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Abstract: Research on the sources of microplastics (MP) in the environment and the parameters
that lead to the loss of microfibers from synthetic textiles during washing have recently attracted
public attention. Considering the involvement of a variety of structural and process parameters, it
is important to choose methods for quantifying fibers as MP pollutants that migrated during the
washing process. In the research to date, various sampling techniques and analytical protocols for the
identification of polymers from washed synthetic textiles have been applied. In the present research,
pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS), was applied to
verify the composition of the filter residue isolated from washing and rinsing effluents. A comparison
with bases of polymeric materials has proven the presence of potential environmental pollutants
in the form of microfibers released during the washing process. The investigation confirmed that
fragments of cotton cellulose residues predominate in relation to polyester. Based on the list of
identified compounds generated by Py-GC/MS results and their retention times the multivariate
data analysis proved the influence in the bath composition.

Keywords: washing process; rinsing process; microplastic; cotton/polyester fabric; Py-GC/MS;
multivariate analysis

1. Introduction

Plastic debris of less than 5 mm in length is defined as microplastics (MP) [1] and
has been characterized as “extremely” persistent in the environment by the European
Chemicals Agency (ECHA). Microplastics may even cause irreversible contamination and
potentially threaten human health and/or the environment [2,3]. Therefore, the pollution
with MP has not only aroused scientific interest, but has also contributed to the increased
public and political awareness concerning other topics related to plastics, which has led
to legal and political actions and strategic documents. In addition to this type of debris,
MP released in washing PES textiles, as well as particles used in medical, industrial, and
personal care products are classified as “secondary microplastics” [4,5].

One of the more common types of microplastics found in the environment are fibers
originating from textile materials. Some research has indicated the presence of natural and
synthetic fibers in the marine environment [6,7].

The release of micro-sized polymer particles—MP from textile materials—is an area of
research that preoccupies researchers from different fields, indicating the interdisciplinarity
of this topic [8]. It has been found that the release potential of fibers depends on the
donor properties of the textile material [9], and even if fibers released from natural textile
materials do not represent a significant effluent load, they can be carriers of substances that
significantly burden the environment [10].
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The research of MP is relatively complex due to the size and shape of particles from
various polymers, which represent serious scientific challenges. There is insufficient in-
formation on how chemical properties (additives, flame retardant agents, dyes) and the
increased number of synthetic fibers and their blends with natural fibers affect the charac-
terization of microfibers [9].

Advances in analytical techniques for microplastics characterization have indicated the
prevalence of synthetic polymers categorized in the micro (<100 µm) and nano (< 100 nm)
classes. However, additional data/information is needed to determine the quantities,
sources, transfers, and persistence of different types of microfibers [11]. The origin of MP is
heterogeneous, and different techniques need to be used for their characterization, with
thermoanalytical techniques as the most important ones. Pyrolysis combined with gas
chromatography and mass spectrometry (Py-GC/MS) is used for qualitative-quantitative
analysis of MP in various matrices, such as drinking water, seawater, sea salt, biosolids,
sediments, and washing residues [12–15].

In this study, a textile composite of complex structure, made of cotton cellulose and
polyester, was subjected to cyclic washing and rinsing with standard detergent and water.
Separately collected effluents from the washing and rinsing cycle were filtered to separate
dispersive pollutant as the filter residue (FR).

Given the polymer content in the composite of cotton cellulose and polyester, the aim
of this study was to determine which component is prevalent in the filter residue (FR). To
the best of our knowledge, the Py-GC/MS method as a thermal and rapid technique for
the characterization of polymeric substances has not been used to date for characterization
of dispersive pollutant from the cyclic washing and rinsing process.

The gravimetric analysis for the determination of the total solid substance (TSS) and
staining by dyestuff as identification techniques of dispersive pollutant was applied as an
auxiliary method. Further multivariate analysis of HCA based on the m/z chromatogram
dataset of the related components was chosen to identify the differences in contamination
with MF of washing and rinsing effluents.

2. Materials and Methods
2.1. Pollution Materials

In this study, a new commercial composite fabric (CO/PES) of natural polymer—cotton
cellulose (60%) and synthetic polymer—polyester (40%) was analyzed as a potential MF
polluter of the environment (Figure 1). In addition to visible protruding fibers, complexity
of the sample was the two-component composition of the threads in the weave (Figure 1a),
where the warp is made of cotton cellulose and polyester (Figure 1b) and the weft yarns
are made only of cotton cellulose (Figure 1c).
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Figure 1. Digital micrographs of composite fabric with basic structural elements as pollution mate-

rial magnification 55×. 

2.2. Washing and Rinsing Procedure 

Figure 1. Digital micrographs of composite fabric with basic structural elements as pollution material
magnification 55×.

2.2. Washing and Rinsing Procedure

In the washing process, the composite material in a mass of 5 g was washed in a
laboratory device Linitest, Original Hanau, equipped by an inox beaker, using a bath
ratio 1:5 (5 mL of water per 1 g materials, in total 25 mL) at 90 ◦C in alkalized tap wa-
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ter, according to EN ISO 6330:2021. Tap water was alkalized with sodium carbonate to
adjust the alkalinity to pH 10.5 for the purpose of harmonization with the solution of a
standard ECE B detergent (2 g/L). The reference detergent ECE B contains linear sodium
alkylbenzene sulfonate (8.0%), ethoxylated fatty alcohol C12/18 with 14EO (2.9%), sodium
soap (3.5%), sodium triphosphate (43.7%), sodium silicate (7.5%), potassium silicate (7.5%),
carboxymethylcellulose (1.2%), ethylenediaminetetraacetic acid (0.2%), sodium sulphate
(21.2%), and water (9.9%). The washing process was followed by rinsing performed by
dipping of samples in water of the same quality using a 1:6 bath ratio. All experiments
were performed in no plastic laboratory vessels and equipment to avoid contamination.

The scheme of the washing and rinsing process and fabric and effluent transfer is pre-
sented in Figure 2, with an indication of the separate collection of effluents from 5 washing
cycles and 25 rinsing cycles.
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Figure 2. Schematic representation of the washing and rinsing cycles, as well as the collection of
effluents for filtration and identification methods.

2.3. Filter Residue Preparation

The separation of dispersive particles from the effluents was performed by membrane
filtration with a glass fiber filter of 43 mm in diameter and a pore size of 0.7 µm. All
analyses were performed in triplicate, separating the filters for identification. The FR labels
are specified in Table 1.

Table 1. FR labels.

Designation Description

FR-W-D Filter residue after washing of fabric in detergent

FR-W-W Filter residue after washing of fabric in water

FR-R-D Filter residue after rinsing of fabric washed in detergent

FR-R-W Filter residue after rinsing of fabric washed in water
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2.4. Identification Methods
2.4.1. Total Solid Substances

The total solid substances (TSS) of washing and rinsing effluents were determined
by the standard gravimetric method. After membrane filtration of washing and rinsing
effluents, the mass of FR after drying at 100 ◦C was determined.

2.4.2. Staining with Dyestuffs

The staining of FR with selected dyestuffs, Telon® Blue M-GLW, DyStar (C. I. Acid
Blue 221) and Bezaktiv Brilliantblau V-R spez., Bezema (C.I. Reactive Blue 19, 61200) was
performed by soaking in dyestuff solutions (2%) for 15 min. After soaking, the samples
were air-dried.

2.4.3. Pyrolysis-Gas Chromatography Mass Spectrometry, Py-GC/MS

To avoid the influence in the simultaneous presence of non-target pollutants, such
as detergents, pyrolysis of standard detergents was performed. These interferences may
lead to unwanted contamination of the analytical system and interference with the tar. The
pyrolysis process of the reference sample—detergent and composite fabric (CO/PES) as
well as the previously mentioned FRs—was performed in a multifunctional double-shot
pyrolyzer (Frontier Laboratories Ltd., Koriyama, Japan) mounted on a Shimadzu GCMS-
QP2010 Plus (Shimadzu Corporation, Japan). The pyrolysis temperature was set at 550 ◦C.
For each test, the mass of the sample 0.2 mg was placed into the deactivated stainless steel
sample cup separated by a metal capillary separation column (PY-2, 0.5 µm film of dimethyl
polysiloxane, 30 m x 0.25 mm, Frontier Laboratories Ltd., Japan) under a programming
temperature condition using a flow of helium (He) as carrier gas (1.81 mL/min). The
following temperature program was used for the GC oven: 50 ◦C isotherm for 5 min,
then 5 ◦C/min up to 320 ◦C. The total runtime was 54 min. Both the Py/GC interface
and the GC injector temperatures were set at 320 ◦C. The injector was operated in split
mode with a split ratio of 1:60. The separated pyrolyzates in the column were analyzed
by single quadruple MS with temperature of ion source of 230 ◦C. Mass data acquisition
was performed under EI positive mode of 70 eV with m/z range 29–600, and scan speed
1250 u/s. The qualifications and identifications of peaks in the chromatograms were
confirmed by comparing the mass spectrum of each peak in the pyrogram with those
in data search libraries of F Search all in one (MS 08) (Frontier Laboratories Ltd., Japan)
and NIST/EPA/NIH (NIST 05). The chromatograms describe the peaks seen in the total
ion chromatogram (TIC), which represents the number of compounds detected by GCMS
after the pyrolysis step. For calculation of the area percentage of each compound in the
tables of pyrolytic products and quantitative indicators, area normalization with an amount
of 0.2 mg sample was performed. To identify the polymer compounds, the choice of
specific m/z values was made based on the available literature references and a full list
of the characteristic pyrolysis products and their m/z values used for peak integration.
Compounds with a similarity index (SI) below 90% were left out from the tables. Moreover,
m/z values were used for multivariate data analysis.

2.4.4. Data Analysis

The set of data obtained by the pyrograms of reference samples and FRs was exported
to the Minitab software to perform the multivariate analyses. The hierarchical cluster
analysis (HCA) is a method for dividing a group of objects into classes in order that similar
objects are grouped into the same class. The gradual combination of objects into clusters is
a graphical presentation known as a dendrogram. The distance, d, between two points in
n-dimensional space with coordinates x and y is usually taken as the Euclidean distance
defined by Equation (1).

dx,y =

√
∑J

j=1

(
xj − yj

)2
(1)
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The single linkage method using the Minitab software for the chromatograms data set
of FRs was taken as the measure of homogeneity.

3. Results and Discussion

The nature of textiles as the pollutant material and its sheddability are important
criteria in environmental fiber transfer. The sheddability depends on the type of textile
(woven, knitted or non-woven), the texture (open or compact), the type of yarn, and
the properties of the fibers in the composite, as well as whether the fibers are cut or
filaments [9]. Blends of cotton with polyester, as well as other textile materials, release
fibrils in the washing process, depending on the fabric structure and the properties of the
yarn. The composite sample as shown in Figure 1 is a contaminant material characterized
by unevenness and hairiness, which may affect the separability during the washing and
rinsing process. Hydrophobic polyester (PES) has better wear resistance than hydrophilic
cellulose fibers [16]. Moreover, the release is affected by the high alkalinity of the detergent
solution (pH 10.3) due to the increased swelling of cotton cellulose as well as hydrolysis
of PES, which further affects the migration of fibrils, i.e., fibril formation from the surface
in the washing and rinsing process. This is confirmed by the results of the quantitative
gravimetric analysis of FRs and TSS (Table 2).

Table 2. Average values of total suspended substances, TSS, and mass of FRs.

Designation m FR (mg) TSS (mg/L)

FR-W-D 2.33 31.13
FR-W-W 1.07 14.2
FR-R-D 5.47 72.9
FR-R-W 4.67 62.2

The TSS values in Table 2 show the differences in FR after washing and rinsing. Higher
TSS values were obtained in the rinsing process compared to the washing process. The
double TSS value of FR after washing with the detergent (FR-W-D) indicates a significant
influence in the bath composition on the particles effluent load.

However, the TSS of FR-R-D (72.9 mg/L) is slightly higher than the TSS of FR-R-W
after rinsing with water (62.2 mg/L). These values indicate that FR-R-D contains a certain
amount of detergent in combination with fibril formations, while FR-R-W contains only
fibril formations.

The identification of the particle pollutant in FR was carried out through staining with
dyestuffs, Telon Blue M-GLW dye for the PES component, and Bezaktiv Brilliantblau V-R
spez. for cotton cellulose (Table 3).

Photographs of the samples after staining in Table 3 show differences in the coloring
of the composite, as well as in its structural residues filter. The diverse distribution on FRs
indicates the MF released from the composite. The residues on the FR-W-W are higher than
FR-W-D, which indicates a higher degree of load with pollutant particles in the effluent
after washing. There is a significant effect of rinsing on the structural residues released
from the composites compared to washing. The results of these analyses were used as
guidelines for the sampling of a representative portion of the FR for pyrolysis.

The confirmed difference in FR after staining indicates the difference in the release
of fibrils from the surface of the composite material, which is due to the influence in the
process variables of washing and rinsing on the sheddability of structural parameters. As
can be seen from the figures, this composite sample of cotton cellulose and PES releases
smaller structural units, e.g., fibers, fibrils, and fragments during the washing and rinsing
process. Due to the composition of the washing bath, dissolved and/or undissolved
detergent ingredients can be adsorbed on the structural units, especially since they are not
aimed for stain removal, thus they are oriented to a composite sample characterized by a
large active surface.
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Table 3. Photo of the composite sample and FRs after the staining tests.

Sample Telon ® Blue M-GLW Bezaktiv Brilliantblau V-R Spez.
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By the Py-GC/MS technique, rapid screening of the chemical composition of the
sample at the molecular level is made possible, especially in the case of a mixture of
complex components, by comparing chromatograms of standard polymers [13–18].

Given the complexity of the observed washing system, pyrolysis of detergent, compos-
ite sample, and structural units was performed. The pyrolytic degradation of the standard
detergent is shown in Figure 3 as a chromatogram with retention time.
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Figure 3. Chromatogram of reference detergent.

The chemical compound as a pyrolytic product and quantitative indicators of deter-
gents are shown in Table 4. Proposed identification by comparing with the chromatogram
of standard polymers was performed and marked with font a, b, c, d, e, f, g, h as a
superscript [19–26].

Table 4. Pyrolytic products and quantitative indicators of the detergent.

ID Chemical Compound m/z Rt (min) Area Percentage (%) Similarity Index

1 2-Propanamine, 1-methoxy- a 44 1.1 7.80 95

2 1-Hexene a,b,c,d,e,f 56 1.4 9.43 96

3 1-Heptene a,b,d,e,f 56 1.7 7.73 98

4 Toluene a,b,c,d,e,f 91 2.2 11.10 95

5 1-Octene a,b,e,f 55 2.5 3.99 99

6 Octane a,b,f 43 2.5 4.75 98

7 Ethylbenzene a,b,c,d,e,g,h 91 3.3 2,64 97

8 1-Nonene a,b,c,e,f 56 3.7 3.45 99

9 Nonane a,d,f 57 3.9 3.75 99

10 Furfural a,b,c,d,f,g,h 96 4.1 4.12 98

11 Benzene, propyl- a 91 4.9 1.41 97

12 alpha-Methylstyrene a,b,c,d,e,f 118 5.5 0.72 92

13 1-Decene a,b,e,f 56 5.7 2.33 99

14 2(5H)-Furanone a,d 55 5.8 5.80 95

15 Undecane a,d,f 57 5.9 2.29 99

16 Benzene, butyl- a,d 91 7.3 0.64 95

17 Cyclopropane, nonyl- a 55 8.2 1.64 99

18 Undecane a,d,f 57 8.4 1.22 99

19 2-Undecene, (E)- a 55 8.6 0.38 99

20 5-Undecyne a 54 9.1 0.49 99

21 Benzene, pentyl- a 91 9,9 0.58 97

22 Naphthalene a,b,c,d,e,f 128 10.6 1.27 98

23 Cyclopropane, nonyl- a 55 10.9 0.79 99

24 Dodecane a,b,f 57 11.1 0.75 99
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Table 4. Cont.

ID Chemical Compound m/z Rt (min) Area Percentage (%) Similarity Index

25 6-Dodecyne a 54 11.8 0.48 99

26 1-Tridecene a,b,c,d,e,f 55 13.6 0.77 99

27 Hexadecane a,b,c,d 57 13.8 1.39 99

28 1-Tetradecene a,b,c,d,e,f 55 16.2 1.10 99

29 9-Eicosene, (E)- a 55 18.7 2.63 99

30 Pentadecane a,b,c,d 57 18.9 0.72 99

31 Bicyclo[3,2,1]octa-2,6-diene,
2-phenyl- a 91 19.7 0.49 94

32 Dodecanoic acid a,f 60 20.8 0.79 94

33 1,15-Hexadecadiene a,b,e 55 22.8 0.45 99

34 1,19-Eicosadiene a 55 22.9 0.36 99

35 2-Heptadecanone a,d 58 27.6 0.53 95

36 l-(+)-Ascorbic acid
2,6-dihexadecanoate a 73 29.1 1.13 99

37 Tetrapentacontane, 1,54-dibromo- a 69 42.3 6.39 99

38 Cyclohexane,1,2,3,5-tetraisopropyl- a 69 53.4 4.70 97
a Proposed identification by comparing the spectrum with the NIST 05 library [19]. b Proposed identification by
comparing the spectrum with the Frontier F -SEARCH 3.0 library [20]. c Proposed identification by comparing
the spectrum with the literature reference [21]. d Proposed identification by comparing the spectrum with the
literature reference [22]. e Proposed identification by comparing the spectrum with the literature reference [23].
f Proposed identification by comparing the spectrum with the literature reference [24]. g Proposed identification by
comparing the spectrum with the literature reference [25]. h Proposed identification by comparing the spectrum
with the literature reference [26].

Given the composition and complexity of the CO/PES composite sample, pyrolysis
of the whole composite sample and its structural elements was performed, as shown in
Figures 4–6 and Table 5.
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Figure 6. Chromatogram of cotton cellulose (weft yarn).

Table 5. Pyrolytic products and quantitative indicators of the CO/PES composite fabric.

ID Chemical Compound m/z Rt (min) CO/PES (%) Similarity Index

1 Carbon dioxide a,b.c 44 1.2 11.89 98

2 Ethylene oxide a,b,c,d,e,f 29 1.3 2.82 97

3 Methylglyoxal b 43 1.4 10.93 98

4 Formic acid a,b,c,d,e 29 1.6 15.05 97

5 Glycolaldehyde dimer (1,4-Dioxane-2,5-diol) a,d 31 1.7 21.16 99

6 Methyl vinyl ketone a,b,f 43 1.8 1.66 91

7 Acetol b 74 2.2 4.01 99

8 Hydroxyacetaldehyde b 31 2.2 0.75 97

9 Diisobutylamine (N-B) borane a 29 2.7 0.18 95

10 Furan, 2,5-dihydro-3-methyl- a 29 2.8 0.09 95

11 Vinyl crotonate a 39 3.0 0.09 99

12 Methylacrylate a,e 55 3.1 0.53 99

13 1-Nitro-2-propanone a 43 3.3 1.83 99

14 Propanoic acid, 2-oxo-, methyl ester (methyl pyruvate) a,d,h 43 3.5 2.90 99

15 (S)-5-Hydroxymethyl-2[5H]-furanone a,d 84 3.7 0.76 99

16 Furfural a,b,c,d,f,g,h 39 4.1 0.09 99
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Table 5. Cont.

ID Chemical Compound m/z Rt (min) CO/PES (%) Similarity Index

17 1-Octene a,b,e,f 41 4.3 0.87 96

18 2-Furanmethanol a,d,h 41 4.4 0.17 96

19 Methyl 1-methylcyclopropyl ketone a 43 4.6 0.16 96

20 2(3H)-Furanone, 5-methyl- a,d 43 5.2 1.18 97

21 2(5H)-Furanone a,d 55 5.8 0.33 97

22 5-Methylfuran-2(3H)-one a,d,e 98 6.6 0.47 97

23 Oxalic acid, cyclobutyl isohexyl ester a,b 55 7.0 0.09 95

24 Pentanoic acid, 2,4-dioxo-, methyl ester a 43 7.3 0.10 96

25 Spiro [2,4]heptan-4-one a 110 7.6 0.20 92

26 3-Cyclobutene-1,2-dione, 3,4-dihydroxy- a 29 8.4 0.83 99

27 1,2-Cyclopentanedione, 3-methyl- a,d 112 9.5 0.12 97

28 4-Nonene a,b 55 9. 0.17 98

29 2,5-Dimethyl-4-hydroxy-3(2H)-furanone a,d 43 11.0 0.86 99

30 Levoglucosenone a,d,g 39 11.4 0.10 96

31 1-Heptanol, 2-propyl- a 126 11.8 0.13 96

32 Hydroperoxide, 1-methylhexyl a,b,c 43 13.5 1.69 99

33 Benzoic acid, ethyl ester a 105 13.9 0.06 95

34 Benzenecarboxylic acid (Benzoic acid) a,b,c,d,e 105 14.2 1.08 97

35 1,3-Dioxolane, 2,4,5-trimethyl- a,b 43 14.7 0.03 96

36 3-Propylglutaric acid a 41 14.9 0.18 94

37 2-Furancarboxaldehyde, 5-(hydroxymethyl)- a,b,c,g 41 15.0 0.51 93

38 2-Butene, 1,4-diethoxy- a 29 17.6 0.65 99

39 4-Ethylbenzoic acid a 105 19.5 0.11 95

40 1,6-Anhydro-, beta-D-glucopyranose (levoglucosan) a,b,c,d,g 60 22.5 13.65 96

41 1-Butene, 3-methyl-3-(1-ethoxyethoxy) a 45 25.2 0.17 96

42 n-Hexadecanoic acid a 43 33.3 0.07 98

43 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-,
(all-E)- a 69 47.8 0.27 99

44 1-Octacosanol, 2,4,6,8-tetramethyl-, (all-R)- a 69 51.2 0.22 98

a Proposed identification by comparing the spectrum with the NIST 05 library [19]. b Proposed identification by
comparing the spectrum with the Frontier F -SEARCH 3.0 library [20]. c Proposed identification by comparing
the spectrum with the literature reference [21]. d Proposed identification by comparing the spectrum with the
literature reference [22]. e Proposed identification by com-paring the spectrum with the literature reference [23].
f Proposed identification by comparing the spectrum with the literature reference [24]. g Proposed identification by
comparing the spectrum with the literature reference [25]. h Proposed identification by comparing the spectrum
with the literature reference [26].

The pollutant material from CO/PES is a composite material, whose mechanism of
pyrolytic degradation is complex due to the share of certain structural parameters of the
components in the fabric. The higher the proportion of each component, the greater the
defragmentation, i.e., the products of pyrolytic degradation will be observed in higher
concentrations. This can be clearly seen from the formation of levoglucosan (13.65%) and
benzoic acid (1.08%) in the CO/PES sample (Table 5). It is known that in polyester the decar-
boxylation reaction of large polymer fragments causes the formation of benzenecarboxylic
acid (benzoic acid) [17].

The presence of benzoic acid in a concentration of 1.08% in the CO/PES sample is
proof that this is a polyester-based composite material. Furthermore, the defragmented
benzoic acid products are further cleaved with cotton cellulose products, creating new
inter-reactions, but also reactions at ionic levels, resulting in the formation of a very large
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number of compounds, as shown in Table 5. Observing the other obtained products of
pyrolytic degradation, Table 5 shows that the compounds from cotton cellulose dominate,
which is expected given the composition of the tested material, in which cotton predom-
inates (with a 60% share) compared to polyester (a 40% share). This is supported by the
fact that the compound with one of the largest shares in the sample CO/PES (60/40) is
levoglucosan (13.65%).

In the primary process of pyrolytic degradation of cellulose, the glycosidic bond
breaks down to form levoglucosan, while on the other hand, small molecules are formed
by cleavage of the pyran ring and its reformation [18].

According to Moldoveanu [22], levoglucosan is one of the main products of pyrolytic
degradation of cellulose formed at temperatures above 400 ◦C. Other significant secondary
compounds that can be formed during pyrolytic degradation of cellulose can be divided
into several groups, such as furans (furfural), sugar anhydrides, acids, esters, aldehydes,
alcohols, pyrans, ketones, aromatic hydrocarbons, and phenols [25], some of which can
be seen in Table 5. Generally, the mechanism of pyrolytic degradation of cellulose begins
with three basic competitive reactions, side group (Ei) elimination of water, chain scissions
by transglycosidation, and chain scissions with reverse aldolization (retroaldolization),
followed by further degradation i:

Which type of these reactions will prevail depends on a large number of factors and is
difficult to predict. In general, two pyrolytic cellulose degradation reactions, depolymer-
ization and fragmentation, are possible in parallel. The process of depolymerization of
cellulose includes the formation of anhydro-oligosaccharides, monomeric anhydrosugars
and derivatives (dominated by levoglucosan), furans, cyclopentanones, and other products,
while fragmentation (cleavage of the ring) involves the formation of linear carbonyls, linear
alcohols, linear esters, and other compounds [27,28].

One of the examples of depolymerization is the reaction of intramolecular elimina-
tion (Ei) of H2O from the ring side groups with the formation of 5-hydroxymethyl-2-
furancarboxaldehyde (0.51%) observed in the CO/PES sample according to reaction in
Figure 7 as demonstrated [21,22].
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Figure 7. The formation of 5-Hydroxymethyl-2-furancarboxaldehyde.

As Figure 7 shows 5-Hydroxymethyl-2-furancarboxaldehyde is further degraded
leading to the formation of furfural, which was observed in higher proportions also in
samples FR-W-W (1.57%) and FR-R-W (0.70%) according to reaction in Figure 8 [22].
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Figure 8. The formation of furfural.

After the chromatogram analysis of the basic components of the system, the pyrolytic
decomposition of FRs was performed for the purpose of a qualitative and quantitative
assessment after the washing and rinsing process, depending on the bath composition.
Based on the obtained mass spectra, only a part of the compounds can be reliably identified.
This is due to the low concentration of some compounds, the coelution of compounds on
the GC column, and the limitations of the mass spectrum database.

Pyrolysis-gas chromatography mass spectrometry and Py-GC/MS chromatograms of
FR after washing and rinsing according to Figure 2 are typically complex, with numerous
compounds detected (Tables 6 and 7).
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Table 6. Results of analysis of FRs degradation products after washing in water and subse-
quent rinsing.

ID Chemical Compound m/z Rt
(min) FR-R-W (%) Similarity

Index FR-W-W (%) Similarity
Index

1 Carbon dioxide a,b,c 44 1.2 - - 34.42 97

2 Cyclopentane a,b,c,d 42 1.3 - - 8.25 98

3 Acetaldehyde a,e,g 29 1.3 5.44 98 -

4 Ethylene oxide a,b,c,d,e,f 29 1.3 - 3.80 97

5 Methylglyoxal b 43 1.4 8.06 99 17.20 98

6 Glycolaldehyde dimer (1,4-Dioxane-2,5-diol) a,d 31 1.6 17.31 99 34.07 98

7 2,3-Butanedione a,d 43 1.8 1.38 96 -

8 Butanoic acid, 2-oxo- a 29 1.8 - - 0.97 94

9 Acetol-. b 43 2.2 5.20 97 7.47 99

10 Hydroxyacetaldehyde b 31 2.2 0.67 98 1.18 99

11 Isopropenyl methyl ketone(3-Buten-2-one. 3-methyl-) a.d 41 2.3 0.26 99 -

12 1-Octene a,b,e,f 55 2.4 0.15 98 -

13 Octane a,b,f 43 2.5 0.15 97 -

14 2(3H)-Furanone, 5-ethoxydihydro- a,d 29 2.7 0.32 98 0.35 97

15 Furan, 2,5-dihydro-3-methyl- a 29 2.8 0.24 98 0.23 97

16 Methylacrylate a,d 55 3.1 - 0.82 98

17 Pent-2-ynal a 53 3.1 0.20 93 -

18 2,3-Pentanedione a,b,c,d 43 3.3 2.06 95 3.23 96

19 2(5H)-Furanone a,d 55 3.4 0.24 97 -

20 Propanoic acid, 2-oxo-, methyl ester (methyl pyruvate) a,d,h 43 3.5 3.84 99 4.57 99

21 Pyrolidine, 1-[2-(1,3-cyclopentadien-1-yl)ethyl]- a,d 84 3.7 1.03 95 0.99 99

22 Furfural a,b,c,d,f,g,h 39 4.1 0.70 99 1.57 99

23 1-Octene a,b,e,f 41 4.3 0.12 99 - -

24 2-Furanmethanol a,d,h 41 4.4 0.30 99 0.31 97

25 Pyruvic aldehyde a,d,e 43 4.6 0.19 96 0.24 97

26 2-Butanone a,d 43 4.7 0.39 96 0.30 97

27 2(3H)-Furanone, 5-methyl- a,d 43 5.2 0.38 97 1.79 97

28 2(5H)-Furanone a,d 55 5.7 0.61 98 0.60 98

29 Pentane, 2-chloro- a 42 6.3 0.46 98 - -

30 5-Methylfuran-2(3H)-one a,d,e 98 6.6 0.97 98 0.85 98

31 Spiro[2,4]heptan-4-one a 110 7.6 - 0.29 90

32 2(1H)Pyrimidinone,1-methyl- a 39 7.6 - - 0.54 98

33 3-Cyclobutene-1,2-dione, 3,4-dihydroxy- a 29 8.4 0.31 99 0.96 99

34 4-Methyl-5H-furan-2-one a,d 69 9.2 - 0.28 94

35 1,2-Cyclopentanedione, 3-methyl- a,d 112 9.4 0.26 97 0.19 97

36 2,5-Dimethyl-4-hydroxy-3(2H)-furanone a,d 43 11.0 0.43 99 1.08 95

37 Levoglucosenone a,d,g 39 11.4 - - 0.16 96

38 1-Heptanol, 2-propyl- a 126 11.9 - - 0.24 95

39 Phenylglyoxal a 105 12.9 0.90 98 - -

40 Hydroperoxide, 1-methylhexyl a,b,c,d 43 13.4 1.05 99 2.56 91

41 Benzenecarboxylic acid (Benzoic acid) a,b,c,d,e 105 14.2 2.17 96 0.87 98

42 1,4:3,6-Dianhydro-,alpha,-d-glucopyranose a,d 69 14.6 - - 0.14 94

43 Beta,-D-Glucopyranoside, methyl 3,6-anhydro- a,d 29 14.8 0.20 97 - -

44 3-Propylglutaric acid a 41 14.9 1.44 97 0.86 97

45 4-Hexen-3-one, 4,5-dimethyl- a 41 15.1 - 0.89 96

46 1-Tetradecene a,b,c,d,e,f 55 16.2 - 0.89 98
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Table 6. Cont.

ID Chemical Compound m/z Rt
(min) FR-R-W (%) Similarity

Index FR-W-W (%) Similarity
Index

47 2-Butene, 1,4-diethoxy- a 29 17.6 - 1.15 99

48 1,5-Dihydroxy-4-methyl-1-phenylpentan-3-one a 131 19.6 0.11 92 -

49 Biphenyl a,b,c,d,g,h 154 19.8 0.38 96 -

50 1,2-Ethanediol, monobenzoate a 105 20.4 0.32 96 -

51 1,6-Anhydro-,beta,-D-glucopyranose (levoglucosan) a,b,c,d,f,g 60 22.4 1.83 96 6.38 95

52 5-methylhydantoin a,e 175 24.4 0.49 98 -

53 3-Hexanol, 2,4-dimethyl- a 45 25.2 - 0.38 98

54
1,4-Benzenedicarboxylic acid, bis(2-hydroxyethyl) ester
(Bis(hydroxyethyl) terephthalate) a,b,c 193 31.04 0.47 98 -

55 n-Hexadecanoic acid a 43 33.3 0.13 98 -

56
4-Hydroxy-,gamma,-(4-hydroxyphenyl)-,gamma,-
methylbenzenebutanoic acid, methyl
ester a

213 37.0 - 0.45 90

57 Phthalazine-1,4(2H,3H)-dione, 2-(2-methyl-5-nitrophenyl)- a 297 43.9 0.45 98 -

58 2,6,10,14,18,22-Tetracosahexaene, 2,6,10,15,19,23-hexamethyl-,
(all-E)- a 69 47.8 0.56 99 0.45 96

59 N-Benzoyl-dl-alanine a 105 48.6 0.17 97

60 3-Phenyl-2-ethoxypropylphthalimide a 104 48.9 0.19 92 -

61 Tetrapentacontane, 1,54-dibromo- a 69 50.1 0.08 92 -

62 o-(4,6-Diphenyl-1,3,5-triazin-2-yl)phenol a 367 50.3 0.21 94 -

a Proposed identification by comparing the spectrum with the NIST 05 library [19]. b Proposed identification by
comparing the spectrum with the Frontier F -SEARCH 3.0 library [20]. c Proposed identification by comparing
the spectrum with the literature reference [21]. d Proposed identification by comparing the spectrum with the
literature reference [22]. e Proposed identification by com-paring the spectrum with the literature reference [23].
f Proposed identification by comparing the spectrum with the literature reference [24]. g Proposed identification by
comparing the spectrum with the literature reference [25]. h Proposed identification by comparing the spectrum
with the literature reference [26].

In FR-W-W and FR-R-W, the proportion of 5-hydroxymethyl-2-furancarboxaldehyde
increases with the rinsing process, in order that it can be assumed that rinsing supports
the reaction mechanism of the intramolecular elimination (Ei) of H2O from the ring side
groups. During this process, other reactions can occur that can generate small molecules,
such as formaldehyde, which was not observed in the samples, thus further degradation
can be assumed. Another compound observed in Table 5 is formic acid with a content
of 15.05%. It is known that cotton cellulose dissolves into formic acid in hydrothermal
conditions in concentrations of up to 1% (w/w), which promotes the formation of sugars
and oligomers [29]. Since in the CO/PES sample, apart from formic acid (15.05%), a high
concentration of levoglucosan (13.65%) as well as oligomers were found, in this case it
can also be said that in the mentioned sample the mechanism of Ei elimination of H2O
dominates. The best example is the formation of levoglucosan according to reaction in
Figure 9 [22].
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Figure 9. The formation of levoglucosan.

The complete dominance of the reaction mechanism of the intramolecular elimination
(Ei) of H2O from the side groups of the ring can also be observed by monitoring the content
of levoglucosan in the samples FR-W-W (6.38%) and FR-R-W (1.83%).
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The reaction mechanism of transglycosylation can also be observed in the samples of
the filter residues FR-W-W and FR-R-W, through the formation of glycolaldehyde deriva-
tives and glycolaldehyde dimers (1,4-Dioxane-2,5-diol). After washing, the concentration
(1,4-Dioxane-2,5-diol) increased from 17.31% in the FR-R-W sample to 34.07% in the FR-W-
W sample, from which it can be assumed that rinsing enhances the reaction mechanism of
transglycosylation. Glycolaldehyde dimer (1,4-Dioxane-2,5-diol) was also observed in the
CO/PES sample (60/40) with a content of 21.16% (Table 5).

Comparing the concentration of benzoic acid derived from polyester with the samples
FR-W-W (2.17%) and FR-R-W (0.87%) in relation to the initial concentration in the sample
CO/PES (1.08%) can be attributed to the decarboxylation of polyester.

2-Propanone, 1-hydroxy- (Acetol), which is one of the simple ketones, was found
in higher concentrations in samples FR-W-W (5.20%) and FR-R-W (7.47%). Its formation
is related to the degradation of glycerol, as in glycol aldehydes. Acetol contains both
hydroxide and carbonyl functional groups, which are susceptible to decarboxylation and
dehydroxylation due to pyrolysis. Samples FR-W-W and FR-R-W contain a large number of
other ketones in addition to Acetol, which can be attributed to the decarboxylation process
that prevails along with the defragmentation of benzoic acid. One example is the formation
of β-ketonic acid in the FR-R-W sample. Pyrolysis of β-ketone acid is known to lead to
CO2 elimination and ketone formation.

Table 7. Results of the analysis of FR pyrolysis products after washing in detergent and subse-
quent rinsing.

ID Chemical Compound m/z Rt (min) FR-W-D (%) Similarity
Index FR-R-D (%) Similarity

Index

1 Carbon dioxide a,b,c 44 1.2 54.88 99 36.86 99

2 Ethylene oxide a,b,c,d,e 29 1.3 - 1.98 96

3 2-Butene, (E)- a,b,c,d,e 41 1.3 1.22 96 -

4 Methylglyoxal b 43 1.4 - 0.92 99

5 Cyclopropane, ethyl- a,b,e 42 1.5 0.94 97 - -

6 1-Hexene a,b,c,d,e 41 1.9 0.62 99 -

7 1-Heptene a,b,d,e 41 2.7 0.64 99 -

8 Heptane a,b,c,d,e 43 2.9 0.39 93 -

9 Ethylbenzene a,b,c,d,e,g 91 3.3 0.70 99 -

10 1,3,5-Cycloheptatriene a,b 91 3.7 4.45 99 -

11 1-Octene a,b,d,e 41 4.3 0.44 99 -

12 Octane a,b,e 43 4.5 0.35 98 -

13 Butyrolactone a,b,c,e 42 5.8 - 0.70 98

14 Undecane a,c,e 57 5.9 - 0.20 98

15 Bicyclo[4,2,0]octa-1,3,5-triene a 104 6.2 0.39 99 - -

16 1-Nonene a,b,c,e 41 6.5 0.34 99 - -

17 Benzene, propyl- a,b,e 91 7.9 0.73 99 - -

18 (3H)Indazole, 3,3-dimethyl- a,b 118 8.6 0.27 99 - -

19 3-Tridecene, (Z)- a 41 9.3 0.29 99 - -

20 Benzene, butyl- a,c 91 10.9 0.49 99 - -

21 2-Tridecene, (Z)- a,b,c,d,e 41 12.2 0.24 99 - -

22 Benzene, pentyl- a,c 91 13.9 0.55 98 0.92 99
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Table 7. Cont.

ID Chemical Compound m/z Rt (min) FR-W-D (%) Similarity
Index FR-R-D (%) Similarity

Index

23 Benzene, hexyl- a,c 91 16.9 0.52 99 0.91 99

24 Benzene, (1-methylenepentyl)- a 118 18.9 0.69 98 0.40 98

25 Benzene, heptyl- a,c 91 19.7 0.40 98 0.87 99

26 Benzene, (1-methylenepentyl)- a 118 21.6 - - 0.42 97

27 Benzene, (1-butylhexyl)- a 91 24.2 1.31 95 3.46 99

28 Benzene, octyl- a,c 91 22.4 0.37 98 0.76 99

29 Benzene, (1-propylheptyl)- a 91 24.4 0.96 99 2.63 99

30 Benzene, (1-ethyloctyl)- a 91 24.9 0.85 99 2.31 99

31 Benzene, nonyl- a. 92 25 - 0.42 95

32 Benzene, (1-methylnonyl)- a 105 25.7 1.20 99 3.12 99

33 Benzene, (1-pentylhexyl)- a 91 26.5 1.08 98 2.73 99

34 Benzene, (1-butylheptyl)- a 91 26.5 2.30 99 5.98 99

35 Benzene, (1-propyloctyl)- a 91 26.8 1.65 99 4.18 99

36 Benzene, (1-ethylnonyl)- a 91 27.3 1.48 99 3.53 99

37 Benzene, decyl- a,b 92 27.4 - 0.29 97

38 Benzene, (1-methyldecyl)- a 105 28.1 2.24 99 4.61 99

39 Benzene, (1-pentylheptyl)- a 91 28.7 1.61 99 3.37 99

40 Benzene, (1-butyloctyl)- a 91 28.8 1.46 99 2.96 99

41 Benzene, (1-methylenepentyl)- a 118 28.9 - 0.31 93

42 Benzene, (1-propylnonyl)- a 91 29.0 1.16 98 2.12 99

43 Benzene, (1-ethyldecyl)- a 91 29.5 1.05 99 1.75 99

44 Benzene, (1-methylundecyl)- a 105 30.3 1.63 99 2.24 99

45 Benzene, (1-pentyloctyl)- a 91 30.8 1.68 99 2.37 99

46 Benzene, (1-butylnonyl)- a 91 30.9 1.10 99 1.43 99

47 Benzene, (1-propyldecyl)- a 91 31.2 0.84 99 0.97 99

48 Benzene, (1-ethylundecyl)- a 91 31.7 0.73 98 0.81 98

49 Benzene, (1-methyldodecyl)- a 105 32.5 1.09 1.02

50

2,6,10,14,18,22-
Tetracosahexaene,
2,6,10,15,19,23-hexamethyl-,
(all-E)- a

69 47.8 0.90 98 - -

51 Propiohydrazide, 3-phenyl-N2-
(2-benzoyloxybenzylideno)-a 105 48.3 2.93 96 -

52 n.i. 207 52.9 - 0.09 90
a Proposed identification by comparing the spectrum with the NIST 05 library [19]. b Proposed identification by
comparing the spectrum with the Frontier F -SEARCH 3.0 library [20]. c Proposed identification by comparing
the spectrum with the literature reference [21]. d Proposed identification by comparing the spectrum with the
literature reference [22]. e Proposed identification by com-paring the spectrum with the literature reference [23].
f Proposed identification by comparing the spectrum with the literature reference [24]. g Proposed identification by
comparing the spectrum with the literature reference [25]. h Proposed identification by comparing the spectrum
with the literature reference [26].

In the pyrolytic decomposition products of FR-W-D and FR-R-D, no levoglucosan
formation was observed (Table 7), although it was found in the composite sample and
FR-R-W. The reason for the absence of levoglucosan formation may be the competitive
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transglycosylation reaction, with chain cleavage. Its presence in the detergent sample
comes from the cellulose derivative, carboxymethylcellulose (CMC), which was adsorbed
to the cotton cellulose during washing. The CMC is a component of detergent that is aimed
to antiredeposition of cellulose derived textiles during the washing process [30].

The results (Table 7 and Figure 10) show a significant influence in detergent on the
composition of the filter residue, i.e., on the composition of released formations found in
the effluent from washing and rinsing the CO/PES fabric, which confirms the previously
explained TSS values.

An increased number of benzene ring-containing fragments was observed in the FR-
W-D and FR-R-D samples. It can be presumed that these fragments originate from the
basic raw materials for the production of LAS, which are dodecylbenzenesulfonate and
chloroform [31]. The putative mechanism of pyrolytic degradation of FR is the splitting
of the alkyl chain into smaller fragments with the benzene ring. The concentration of
these compounds in the samples FR-W-D and FR-R-D increases and traces of fatty acids
are visible.
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The investigated pollutant—CO/PES material releases microfibers (MF) in the wash-
ing and rinsing process, which is evidenced by the presented results. It can be deduced
that this material has the potential to pollute wastewater with dispersed particles, of which
microfibers (MF) are of particular interest. This pollutant consists of a natural polymer
(cellulose) and a synthetic one (PES), which not only have different properties but also pose
some risk to the environment. Released cellulose fibers are readily biodegradable but have
a high degree of swelling and thus the ability to retain adsorbed substances from a complex
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dispersion system, such as the washing process. As a result, they can bind and retain other
pollutants in the wastewater, contributing to further contamination of the system at all
levels. On the other hand, the component PES is a pollutant that is difficult to biodegrade,
but due to its weak hydrophilicity and swelling ability, it cannot bind and retain pollutants
as cellulose MF can [32].

Given the complexity of the system, which is manifested through the composite
sample, the multi-component detergent that is not used to remove stains, high alkalinity,
multiple washing and rinsing processes, there is a pronounced interaction of parameters
affecting the release of fibrils or fibrous formations in washing. This research has confirmed
that fragments of cotton cellulose prevail in the filter residue, which is not in line with
studies claiming that PES releases more microfibers than cotton [16]. Therefore, the potential
pollution of wastewater from this system manifests itself primarily in the retention and
binding of other pollutants from textile processes.

As presented in this research, numerous reactions and degradation products are not
sufficient to characterize and compare these complex systems, in which washing, rinsing,
and bath composition (water and/or detergent) play a significant role. Therefore, the
multivariate analysis algorithm was applied to the database of chromatograms for all FRs
to obtain reduced data with new information about the system. All analyses were carried
out on characteristic fragmentation ions (m/z) of datasets. HCA was performed to confirm
the similarities and differences in individual FRs, and the results are shown in Figure 11.
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Figure 11. HCA dendrogram of the Py-GC/MS dataset for FRs.

The obtained dendrogram shows a grouping of FRs with similar characteristics, and
the belonging to the same group of FRs obtained from the washing process is visible; there
is no difference with respect to the applied bath (water and/or detergent). For FRs from
the rinsing process, the influence in the bath is visible, since FR-R-D shows a significant
difference compared to the other samples.

4. Conclusions

A potential pollutant was analyzed in the research, which can release microfibers
during the washing and rinsing process. Due to its composite structure, the released
particles may originate from the part composed of the component CO and the component
PES. A systematic approach was used to prepare samples for analysis, and a new procedure
or analytical protocol was introduced in which a composite was washed with detergent
and water and the effluent was filtered to obtain a filter residue (FR) from which fragments
were taken for analysis. In addition, the methodology used made an original or valuable
contribution to the analysis of MF in wastewater from washing and rinsing process. The
results showed that cotton cellulose fibrils predominated over polyester in the filter residue.
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Py-GC/MS was used to chemically characterize and verify the composite sample of cotton
cellulose and polyester and to determine the chemical composition of the released fibers.
The usefulness of pyrolysis to indirectly assess the loading level of effluents with dispersed
particles originating from a composite sample and detergent was confirmed. The qualitative
and quantitative data obtained from the chromatograms of the individual samples from FR
indicate the dominance of the components of cotton cellulose degradation. Application of
the multivariate analysis algorithm to the peak data from the chromatograms provided a
clear representation of the observed variations in pyrolizates.
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