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Abstract: Pulsed electric field (PEF) is a sustainable innovative technology that allows for the recovery
of nutrients and bioactive compounds from vegetable matrices. A. bisporus was chosen for its
nutritional value and the effect of PEF pretreatment was evaluated using different conditions of
electric field (2–3 kV/cm), specific energy (50–200 kJ/kg) and extraction time (0–6 h) to obtain the
best conditions for nutrient and bioactive compound extraction. Spectrophotometric methods were
used to evaluate the different compounds, along with an analysis of mineral content by inductively
coupled plasma mass spectrometry (ICP-MS) and the surface was evaluated using scanning electron
microscopy (SEM). In addition, the results were compared with those obtained by conventional
extraction (under constant shaking without PEF pretreatment). After evaluating the extractions, the
best extraction conditions were 2.5 kV/cm, 50 kJ/kg and 6 h which showed that PEF extraction
increased the recovery of total phenolic compounds in 96.86%, carbohydrates in 105.28%, proteins
in 11.29%, and minerals such as P, Mg, Fe and Se. These results indicate that PEF pretreatment is
a promising sustainable technology to improve the extraction of compounds and minerals from
mushrooms showing microporation on the surface, positioning them as a source of compounds of
great nutritional interest.

Keywords: pulsed electric field; bioactive compounds; optimization; mushrooms; Agaricus bisporus

1. Introduction

World mushroom production has increased by more than 30 times since 1978 (from
4.2 million kg in 1978 to 34 billion kg in 2013) currently reaching a 4.3% production
increase every year [1,2], with five genera (Lentinula, Pleurotus, Auricularia, Agaricus and
Flammulina) comprising 85% of the world supply. Among these five genera, Lentinula edodes,
Pleurotus spp. and Agaricus bisporus mushrooms represent 22%, 19% and 15% of the supply,
respectively. At European and Spanish levels, the production of A. bisporus stands out,
representing 90% of the total cultivable mushrooms [3,4].

Furthermore, a worldwide mushroom consumption increase of almost five times has
been observed over the last decades (from 1 kg/person in 1997 to 4.7 kg/person in 2013) [1],
observing the same trend at the European and Spanish levels, with an increase in domestic
consumption of approximately 15% in recent decades with A. bisporus being the most
consumed mushroom [5]. Considering the growing interest in A. bisporus, the number
of studies evaluating its nutritional and bioactive properties has increased considerably.
Besides being used as food, mushrooms are of great interest as a source of compounds that
can be used in the formulation of supplements and/or food additives [6].
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Mushrooms are rich in macronutrients (proteins and polysaccharides), micronutrients
(vitamins and minerals) and bioactive compounds (e.g., polyphenols), and have a low lipid
content, which makes them a food of high dietary value [7]. In fact, A. bisporus and L. edodes
mushrooms are colloquially known as “vegetable meat” due to their high protein content
and nutritional value [8]. This is particularly interesting for specific population groups
such as people following a vegetarian/vegan diet as possible alternatives to meat products.
Regarding polysaccharides, A. bisporus has a high content of β-glucans, which have been
associated with immune-regulating, hypoglycemic and anticoagulant properties [9]. More-
over, mushrooms have a high content of natural antioxidants with the ability to reduce the
damage caused by oxidative stress, which is one of the main causes of cellular aging [10]. It
is also remarkable for its high micronutrient content, being a good source of potassium,
phosphorus, magnesium and selenium, as well as vitamin A, B (thiamine, niacin and folic
acid), C and D vitamins [11]. This high micronutrient content combined with bioactive
compounds shows biological properties (antioxidant, antimicrobial and antitumor) [12,13].

Considering the nutritional value of mushrooms, there is a growing interest in the
extraction of these compounds. Traditionally, conventional methods have been used for this
purpose, which is not highly ecological and efficient since they require high temperatures,
long extraction times and organic solvents, being in many cases toxic. Therefore, in
recent years, pulsed electric field-assisted extraction (PEF) technology has been used for
the recovery of compounds from plant matrices [14–16]. The use of PEF allows for the
sustainable and economical obtaining of compounds by using water as a solvent, thus
reducing the use of organic solvents that are much more polluting. In addition, it is
a technology that reduces the temperature and time required for the extraction of the
different compounds, thus reducing the degradation of thermolabile components, making
it of special interest at the industrial level when seeking greater process efficiency [9].

This technology is based on the application of electrical pulses between two electrodes
inside the treatment chamber, allowing the formation of micropores in eukaryotic cell
membranes and increasing cell permeability, which allows for the selective extraction of
intracellular compounds. The efficiency of the PEF extraction process to permeabilize the
membrane changes depending on the strength of the electric field applied, the specific
energy, treatment time, temperature and the properties of the material used, such as pH,
conductivity and the characteristics of the matrix cells to be extracted [17].

The electroporation produced by this extraction method can be observed on the surface
of the sample using techniques such as scanning electron microscopy (SEM) [18]. In this
way, it is possible to compare the conventional extraction or untreated sample versus
alternative methods in relation to the impact on the surface of the food.

Therefore, the present study aims to evaluate the recovery of high added-value com-
pounds from Agaricus bisporus using an optimization strategy based on response surface
methodology (RSM) and to study the influence of PEF on the mushroom surface using
scanning electron microscopy (SEM).

2. Materials and Methods
2.1. Chemicals and Reagents

Sodium carbonate (Na2CO3) was purchased from VWR (Saint-Prix, France). AAPH
(2,2′-Azobis (2-methylpropanimidamide) dihydrochloride), ABTS (2,2′-Azinobis (3-
ethylbenzothiazoline-6-sulfonic acid)), Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid), potassium persulfate (K2S2O8), Folin–Ciocalteu reagent, gallic acid
(C7H6O5), fluorescein (C20H12O5), mineral standards (Ca, P, Mg, Fe, Zn and Se) and
internal standards of Sc and Ge were purchased from Sigma–Aldrich (Steinheim, Baden-
Württemberg, Germany). Disodium phosphate (Na2HPO4) and potassium dihydrogen
phosphate (KH2PO4) were purchased from VWR International Eurolab S.L.
(Barcelona, Spain).

Sulfuric acid (H2SO4) and phenol (C6H6O) were purchased from Thermo Fisher Sci-
entific (Waltham, MA, USA). Ethanol (99%) was purchased from Baker (Deventer, The
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Netherlands). Distilled water was obtained from Milli-Q SP Reagent Water System (Milli-
pore Corporation, Bedford, MA, USA).

2.2. Sample Preparation

White button mushroom (A. bisporus) samples were obtained from a local supermarket
(Valencia, Spain) and used the day after purchase. All mushroom samples were stored
in plastic containers in a refrigerator at 4 ◦C for 24 h. Subsequently, they were cut into
3 × 5 × 3 mm slices manually with a kitchen knife to obtain 20 g of fresh sample for each
of the replicates in the PEF and conventional extraction and for the lyophilization necessary
to compare the samples by SEM [8]. The initial A. bisporus moisture content (g water/100 g
sample) was 0.88 ± 0.01.

2.3. Extraction Conditions

A PEF-Cellcrack III (German Institute of Food Technologies (DIL)) equipment (ELEA,
Quakenbrück, Germany) located at the Faculty of Pharmacy of the University of Valencia
(València, Spain) was used for the extraction. Specifically, for each extraction, 20 g of fresh
sample previously cut into slices were taken and placed in contact with 200 mL of water
(100 mL distilled water and 100 mL tap water) until the conductivity was approximately
700–800 µS/cm, using an extraction chamber with a capacity of 900 mL and a distance
between electrodes of 10 cm. In addition, pulse duration was 100 ms using a 2.00 Hz
frequency. The samples were pre-treated according to the optimal conditions obtained after
performing RSM with 17 samples (Table 1); electric field strength values varied between
2–3 kV/cm, specific energy values between 50–200 kJ/kg and total extraction time ranged
between 0–6 h.

Table 1. Pulsed electric field (PEF)-assisted extraction experimental conditions.

Sample Weight
(g)

Field strength
(kV/cm)

Specific Energy
(kJ/kg)

Time
(h)

1 220 3.00 50 6
2 220 2.00 125 3
3 220 3.00 200 0
4 220 3.00 50 0
5 220 2.00 50 6
6 220 2.50 125 3
7 220 2.00 200 6
8 220 2.50 125 0
9 220 2.00 200 0
10 220 3.00 125 3
11 220 2.50 200 3
12 220 2.50 125 6
13 220 2.50 51 3
14 220 2.50 125 3
15 220 2.00 50 0
16 220 3.00 200 6
17 220 2.50 125 3

The temperature and conductivity of each sample was measured before and after PEF
treatment with the ProfiLine Cond 3310 conductometer (WTW, Xylem Analytics, Weilheim
in Oberbayern, Germany). According to previous studies, the minimum electric field to
produce cellular changes is 1 kV/cm, because of that the application of 2–3 kV/cm is
enough to produce electroporation [19,20].

Extracts with extraction time 0 h were filtered and centrifuged (4000 rpm, 15 min) to
remove solid residues and stored frozen at −20 ◦C until their use in chemical analysis;
those extracts with time higher than 0 h were kept after PEF pre-treatment in agitation
using a magnetic stirrer for a certain period depending on the number of samples. They
were then filtered and centrifuged under the same conditions as the samples at time 0 h.
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Conventional extracts were subsequently obtained and stored under the same conditions
without the PEF pre-treatment.

Response surface methodology (RSM) was used as a method to optimize the extraction
conditions. This methodology includes a variety of techniques used to study the relation-
ship between factors or independent variables with one or more responses or dependent
variables, to optimize them [21]. In this case, the study was carried out to determine
how the variation of factors related to the PEF technology (electric field strength, specific
energy, and extraction time) affects the concentration of different mushroom compounds
in the extracts obtained by PEF (proteins, carbohydrates, and antioxidant compounds). A
central composite design with 17 experiments and 3 central points (3 samples with the
same PEF extraction conditions) was applied. The inclusion of central points allows for
estimating the experimental error and avoiding the generation of a model that leads to
incorrect conclusions.

After applying SRM, 20 g of fresh A. bisporus sample was treated under optimal PEF
extraction conditions to validate the result. The results were compared with a control
obtained under the same conditions except for PEF pre-treatment.

2.4. Chemical Analyses
2.4.1. Total Protein Content

The bicinchoninic acid (BCA) assay was used to determine the protein content of the
extracts. The working solution was prepared according to the Pierce BCA kit Protein Assay
(Thermo Fisher Scientific, Waltham, MA, USA). Bovine serum albumin (0–2000 mg/L) was
used as standard. To prepare the analysis, 10 µL of sample/standard was added to the
microplate combined with 200 µL of the working solution of BCA, subsequently mixed
and incubated at 37 ◦C for 30 min. Finally, the absorbance of the samples was measured
at 562 nm. The results are expressed in mg of bovine serum albumin/g dry matter (mg
BSA/g DM).

2.4.2. Total Antioxidant Capacity

ORAC determination was performed according to Cao et al. [22]. This assay mea-
sures the oxidative degradation of a fluorescent molecule, fluorescein, after the addition of
AAPH, measuring the antioxidant capacity of the sample compared to the Trolox standard.
Phosphate buffer pH 7.0–7.4 was used for the blank and 1 mM Trolox as the standard. Fluo-
rescein (50 µL) was added to the microplate along with 50 µL of Trolox/blank/sample and
incubated for 10 min at 37 ◦C. Subsequently, 25 µL of AAPH was added and wavelengths
480 nm excitation and of 520 nm emission were set using Wallac 1420 VICTOR 2 plate
reader (Perkin–Elmer, Jügesheim, Germany) and the measurements were collected every
minute for 60 min. Finally, the blank was subtracted from the results obtained; one ORAC
unit indicates that the antioxidant capacity of the sample is equivalent to 1 µM Trolox. The
results were expressed in µmol Trolox equivalents/g dry matter (µmol TE/g DM).

The TEAC assay is used to observe the capacity of the extracts to neutralize the ABTS+
radical. To perform the assay, 25 mL of ABTS (7 mM) and 440 µL K2S2O8 (140 mM) were
mixed, the solution was incubated in the dark at 20 ◦C for 16 h to obtain the working
solution with the ABTS+ radical. Subsequently, this working solution was mixed with
96% ethanol to reach an absorbance at 734 nm of 0.70 ± 0.02. For the measurement,
2 mL of ethanol solution was taken and 100 µL of the sample was added, the initial
and final absorbance was recorded at 734 nm. A Trolox standard curve was used as a
reference at different concentrations (0–250 µM). The results were expressed in µmol Trolox
equivalents/g dry matter (µmol TE/g DM).

2.4.3. Total Phenolic Compounds (TPC)

The Folin–Ciocalteu method was used for the total phenolic compounds (TPC) de-
termination, according to the method proposed by Singleton et al. [23], which is based on
the capacity of phenols to react against oxidizing compounds. Thus, the Folin–Ciocalteu
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reagent, which contains molybdate and sodium tungstate, can react with the phenolic com-
pounds found in the sample forming phosphomolybdic and phosphotungstic complexes.
As these compounds are found in a basic medium, they are reduced forming a blue-colored
compound that is proportional to the phenolic concentration. Folin–Ciocalteu reagent at
50% v/v was used together with Na2CO3 solution and gallic acid standards. In each tube,
100 µL of standard/sample, 3 mL of Na2CO3 and finally 100 µL of Folin–Ciocalteu were
added. The samples were incubated for 60 min in the dark and measured at 750 nm using a
Perkin–Elmer UV/V is Lambda 2 spectrophotometer (Perkin–Elmer, Jügesheim, Germany).
Results were expressed as mg gallic acid equivalents/g dry matter (mg GAE/g DM).

2.4.4. Total Carbohydrate Content

Total carbohydrate content was determined by the phenol-sulfuric method described
by Dubois et al. [24], which allows knowing the concentration of total sugars by acid catal-
ysis of these by adding sulfuric acid, obtaining furfural and hydroxymethyl-furfural that
condensed with phenols give rise to yellow-orange products proportional to the total con-
centration of carbohydrates. For their determination, D-glucose solutions (10–100 mg/L)
was used as standard. One milliliter of sample was taken with 1/10 dilution or the D-
glucose standard solutions along with 0.5 mL of 5% phenol solution and 2.5 mL of sulfuric
acid. After mixing the reagents, they were incubated for 30 min at 25 ◦C. Finally, absorbance
was measured at a wavelength of 490 nm. The results were expressed in mg glucose/g dry
matter (mg glu/g DM).

2.4.5. Mineral Content

To determine the Ca, Mg, Fe, Zn, P and Se content of liquid extracts from PEF and
conventional extraction, 1 mL of each extract was taken and digested with 1 mL of 69%
nitric acid (HNO3) along with 250 µL of hydrogen peroxide (H2O2) in a 180 ◦C microwave
oven. Subsequently, it was brought to a volume of 5 mL with ultrapure water (UW), 100 µL
were taken and brought again to a final volume of 10 mL with UW.

On the other hand, to determine the content of the above-mentioned minerals in
fresh samples of A. bisporus, 10 mg were weighed and digested with 1 mL of 69% HNO3
followed by 250 µL of H2O2 in a microwave oven at 180 ◦C. Afterward, it was brought to
10 mL with UW to take an aliquot of 100 µL and add 9 mL of UW. The multi-elemental
determination was performed by inductively coupled plasma mass spectrometry (ICP-MS)
using a 20 µg/g Sc and Ge solution as an internal standard. The results are expressed in
mg/100 g for Ca, Mg, Fe, Zn and P, and µg/100 g for Se.

2.5. Scanning Electron Microscopy (SEM)

To observe the surface of A. bisporus, small fragments belonging to the pileus were used
both from the sample subjected only to freeze-drying (control sample) and from the samples
subjected to freeze-drying and PEF/conventional treatment. For sample preparation, a
carbon film was taken on which the sample is placed, and the fragments were treated for
2 min to produce metallization of the sample with a thin layer of Au and Pd. Subsequently,
the sample was placed under the microscope and the difference between the control and
the treated sample was observed on the surface, searching for the electroporation produced
by the PEF pre-treatment in A. bisporus.

2.6. Statistical Analysis

The data were analyzed using an analysis of variance (ANOVA), where the parameters
of the PEF pre-treatment (electric field and specific energy) with extraction time were the
factors and the values of TEAC, ORAC, TPC, carbohydrates and total proteins were the
variables. A p-value < 0.05 was considered a significant difference. All statistical analyses
concerning MSR were performed with Statgraphics Centurion XVII software (Statpoint
Technologies, Inc., Warrenton, VA, USA), while ANOVA analysis of data obtained from
analysis of extracts under optimal PEF extraction conditions was performed with GraphPad
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Prism 8 software (GraphPad Software, San Diego, CA, USA). Each analysis was performed
in triplicate assuming a significance level of 5%. Standard deviations are represented in the
figures using error bars.

3. Results
3.1. Effect of Extraction Time, Electric Field Strength and Specific Energy on the Selective
Extraction of Nutrients and Bioactive Compounds

PEF-assisted water extraction of A. bisporus samples was optimized according to the
response surface methodology (RSM) with three central points to maximize the values
obtained for the following factors: TPC (mg GAE/g DM), TEAC (µmol TE/g DM), ORAC
(µmol TE/g DM), total carbohydrate content (mg glu/g DM) and total protein content (mg
BSA/g DM).

3.1.1. Macronutrients

The range of values for protein and total carbohydrate was from 7.79 ± 0.83 to
140.72 ± 15.14 mg BSA/g DM and 0.86 ± 0.07 to 39.51 ± 0.59 mg glu/g DM, respectively.

Figure 1 shows the influence of electric field strength, specific energy and extraction
time on carbohydrate recovery. It can be observed that the extraction time had a significant
effect (p < 0.05) on the recovery of carbohydrate with a linear rise as time increased.
Moreover, an increase in carbohydrate content was observed as the electric field and
specific energy increased (p < 0.05), reaching an optimum point at 2.5 kV/cm and 125 kJ/kg.
Once these values were reached, a decrease in the carbohydrate values was obtained as
both factors continued to increase. According to the obtained results, the maximum
carbohydrate extraction (39.51 ± 0.59 mg glu/g DM) in A. bisporus was observed after
applying 2.5 kV/cm, 125 kJ/kg and 6 h of extraction.
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The protein content was also influenced by the factors mentioned above (Figure 2).
Similarly to carbohydrates, time had a significant impact (p < 0.05) on protein extraction,
obtaining a higher recovery of protein with the elapse of treatment time. However, an
opposite trend was observed for specific energy, finding a decrease in protein content as the
specific energy increased. On the other hand, an increase in protein recovery was observed
after increasing the electric field (p > 0.05) from 2 to 2.5 kV/cm, reaching a plateau after
these conditions, then decreasing the recovery.
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After evaluating the optimal extraction conditions, the maximum protein recovery
(140.72 ± 15.14 mg BSA/g DM) was obtained after applying a PEF pre-treatment of
2 kV/cm, 50 kJ/kg and 6 h of extraction.

To evaluate the influence of PEF pre-treatment to reduce the time required for car-
bohydrates and protein extraction, other authors compared PEF-assisted extraction with
conventional methods. In this sense, these authors indicated possible limitations when
extracting carbohydrates in water must be considered since, although carbohydrates are
mostly polar and highly soluble, mushrooms present certain insoluble polysaccharides
that would need longer extraction times, higher temperatures or alkaline solvents [25]. In
addition, chitinous compounds and high molecular weight polysaccharides, which are
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more viscous, also require longer extraction times or higher temperatures [26,27], which
would promote the degradation of other compounds and protein denaturation. Finally, PEF
technology could generate hydroxyl radicals that degrade polysaccharides such as chitosan.
Moreover, Dellarosa et al. reported that the variation in water holding capacity of the
mushroom observed could be explained by a lower molecular weight due to degradation
of the chitosan after PEF pre-treatment [28].

3.1.2. Total Antioxidant Capacity and Total Phenolic Compounds

The TPC, TEAC and ORAC values range from 1.49 ± 0.16 to 25.20 ± 1.81 mg GAE/g
DM, 9.22 ± 0.45 to 65.83 ± 1.14 µmol TE/g DM and 14.53 ± 0.58 to 145.68 ± 17.80 µmol
TE/g DM, respectively.

The ANOVA analysis performed showed a significant effect of extraction time on
TPC recovery, as well as TEAC and ORAC values, this parameter also having the greatest
influence (p < 0.05) on the extraction of antioxidant compounds.

The factor having the strongest influence on the recovery was the extraction time, after
performing the ANOVA analysis, observing significant (p < 0.05) changes in ORAC and
TEAC values. However, the specific energy of 50 kJ/kg is the value coincident as optimal
for the results of the three antioxidant capacity analyses, while the time presented a slight
variability according to the specific analyses.

Figure 3 shows the values resulting from the three tests, obtaining the maximum
recovery by setting a value of 50 kJ/kg, which is the lowest value of the chosen range.
Regarding time, a similar behavior to that of carbohydrates was found for ORAC values,
where the maximum obtained corresponds to 6 h; however, for TPC and TEAC values, the
maximum values were not obtained after 6 h, but presented a maximum recovery at 5 h,
reaching a plateau after this time and then decreasing.

The electric field strength was the lowest significant factor in all studies; however,
it was set at 2.5 kV/cm, obtaining the highest values for TEAC, ORAC, carbohydrates
and total proteins. However, the behavior in the extraction of polyphenols was different,
presenting its maximum at 3 kV/cm. This behavior agrees with that observed by several
authors. For instance, in the study conducted by Darra et al. [29] on grape pomace, it was
observed that increasing the electric field from 400 to 800 V/cm improved the extraction
of polyphenols, although this fact was also observed on A. bisporus, where an intense
increase in recovery was observed when increasing the electric field strength [30]; however,
regarding the antioxidant components evaluated by TEAC and ORAC, the behavior was
similar to that observed for macronutrients, where an increase in the electric field strength
promotes their degradation.

In addition, a decrease in the compounds was observed when increasing the specific
energy supplied (related to the number of pulses), which could indicate a degradation
caused by the conditions as they are very sensitive compounds, such as vitamin C measured
through the TEAC assay, where the slight increase in temperature caused due to the increase
in the number of pulses would be responsible for this loss, as it has been observed in several
studies [31,32].

Therefore, the maximum recovery of antioxidant compounds would be obtained by
applying 50 kJ/kg of specific energy maintaining a total extraction time of 5.6 h with a
theoretical value of 67.94 µmol TE/g DM for TEAC, 161.41 µmol TE/g DM for ORAC and
22.16 mg GAE/g DM for TPC.
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3.1.3. Optimization

The simultaneous optimization of all the responses was carried out by the desirability
function, in such a way that the extraction of all the compounds was maximized. The
optimum conditions obtained were 50 kJ/kg for specific energy, 2.5 kV/cm for electric
field strength and 6 h of total extraction time. As can be seen in Figure 4, the desirability
obtained at the optimum conditions was 0.88. This result is due to the variability in the
behavior of each of the compounds in relation to the factors; for example, a decrease in the
extraction of antioxidant compounds measured by TEAC and TPC was found when an
extraction time of 6 h was set, while the content of carbohydrates, proteins and antioxidant
compounds measured by ORAC was maximized, presenting the opposite behavior.
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optimum value.

Therefore, it would be necessary to further investigate whether a longer extraction
time could increase the recovery of these macronutrients and antioxidant compounds.
However, that prolonged extraction could end up degrading certain compounds such as
proteins, where a curvature in the behavior with respect to time is observed (Figure 2). On
the other hand, it would not be desirable to increase the specific energy and the electric
field strength since this would result in a loss of the compounds studied.

Finally, it should be considered that the knowledge of PEF technology is more extensive
for pasteurization and food preservation, but it is limited in the effect on the recovery of
bioactive compounds, whose specific mechanism is still partially unknown [31].

3.2. Recovery of Nutrients and Bioactive Compounds in PEF-Assisted Extraction at
Optimal Conditions
3.2.1. Macronutrient Content

The carbohydrate content obtained, shown in Figure 5, ranged from 8.14 ± 0.74 to
16.71± 0.72 mg glu/g DM, belonging to conventional and PEF-assisted extraction using the
optimal conditions previously described in the preceding sections, respectively. Therefore,
the application of PEF technology on A. bisporus samples increases carbohydrate recovery
by 105.28% compared to conventional extraction, showing statistical difference (p < 0.05)
between methodologies.
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Increased carbohydrate recovery was observed by other authors, who obtained higher
polysaccharide and protein content after exposing A. bisporus to PEF pretreatment com-
pared to conventional extraction at 95 ◦C for 1 h [30]. Parniakov et al. [9] compared the
efficiency and stability of extraction from A. bisporus with different methodologies, which
showed that the combination of PEF methodology along with the pressure application ex-
hibited the highest polysaccharide content compared to conventional aqueous extraction at
high temperatures.

Likewise, the protein recovery is noteworthy, with 107.02 ± 10.13 mg BSA/g DM for
conventional extraction and 119.11 ± 11.05 mg BSA/g DM for PEF pretreatment shown in
Figure 6, observing an increase of 11.29% compared to conventional extraction. Therefore,
the application of PEF technology for the recovery of the macronutrients studied is a
promising extraction method, enabling an increase in macronutrient recovery without the
application of high temperature.
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Both protein and carbohydrate recovery have been evaluated in several studies after
the application of PEF pretreatment compared to conventional aqueous extraction, which
led to a loss of protein quality due to coagulation when high temperatures were applied,
and other methods such as pressure application showed similar results [9,30]. In addition,
the application of PEF is especially interesting in protein extraction since mushrooms, such
as A. bisporus, are considered good sources of protein, not only in terms of protein quantity
but also in terms of amino acid composition compared to animal protein. Kakon et al. [33]



Separations 2022, 9, 302 12 of 17

reported that mushroom proteins contain nine essential amino acids, making A. bisporus
a food suitable as a substitute for meat protein. However, the variation observed in
the protein content when the growing substrate of A. bisporus changes should be noted,
with ranges of protein content indicated from 11.01% by Sadiq et al. [34] to 29.14% by
Ahlawat et al. [35].

3.2.2. Total Antioxidant Capacity and Total Phenolic Compounds

The global recovery of antioxidant compounds is shown in Figure 7, with values of
14.63 ± 2.76 and 28.80 ± 2.86 mg GAE/g DM for TPC, 53.15 ± 1.2 and 57.37 ± 5.40 µmol
TE/g DM for TEAC and 133.48 ± 7.61 and 202.20 ± 21.19 µmol TE/g DM for ORAC
comparing conventional and PEF-assisted extraction, respectively. Similarly to the protein
and carbohydrate content, PEF-assisted extraction showed a higher recovery of these
compounds measured through three assays, increasing all of them and doubling the
value obtained for TPC with the application of PEF technology. Furthermore, significant
differences (p > 0.05) were observed for TPC and ORAC values concerning the extraction
methodology, with a 96.86% and 51.48% increase, respectively.
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Figure 7. Total phenolic compounds (TPC) (mg gallic acid equivalents (GAE)/g dry matter (DM)),
Trolox equivalent antioxidant capacity (TEAC) and oxygen radical antioxidant capacity (ORAC)
(µmol Trolox equivalents (TE)/g dry matter (DM)) values in conventional and pulsed electric field-
assisted extraction of A. bisporus. Different lowercase letters in the same parameter indicate statistical
differences related to the extraction methodology.

In general, the results obtained were in agreement with those indicated by other
authors, showing that the application of moderate PEF intensity increases the production of
bioactive compounds with antioxidant capacity in A. bisporus, establishing a high positive
correlation between antioxidant capacity and phenolic compounds [30,36]. However, the
great variability of specific results should be considered due to the affectation of the food
by cultivation and storage conditions, and those related to PEF technology, since although
the overall result was an increase in the recovery of these compounds, it depends on the
conditions applied and the sample processing [31].

According to the values obtained, the antioxidant capacity of A. bisporus mainly at-
tributed to its phenolic compounds has shown anti-inflammatory capacity reducing bleed-
ing and damage to the intestinal mucosa of mice with colitis, also attenuating myeloper-
oxidase activity and overproduction of TNF-α as a consequence of the disease when this
mushroom is introduced in their diet [37].

3.2.3. Mineral Content

The mineral content per 100 g and the percentage of the dietary reference intake (DRI)
established by the Spanish Agency for Food Safety and Nutrition (AESAN) [38] covered
by a portion are shown in Table 2 after the analysis of the fresh samples. It was observed
that A. bisporus is a source of P and Se, covering 31.32% and 50.07% of the INR, respectively,
especially the Se content with 24.30 µg/100 g, covering half of the INR in a portion. In
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contrast to the remaining minerals, the Ca content of A. bisporus does not exceed 1% of the
DRI, so it is not considered a source of this mineral, showing contents of 3.02 mg/100 g.

These results agreed with the results obtained by other authors, where it was observed
that the major minerals in mushrooms are K and P with contents higher than or comparable
to those of most vegetables [8,39]. The low Ca content of mushrooms has also been reported
by several authors [11,40], especially in A. bisporus and P. ostreatus along with Fe, so the
results are consistent with these observations. However, the great variability in the mineral
content of mushrooms attributable to different soil conditions, cultivation and location
produced mixed results such as those observed in the study published by Mattila et al. [11].

The mineral contents obtained suggest that A. bisporus could contribute to the decrease
in population deficiencies shown in the nutritional assessment study published by AESAN
based on data from the National Survey of Dietary Intake (ENIDE) [41]. Both P and Se are
obtained mainly from animal sources (72% and 67%, respectively), so the introduction of
A. bisporus in the vegan population would increase the intake of these minerals, avoiding
population deficiencies. On the other hand, although the contribution is lower than in the
minerals indicated above, the consumption of A. bisporus can contribute to the daily intake
of Fe, especially in fertile women and children, and of Zn, whose main source is fish, with
a worldwide population deficiency of 30%.

Table 2. Mineral content (mg or µg/100 g) of A. bisporus and dietary reference intake percentage of
each mineral covering a portion (150 g) [38,42].

A. bisporus

Ca (mg) Fe (mg) Zn (mg) Se (µg) P (mg) Mg (mg)

In 100 g 3.02 0.86 0.99 24.30 146.10 14.10
% DRI 1 0.48 14.18 13.50 52.07 31.32 6.04

1 Dietary reference intake.

In addition, the mineral recovery percentages analyzed with each extraction method-
ology compared to the fresh solid matrix differed according to the mineral, giving mixed
results. As shown in Figure 8, the recovery of Mg, P, Se and Fe was higher in PEF extraction
showing significant differences (p < 0.05), with a PEF recovery of 20.64% to 61.73% belong-
ing to Fe and Se, respectively. The PEF recovery of the previously mentioned minerals
does not decrease below 20% while the conventional extraction does not exceed 24.69%,
obtained for Se. On the other hand, conventional extraction has shown a higher recovery in
Ca recovery with 2.25% compared to 1.30% obtained by PEF showing significant differences
(p < 0.05), however, low recoveries were shown for both extractions.

Therefore, PEF technology is useful in the extraction of P, Mg, Fe and Se compared to
conventional technology; in addition, the recovery of Se and P, abundant minerals in the
fresh matrix, was noteworthy. Nevertheless, it is not appropriate for Ca recovery due to the
low recovered value added to the limited quantity of this mineral in the fresh matrix. Finally,
although A. bisporus contains a considerable amount of Zn, both methodologies were not
effective for its recovery, showing non-significant differences between them (p > 0.05) as
can be seen in Figure 8.

3.2.4. Evaluation of the Extraction Methodology Effect on the Mushroom Surface by SEM

Figure 9 shows the effects of a conventional extraction (20 ± 4 ◦C, 6 h) and a PEF
pre-treated extraction (2.5 kV/cm, 50 kJ/kg, 6 h) on the microstructure of freeze-dried
samples of A. bisporus. The results were compared with those obtained for an untreated
sample (freeze-dried sample of fresh mushroom). Clear differences in microstructure were
obtained when comparing the pretreated sample with the control sample. In this regard, the
structure of the untreated samples difficult the diffusion of the compounds to the exterior
by presenting fibers intertwined with each other, as can be observed in the control sample
of A. bisporus.
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(PEF) extracts from fresh samples of A. bisporus. Different lowercase letters in the same mineral
suggest significant differences in relation to the methodology applied.
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of freeze-dried A. bisporus after different processes: (a) untreated sample (control), (b) conventional
aqueous extraction and (c) pulsed electric field (PEF) pretreated sample.

On the other hand, in the samples pretreated with PEF, the presence of pores or cavities
on the surface was observed, leading to a structural change that allows an improvement
in the diffusion of the compounds and selective extraction of these at the cell level, since
the disintegration of the cell membrane is caused [43], compared to a more disorganized
structure resulting from conventional extraction. This observation was consistent with the
results obtained in the study by Li et al. [44], in which the same results were presented by
treating L. edodes samples using PEF and observing the effect of microporation on their
surface. In addition, comparing the PEF methodology with other extraction techniques
such as ultrasound application, and despite the fact that in the application of ultrasound the
energy supplied to the sample is higher, it was observed that PEF induces a greater degree
of cell disruption that is reflected in changes in the microstructure caused by a rupture of
the cell membrane [28].

The presence of micropores on the surface of samples pretreated with PEF was asso-
ciated with the increased recovery of macronutrients and antioxidant compounds in the
extracts pretreated with PEF. In fact, electroporation-assisted processes were proposed as a
method to improve the extraction of beneficial compounds from plant tissues, including
mushrooms [9,45], which is an interesting process for the extraction of thermosensitive
components. Therefore, there is a correlation between the content of nutrients and com-
pounds with antioxidant capacity obtained in PEF and conventional extracts with the
microstructure of the solid after treatment.
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4. Conclusions

From the results obtained, it is possible to conclude that the optimal conditions for
the extraction of nutrients and bioactive antioxidant compounds from A. bisporus, using
response surface methodology based on all the variables analyzed, were an electric field
strength of 2.5 kV/cm, 50 kJ/kg of specific energy and 6 h of time. Moreover, the influence of
the studied parameters (electric field strength, specific energy, and extraction time) differed
according to the target compound analyzed, showing different behaviors in relation to
the parameters depending on the compound. Likewise, it was observed that an increase
in the extraction time increased the recovery of carbohydrates, proteins, and antioxidant
compounds, the last mentioned with a maximum of 5 h in general, while the increase in
the electric field strength showed a positive effect on the recovery of all compounds with a
maximum at 2.5 kV/cm, a field from which a decrease in the recovery was observed, except
for total phenolic compounds. The specific energy showed mixed results, the increase in the
energy supplied caused a decrease in the recovery of proteins and antioxidant compounds,
and an increase in the recovery of carbohydrates with a maximum of 150 kJ/kg. On the
other hand, SEM results showed that PEF pretreatment changes the microstructure of the
mushrooms causing surface electroporation which allows an increase in the recovery of
compounds observable in the extracts. The application of PEF technology under optimal
conditions to mushrooms increases the extraction of carbohydrates, proteins, antioxidant
compounds and minerals such as P, Mg, Fe and Se compared to conventional methodology.
In addition, A. bisporus is an optimal matrix for the high content of bioactive compounds
and micronutrients, as a source of P and Se, and containing considerable amounts of Fe,
Zn and Mg, making them foods of great interest in the diet, especially for people with a
vegetarian/vegan diet, as they largely supply nutrients abundant in animal products.
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