extensive in vivo and mechanistic studies are suggested in future
to validate and empower its use towards anticancer drug discovery.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/separations9110355/s1, Figure S1: Infrared spectrum of PH-HM-10;
Figure S2: H NMR of PH-HM-10; Figure S3: C NMR of PH-HM-10; Figure S4: HSQC spectrum of
PH-HM-10.
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