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Abstract: A study of the plants, and their associated poisons, in the Poison Garden at The Alnwick
Garden was undertaken across a calendar year. By selecting 25 plants in the Poison Garden, we have
been able to develop a single chromatographic method for the determination and quantification of 15
plant toxins by liquid chromatography mass spectrometry (LC-MS). Chromatographic separation
was achieved on a C18 column (3.5 µm, 100 × 4.6 mm) with a gradient method using water +0.1%
formic acid and methanol +0.1% formic acid. The developed method was validated for precision,
linearity, limits of detection and quantification and extraction recoveries. The method showed good
linearity with a R2 value of >0.995 for all 15 compounds with good precision of 10.7%, 6.7% and
0.3% for the low, medium and high calibration points, respectively. The LC-MS method was used to
analyse 25 plant species, as well as their respective parts (i.e., bulb, flower, fruit, leaf, pollen, seed,
stem and root), to assess the human risk assessment to children (aged 1 to <2 years) in relation to the
plant toxin and its respective LD50. The analysis found that the greatest potential health risks were
due to the ingestion of Colchicum autumnale and Atropa belladonna. As a caution, all identified plants
should be handled with care with additional precautionary steps to ensure nil contact by children
because of the potential likelihood of hand-to-mouth ingestion.

Keywords: liquid chromatography-mass spectrometry; plant toxins; solid liquid extraction; LD50

1. Introduction

Toxins are produced by some plants as a form of protection against threats from
insects, bacteria, and fungi. Exposure to plant toxins can be via intentional (i.e., intending
to do harm) or an unintentional (as a result of contact) act. It is therefore important to
consider the potential exposure pathways that can lead to harm from plants and their
toxins. For example, oral ingestion (e.g., by hand-to-mouth), dermal absorption and
inhalation can all occur after contact or exposure with the different parts of a plant whilst,
for example, undertaking gardening activities (pruning, planting, transferring). In this
situation unintentional exposure can be commonplace with the outcomes ranging from
itching skin and rashes to potentially a lethal toxic dose. Intentional exposure, often by
oral ingestion, has been reported both historically [1–11] and more recently [12–18] where
plants and/or their toxins have been used for assassination [14,15]. A compounds toxicity
can be reported as the median lethal dose (LD50) referring to the concentration required to
kill half the test population [19–21].

Alternatively, many plants (and their) toxins have dose dependent useful effects
in humans, for example, Aconitum root is used in traditional Chinese medicine for the
treatment of joint pain, rheumatic fever, asthma and diarrhoea [4,22]. Colchicine from
Colchicum sp. is used in pharmaceutical preparations for its anti-inflammatory properties
and is commonly used to prevent flare-ups of familial Mediterranean fever and gout [23].
Digitoxin and digoxin from Digitalis sp. are clinically approved for the treatment of heart
failure and arrhythmia for humans and in veterinary medicine and has been used as a
treatment for congestive heart failure for more than a century [10,24–28]. Furocoumarins
(e.g., psoralen) are used in photo ultra-violet A (PUVA) therapy for treatment of conditions
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such as eczema, psoriasis, vitiligo and skin conditions linked to certain lymphomas [29–34].
Veratrum album was previously used during the 19th century as a treatment for hypertension
however significant side effects limited its clinical use [35].

In the treatment of suspected poisoning the determination of the plant toxin is of-
ten critical in the successful treatment and recovery of the intended victim. However,
most methods focus on the analysis of specific groups of toxins, or a specific plant family,
depending on the individual circumstances [7,24,36–43]. A more recent article included
12 compounds but similarly focuses on distinct group, namely Amaryllidaceae alkaloids,
Veratrum alkaloids and glycoalkaloids [44]. As liquid chromatography mass spectrometry
(LC-MS) instrumentation has become more common place over recent years in clinical
biochemistry and toxicology laboratories the analytical technique lends itself to the simulta-
neous analysis of plant toxins [45]. This significant development in its use and application
allows for a faster and more reliable identification, and quantitation, of the toxin present
and therefore aids in the treatment of the patient by the clinician. This paper is the first to
report a multi-residue method for the analysis of the 15 compounds in plant material in a
single chromatographic run. In addition, and also for the first time, the ingestion risk from
consuming poisonous plants is assessed in terms of an exposure risk factor.

Alnwick Garden, Alnwick, Northumberland was opened to the public in 2001 and
resulted from the foresight of the Duchess of Northumberland. Subsequent developments
and additions meant that the Poison Garden was opened in 2005. Access to the Poison
Garden is only via trained wardens and contains around 100 poisonous plants. The Poison
Garden Wardens reward visitors with information on the history, uses and misuses as
well as their own informed anecdotes on the plants therein. In addition, four story boards
within the Poison Garden inform visitors about infamous murderers: the Teacup Poisoner
(also known as the St. Albans Poisoner) Graham Young who used the poison from Atropa
belladonna (also known as deadly nightshade) to poison members of his family and up to 70
other people, two of whom died [18], The Curry Killer, Lakhvir Singh, who used Aconitum
ferox (commonly known as Monk’s Hood) to poison her lover by adding the plant to a
curry [12,13]; Doctor Death, Harold Shipman, a GP, who was found guilty of murdering
fifteen patients, using the poison from Papaver somniferum (or the opium poppy) [16,17] and,
finally, The Umbrella Murder, in which the poison from Ricinus communis (or the Castor
bean plant) was used to murder Georgi Markov via injection of ricin into his leg from an
umbrella [14,15].

This paper investigates the simultaneous analysis by LC-MS/MS of 15 plant toxins
found within 25 varieties of plants located within the Poison Garden at The Alnwick
Garden, Northumberland. However, many of the plants are common ornamental plants
and available for purchase in garden centres and via online nurseries. Depending upon
the plants, samples were extracted from the bulb, flower, fruit, leaf, pollen, root, seed and
stem prior to analysis using LC-MS/MS. The concentrations obtained were then used to
calculate the exposure risk factor by ingestion, by a child aged between 1 and <2 year,
and the values compared to the LD50 of each compound to determine their risk to human
health.

2. Experimental
2.1. Chemicals and Reagents

Standards of aconitine, atropine, (-)-scopolamine, veratridine, colchicine, coumarin,
psoralen, 8-methoxypsoralen, 5-methoxypsoralen, α-solanine, digitoxin, digoxin, (-)-α-
thujone, and S(-)-cathinone were purchased from Sigma Aldrich (Dorset, UK) with a purity
of ≥95%. A hellebrin standard was purchased from Enzo Life sciences (Exeter, UK) with a
purity of <99%. Organic LC-MS grade solvents; methanol, acetic acid and formic acid were
purchased from Fisher Scientific (Loughborough, UK). Nylon 0.2 µm syringe filters were
purchased from Thames Restek (High Wycombe, UK). A number of plants were selected,
namely; Heracleum mantegazzianum, Artemisia absinthium, Catha edulis, Colchicum autumnale,
Fritillaria imperialis, Fritillaria meleagris, Veratrum album, Digitalis ferruginea, Digitalis purpurea,
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Helleborous sp., Aconitum lycoctonum, Aconitum napellus, Aquilegia alpina, Aquilegia atrata,
Ruta graveolens, Atropa belladona, Brugmansia suaveolens, Hyoscyamus niger, Solanum dulcamara
and Daphne laureola. These plants were chosen based on availability to purchase in garden
centers, availability in nature and toxicological importance. All plant materials were
obtained from the Poison Garden within Alnwick Gardens (Northumberland, UK).

2.2. Instrumentation

For LC-MS analysis a Thermo Surveyor LC (Thermo Scientific, Hemel Hempsted,
UK) consisted of a quaternary MS pump, vacuum degasser, a thermostated autosampler
(set to 5 ◦C), a thermostated column oven (set to 25 ◦C) coupled to a LTQ XL ion trap
mass spectrometer was used. Chromatographic separation was achieved on a reversed
phase Eclipse™ Plus C18 column (3.5 µm, 100 × 4.6 mm) from Agilent (Stockport, UK).
Sample aliquots of 10 µL were introduced onto the column at a flow rate of 300 µL/min.
The analytes were separated using 0.1% formic acid in water (A) and 0.1% formic acid
in methanol (B) as the mobile phase. The specific LC and MS parameters are show in
Table 1 and the collision energies and monitored ions in Table 2. Mass spectra, and their
respective compound fragmentation, are shown in the Supplementary Materials for all
compounds investigated.

Table 1. LC-MS instrument parameters.

Parameter Plant Poison Analysis

Mobile Phase A: 0.1% Formic acid in water
B: 0.1% Formic acid in methanol

Pump program

Time (min) % A % B

0.00 60 40

10.00 10 90

20.00 10 90

20.10 60 40

25.00 60 40

HESI temperature Ambient

Ion source voltage 4.50 kV

Capillary voltage (V) 25, 45, 15, 14

Transfer capillary temperature 350 ◦C

Auxiliary Gas (arb) 10

Sweep Gas (arb) 5

Sheath gas (arb) 10

Ion Mode Positive

Scan mode SRM

2.3. Preparation of Stock Solutions and Samples

Stock solutions of each compound were prepared at a concentration of 1.0 mg/mL
in methanol, except for hellebrin which was prepared at 0.5 mg/mL and cathinone which
were provided as a 1 mg/mL solution and stored at −20 ◦C. Calibration standards were
prepared daily for each analysis from the stock solution by diluting in mobile phase.
Calibration standards were prepared over a concentration range of 0–100 ng/mL for 5-
methoxypsoralen, 8-methoxypsoralen, aconitine, cathinone, colchicine, digitoxin, psoralen,
scopolamine, thujone and veratridine; a concentration range of 0–400 ng/mL for hellebrin;
a concentration range of 0–300 ng/mL for digoxin and a concentration range of 0–5000
ng/mL for coumarin. A full set of calibration standards were run at both the start and end
of each chromatographic run cycle. In addition, a quality control standard was prepared at
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a mid-calibration point by diluting stock standard solutions in mobile phase and analysed
at points throughout the run to ensure there was no deviation throughout the run.

Table 2. Collison energies and fragmentation ions for LC-MS/MS.

Compound Collison Energy
(eV)

Fragmentation Ion
Observed (m/z) Fragmentation

5-methoxypsoralen 30.0 217, 202 *, 173 [M + H]+, [M + H-CH3]+, [M + H-CO2]+

8-methoxypsoralen 30.0 217, 202 *, 173 [M + H]+, [M + H-CH3]+, [M + H-CO2]+

Aconitine 24.0 647, 597, 587 * [M + H]+, [M + H-HO3]+, [M + H-C2H4O2]+

Atropine 24.0 290, 260, 124 * [M + H]+, [M + H-OH]+, [M + H-C8H7O2]+

Cathinone 30.0 150, 133 *, 105 [M + H]+, [M + H-NH3]+, [M + H-C2H7N]+

Colchicine 23.0 400, 382 *, 358 [M + H]+, [M + H-H2O]+, [M + H-C2H2O]+

Coumarin 30.0 147, 119, 103 * [M + H]+, [M + H-CO]+, [M + H-CO2]+

Digitoxin 28.0 788, 743, 387 * [M + Na]+, [M + Na-CO2]+, [M + Na-C17H36O10]+

Digoxin 29.0 804, 786, 387 * [M + Na]+, [M + Na-H2O]+, [M + Na-C17H36O11]+

Hellebrin 32.0 747, 701, 585 * [M + Na]+, [M + Na-CH2O2]+, [M + Na-C6H10O5]+

Psoralen 30.0 187, 159, 143 * [M + H]+, [M + H-CO]+, [M + H-CO2]+

Scopolamine 23.5 304, 156, 138 * [M + H]+, [M + H-C9H8O2]+, [M + H-C9H10O3]+

Solanine 40.0 869, 723, 707 * [M + H]+, [M + H-C6H10O4]+, [M + H-C6H10O5]+

Thujone 28.0 175, 133, 119 * [M + Na]+, [M + Na-C3H6]+, [M + Na-C4H8]+

Veratridine 25.0 674, 656, 492 * [M + H]+, [M + H-H2O]+, [M + H-C9H10O4]+

* Quantification ion.

For plant toxin analysis approximately 0.1 g of plant material was removed using
a scalpel, which was cleaned with water and methanol between each collection, from
various parts of the bulb, flower, fruit, leaf, pollen, root, seed and stem, was macerated and
sonicated for 15 min in 10 mL of methanol. The solution was filtered through a 0.22 µm
nylon syringe filter and diluted to within the calibration range with mobile phase before
transferring to an autosampler vial.

2.4. Data Mining

R statistical computing software v. 4.2.0 ( The R Foundation for Statistical Computing,
Vienna, Austria) with “lattice” package was used for data mining and visualisation.

3. Results and Discussion

Chromatographic separation was achieved using an Eclipse Plus™ (Agilent, Stock-
port, UK) C18, 3.5 µm, 100 × 4.6 mm column using acidified methanol and water as the
mobile phase over a gradient pump program (Table 1) over a total of 25 min including
re-equilibration of the column as shown in Supplementary Materials Figure S15. LC-MS pa-
rameters were optimised using the in-built tuning parameters and manual gas adjustments.
The MS/MS fragmentation parameters (see, Supplementary Materials) were optimised by
direct infusion of each standard diluted in methanol and the parameters were adjusted
until a precursor ion of approximately 10% relative abundance and 2 stable product ions
were obtained. Due to number of compounds being analysed a combination of segments
and scan events were utilised to allow for the use of different tune parameters during the
run with the breakdown of each segment and corresponding tune file is shown in Table 3.
Dandelion extract was used to determine specificity and extraction recoveries by spiking
compounds onto the plant material prior to extraction. Dandelion samples were used as
they were readily available and are a common plant found in gardens and most importantly
contain none of the compounds of interest [46–48]. Typical recoveries ranged from 71 to
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99%. No interfering peaks were observed at the same retention time as the compounds of
interest. Verifying that the method was selective for the detection and quantification of the
15 plant toxins.

Table 3. Breakdown of MS/MS method per segment.

Segment Number Time Window (min) Compounds Tune File Used

1 0–6 atropine, cathinone,
scopolamine Atropine

2 6–10
aconitine, coumarin,
hellebrin, solanine,

veratridine, colchicine
Hellebrin

3 10–14.5
digoxin, 5- and

8-methoxypsoralen,
psoralen, thujone

Psoralen

4 14.5–20 digitoxin Digitoxin

The calibration curves showed a linear response across the standard ranges shown
in Table 4 with an R2 of greater than 0.995 for all 15 compounds. The methods also
shown good precision with % CVs of 10.7%, 6.7% and 0.3% for the low, medium and
high calibration points, respectively. Matrix matched calibration standards were analysed
by diluting standard in dandelion extract and linearity and precision accessed. Minimal
variation was observed in matrix matched standards. The limit of detection (LOD) and
limit of quantitation (LOQ), both in solution and in the matrix matched standards, were
determined. This was based on the calibration using the following equations, 3.3 δ/S
and 10 δ/S for LOD and LOQ, respectively. Where δ is the standard deviation of the y
intercept and s is the average of the slope. The LODs in solution ranged from 0.2 ng/mL
for veratridine to 92 ng/mL for coumarin, with corresponding LOQs of 0.8 ng/mL and
308 ng/mL, respectively. In matrix data for LODs ranged from 8 ng/g for veratridine to
6.4 µg/g for coumarin, with corresponding LOQs of 24 ng/g and 21.3 µg/g, respectively.
In assessing the concentration of the plant toxins in their matrices the LOQ, as determined
in the matrix matched standards, was used. The stability of each compound, when stored
at 2–8 ◦C, was assessed when stored in solution, in glass storage vials, by measurement of
the analytical standard (at a concentration of 100 ng/mL for all, except coumarin which
was at 5000 ng/mL) against the calibration data. This was initially done on a weekly
based for the first 4 weeks, then on a 2-week basis for a further 8 weeks, and finally on
a 4-week basis for the remainder of the study (Figure 1). It was noted that the majority
of the compounds are stable when stored in methanol between 2–8 ◦C. However, some
influence of storage conditions is noted for cathinone and thujone (Figure 1). A reduction
in % nominal concentration was observed after a period of around 30 weeks and 25 weeks
for cathinone and thujone, respectively. While this was not investigated further, fresh
solutions were prepared on a 3 monthly basis to eliminate the possibility of degradation by
storage conditions.

The developed method was applied to the analysis of plant materials obtained from
Alnwick Poison Garden for the presence of the toxins (Table 5a). Due to the unknown
stability of the plant material once collected all extractions were performed within 24 hrs
by maceration followed by solid liquid extraction in methanol. As a family, Solanaceae, con-
tained the overall highest concentrations of plant toxins. Specifically, Atropa belladona fruit
were found to contain the highest concentration of toxins, specifically atropine 63 mg/g
and scopolamine 44 mg/g. Additionally, notably high levels of psoralen (1.4–1.7 mg/g),
5-methoxypsoralen (0.9–1.3 mg/g) and 8-methoxypsoralen (0.7–0.5 mg/g) were found in
the family, Apiaceae, and specifically Heracleum mantegazzianum, in both the flower and
leaf. Similarly, the presence of these compounds (psoralen, 5-methoxypsoralen and 8-
methoxypsoralen) were noted in the family, Rutaceae, in the leaf and fruit of Ruta graveolens
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but at lower concentrations (typically ranging from 0.004 to 0.3 mg/g). The family, Plantagi-
naceae, in the genus Digitalis, contained levels of digoxin (from 0.08 mg/g to 0.03 mg/g)
and digitoxin (from 0.2 mg/g to 0.07 mg/g) in the flower, leaf and seed of D. ferruginea
while the leaf of D. purpurea contained 0.2 mg/g digitoxin and 0.001 mg/g digoxin. Finally,
of note, is the concentration of colchicine in the bulb (0.6 m/g) and leaf (0.1 mg/g) of
Colchicum autumnale.

Table 4. Analytical figures of merit for developed method.

Compound
Calibration

Range
(ng/mL)

No of
Data

Points
Linearity

(y=)
R2

Value

Precision
(%CV)

(Low, Mid,
High)

LOD (in
Solution)
(ng/mL)

LOQ (in
Solution)
(ng/mL)

LOD (in
Matrix)
(ng/g)

LOQ (in
Matrix)
(ng/g)

5-methoxypsoralen 0–100 7 1325.5x + 2893 0.9964 10, 4.6, 2.3 2.0 6.7 128 389

8-methoxypsoralen 0–100 7 1315.3x − 1107.7 0.9984 9.3, 2.2, 2.9 0.7 2.3 56 169

Aconitine 0–100 7 7001.2x −6390.8 0.9991 1.5, 0.9, 2.9 1.0 3.3 500 1515

Atropine 0–100 7 4227.2x − 5294.6 0.9994 2.8, 2.6, 6.9 3.7 12 259 784

Cathinone 0–100 7 7116.8x − 36,698 0.9957 1.4, 3.2, 2.4 6.3 20.1 488 1478

Colchicine 0–100 7 267.94x + 115.8 0.9985 3.5, 4.1, 4.0 0.3 1.1 27 82

Coumarin 0–5000 10 4.1771x − 158.54 0.9990 0.6, 2.3, 1.7 92 308 6450 21,276

Digitoxin 0–100 7 108.28x +258.93 0.9959 2.9, 5.0, 2.9 1.1 3.5 94 286

Digoxin 0–300 7 30.352x − 47.162 0.9988 2.8, 5.2, 4.1 5.5 18.2 134 407

Hellebrin 0–400 10 195.98x + 1686.6 0.9981 6.0, 6.7, 6.5 7.5 25 527 1597

Psoralen 0–100 7 198.35x − 491.57 0.9952 10.7, 2.7, 3.3 1.2 4.1 79 238

Scopolamine 0–100 7 720.56x + 142.49 0.9993 0.8, 5.5, 5.4 1.0 3.3 177 536

Solanine 0–100 7 2478.2x + 959.64 0.9996 1.8, 1.4, 1.6 2.4 7.9 103 311

Thujone 0–100 7 73.474x + 180.44 0.9969 3.4, 2.8, 2.1 2.7 8.5 101 305

Veratridine 0–100 7 6533.4x − 814.27 0.9979 2.1, 1.0, 0.3 0.2 0.8 8 24
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Table 5. Summary of plant toxin data (a) actual concentration, and (b) calculated human health risk.

Family Genus Species Common Name Part of Plant Ground
Position

Compound

(a) (b)

Concentration
(µg/g) ± SD

(n = 3)
Exposure Factor

(µg/kg-day)
Compound

LD50
(mg/kg)

Days (Years) to
Reach LD50

Apiaceae Heracleum H. mantegazzianum Giant hogweed

Flower

above Psoralen 1428 ± 30 9000 1700 190

above 5-Methoxypsoralen 920 ± 15 5800 >3000 519 (>1)

above 8-Methoxypsoralen 672 ± 10 4200 791 188

Leaf above Psoralen 1703 ± 14 11,000 1700 159

above 5-Methoxypsoralen 1298 ± 17 8100 >3000 368 (>1)

above 8-Methoxypsoralen 499 ± 21 3100 791 252

Asteraceae Artemisia
A. absinthium Common

wormwood
Leaf above Thujone 322 ± 9.7 2000 500 247

Stem above Thujone 110 ± 3.5 688 500 727 (>2)

Celastraceae Catha C. edulis Khat Leaf above Cathinone ND ND 379.7 ND

Colchicaceae Colchicum C. autumnale Autumn crocus
Bulb below Colchicine 578 ± 3 3,600,000 5.87 0.002

Leaf above Colchicine 127 ± 1 800,000 5.87 0.007

Liliaceae Fritillaria
F. imperialis Crown imperial

Leaf above Veratridine 0.44 ± 0.01 2.8 1.35 489 (>1)

Stem above Veratridine ND ND 1.35 ND

F. meleagris Snake’s head
Leaf above Veratridine 0.04 ± 0.001 0.3 1.35 5400 (>14)

Stem above Veratridine ND ND 1.35 ND

Melanthiaceae Veratrum V. album White hellebore Flower above Veratridine 1.3 ± 0.02 8.3 1.35 163

Seed above Veratridine ND ND 1.35 ND

Plantaginaceae Digitalis

D. ferruginea Rusty foxglove

Flower above Digitoxin 184 ± 2 1200 3527 3000 (>8)

above Digoxin 81 ± 1 506 28.27 56 (<1)

Leaf above Digitoxin 70 ± 0.6 440 3527 8000 (>21)

above Digoxin ND ND 28.27 ND

Seed above Digitoxin 244 ± 3 1500 3527 2300 (>6)

above Digoxin 26 ± 0.6 160 28.27 176

D. purpurea Foxglove
Leaf above Digitoxin 256 ± 4 1600 3527 2200 (>6)

above Digoxin 1.1 ± 0.1 6.7 28.27 4200 (>11)
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Table 5. Cont.

Family Genus Species Common Name Part of Plant Ground
Position

Compound

(a) (b)

Concentration
(µg/g) ± SD

(n = 3)
Exposure Factor

(µg/kg-day)
Compound

LD50
(mg/kg)

Days (Years) to
Reach LD50

Ranunculaceae

Helleborous

H. argutifolis Holly-leaved
hellebore

Flower above Hellebrin ND ND 8.4 ND

Leaf above Hellebrin ND ND 8.4 ND

Root below Hellebrin 1.6 ± 0.03 1.1 8.4 7800 (>25)

H. niger Christmas rose

Flower above Hellebrin ND ND 8.4 ND

Leaf above Hellebrin ND ND 8.4 ND

Root below Hellebrin ND ND 8.4 ND

H. orientalis Lenten rose

Flower above Hellebrin ND ND 8.4 ND

Leaf above Hellebrin ND ND 8.4 ND

Root below Hellebrin 18.1 ± 1.2 12.5 8.4 669 (>1)

H. cyclophyllus -

Flower above Hellebrin ND ND 8.4 ND

Leaf above Hellebrin ND ND 8.4 ND

Root below Hellebrin ND ND 8.4 ND

H. early purple -

Flower above Hellebrin ND ND 8.4 ND

Leaf above Hellebrin ND ND 8.4 ND

Root below Hellebrin 10.8 ± 1 7.5 8.4 1100 (>3)

H. viridis Green hellebore

Flower above Hellebrin ND ND 8.4 ND

Leaf above Hellebrin ND ND 8.4 ND

Root below Hellebrin 55.6 ± 2.9 38.4 8.4 218

Aconitum

A. lycoctonum Wolf’s-bane
Leaf above Aconitine ND ND 1 ND

Stem above Aconitine ND ND 1 ND

A. napellus Monk’s-hood
Leaf above Aconitine 1.7 ± 0.02 10.9 1 92

Stem above Aconitine ND ND 1 ND

Aquilegia

A. alpina Breath of God

Flower above Aconitine ND ND 1 ND

Seed above Aconitine ND ND 1 ND

Stem above Aconitine ND ND 1 ND

A. atrata Dark columbine

Flower above Aconitine ND ND 1 ND

Leaf above Aconitine ND ND 1 ND

Stem above Aconitine ND ND 1 ND

Seed above Aconitine ND ND 1 ND
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Table 5. Cont.

Family Genus Species Common
Name

Part of Plant Ground
Position

Compound

(a) (b)

Concentration
(µg/g) ± SD

(n = 3)

Exposure
Factor

(µg/kg-day)

Compound
LD50

(mg/kg)
Days (Years)

to Reach LD50

Rutaceae Ruta R. graveolens Rue

Leaf above Psoralen 343 ± 5 2200 1700 790 (>2)

above 5-Methoxypsoralen 335 ± 5 2100 >3000 1400 (>3)

above 8-Methoxypsoralen 139 ± 4 873 791 905 (>2)

Fruit above Psoralen 42 ± 0.5 265 1700 6400 (>17)

above 5-Methoxypsoralen ND ND >3000 ND

above 8-Methoxypsoralen 4.1 ± 0.04 25 791 31,000 (>85)

Solanaceae

Atropa A. belladonna
Deadly

nightshade

Fruit above Atropine 63,146 ± 126 400,000 75 0.19

above Scopolamine 44,498 ± 1201 280,000 1300 4.7

Leaf above Atropine 2117 ± 176 13,000 75 5.6

above Scopolamine 388 ± 2 2400 1300 534 (>1)

Brugmansia B. suaveolens
Angel’s
trumpet

Flower above Atropine 31 ± 0.8 197 75 380 (>1)

above Scopolamine 29 ± 3 185 1300 7000 (>19)

Pollen above Atropine 79 ± 1 494 75 152

above Scopolamine 69 ± 0.5 433 1300 3000 (>8)

Stem above Atropine 100 ± 2 625 75 120

above Scopolamine 5257 ± 37 33,000 1300 39

Hyoscyamus H. niger Henbane

Flower above Atropine 61 ± 1.2 385 75 195

above Scopolamine 2755 ± 58 17,000 1300 75

Root below Atropine 6.9 ± 0.2 4.8 75 16,000 (>43)

below Scopolamine 36 ± 1 25 1300 52,000 (>100)

Seed above Atropine 91 ± 6 574 75 131

above Scopolamine 3907 ± 176 25,000 1300 53

Solanum S. dulcamara Bittersweet

Flower above Solanine ND ND 590 ND

Leaf above Solanine 0.73 ± 0.01 4600 590 129

Stem above Solanine 0.93 ± 0.01 5800 590 101

Root below Solanine ND ND 590 ND

Thymelaeceae Daphne D. laureola Spurge laurel Leaf above Coumarin 98 ± 0.2 612 359.5 587 (>1)

ND = <LOQ in the matrix (see Table 4).
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To assess the risk of exposure to young children (aged from 1 to <2 years old) from the
plants in the Poison Garden, the exposure factors for ingestion were calculated. This can be
done using the following equation [49–52]:

Ingestion exposure risk (ADD) = Cmedium × IngR × EF × ED/BW × AT (1)

where:
ADD = Average daily potential dose (mg/kg-day).
Cmedium = Concentration of contaminant (mg/g).
IngR = Ingestion rate (mg/day); calculated for plants above (IngRa) and below

(IngRb) ground.
EF = Exposure frequency (0.088 days/year).
ED = Exposure duration (5 years).
BW = Body weight (11.4 kg).
AT = Average time of exposure (5 days).
However, some assumptions are required and are noted in Table 6. For the IngRa

for the plant material located above the ground the ingestion rate for fruit and vegetables
was used [49] whereas for the ingestion rate for plant material below ground the ingestion
rate via soil and dust was used [49] as it is unlikely that roots would be accidentally eaten.
The determined exposure factors (Table 5b) were then compared to the compound’s LD50
and an estimate made of the amount of exposure required to reach the LD50 was done,
using the data from the exposure factor (Table 5b) [53–67]. From the calculated durations
ingestion of Colchicum autumnale from either its leaves or the bulb poses the greatest risk
with <1 day exposure required to reach the LD50 of 5.87 mg/kg [57]. Many of the plants
investigated have exposure durations, assessed against their LD50’s, in days that mean
accidental poisoning is possible, particularly for young children.

Table 6. Values used in risk factor calculations for a child (1–<2 years old).

Parameter Abbreviation Value (Units)

Exposure frequency EF 0.088 (days/year)

Exposure duration ED 5 (years)

Average time of exposure AT 5 (days)

Body weight BW 11.4 (kg)

Ingestion rate
(above ground) IngRa 816 (mg/day)

Ingestion rate
(below ground) IngRb 90 (mg/day)

Note: The following presumptions were made: EF = Exposure frequency was estimated at 8 days per month over
a period of four months while the plant is actively growing; ED = Exposure Duration was estimated at 5 years
based, i.e., based on perennial plants staying in the garden for this duration; AT = the average time of exposure
was estimated based on the likely average number of days of exposure; BW = body weight of a child aged 1 to <2
years [46]. IngRa = Ingestion rate for a child aged 1 to <2 years for the mean intake of fruit and vegetables. The
EPA recommended value [47] for 2-day average intake of 9.3 g/kg-day, was converted to an Ingestion rate of 816
mg/day, based on the body weight. IngRb = Ingestion rate for a child aged 1 to <2 years for the average central
tendency value. The EPA recommended for soil and dust for the general population was an ingestion rate of 90
mg/day [48]. N/A = not applicable.

Dot plots have been used to highlight the most important aspects of the results. It can
be seen in Figure 2a that the highest risk from colchicine is from the bulb and leaf, whilst
also noting that the fruit and leaf present the highest risk for atropine. Figure 2b highlights
the effect of plant family and their human health risks. This plot reinforces the high risks
associated with the family of Colchicaceae and Solanaceae. Some of the parts of the plants are
accessible either above (flower, fruit, leaf, pollen, seed and stem), or below (bulb and root)
ground (Figure 2c). It is observed that the highest risk is from colchicine below ground,
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closely followed by its above ground presence. Of lower risk is the presence of atropine in
above ground plant parts.
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4. Conclusions

This research highlights the importance of assessing the human health risk to children
(and adults) from commonly occurring plants. While the plants in this study were selected
from the Poison Garden at Alnwick Gardens, many of them are found (and hence accessible)
within public gardens, household gardens and woodlands and can be purchased from
gardens centres. Therefore, better public awareness and information is required into the
potential impact of toxins within plants to prevent the misidentification, miss-use and
potentially fatal consequences associated with them.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations9100308/s1, Figure S1. Full scan MS/MS spectrum
for (a) 5-methoxypsoralen, (b) 8-methoxypsoralen and (c) compound fragmentation; Figure S2. Full
scan MS/MS for (a) aconitine and (b) compound fragmentation; Figure S3. Full scan MS/MS for
(a) atropine and (b) compound fragmentation; Figure S4. Full scan MS/MS for (a) cathinone and
(b) compound fragmentation; Figure S5. Full scan MS/MS for (a) colchicine and (b) compound
fragmentation; Figure S6. Full scan MS/MS for (a) coumarin and (b) compound fragmentation;
Figure S7. Full scan MS/MS spectrum for (a) digitoxin and (b) compound fragmentation; Figure S8.
Full scan MS/MS spectrum for (a) digoxin and (b) compound fragmentation; Figure S9. Full scan
MS/MS spectrum for (a) hellebrin and (b) compound fragmentation; Figure S10. Full scan MS/MS
spectrum for (a) psoralen and (b) compound fragmentation; Figure S11. Full scan MS/MS spectrum
for (a) scopolamine and (b) compound fragmentation; Figure S12. Full scan MS/MS spectrum for (a)
α-solanine and (b) compound fragmentation; Figure S13. Full scan MS/MS spectrum for (a) α-thujone
and (b) compound fragmentation; Figure S14. Full scan MS/MS spectrum for (a) veratridine and
(b) compound fragmentation. Figure S15. Standard extracted ion chromatograms for (a) 5- and 8-
methoxypsoralen, (b) aconitine, (c) atropine, (d) cathinone, (e) colchicine, (f) coumarin, (g) digitoxin,

https://www.mdpi.com/article/10.3390/separations9100308/s1
https://www.mdpi.com/article/10.3390/separations9100308/s1


Separations 2022, 9, 308 13 of 16

(h) digoxin, (i) hellebrin, (j) psoralen, (k) scopolamine, (l) solanine, (m) thujone and (n) veratridine.
References [68–74] are cited in the supplementary materials.
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