
separations

Article

Simultaneous Separation and Analysis of Five Compounds in
Cibotium barometz by Micellar Electrokinetic Chromatography
with Large-Volume Sample Stacking

Lili Wang 1,2, Huifeng Xu 1,2, Lishuang Yu 3, Zaishi Zhu 1,2, Hongzhi Ye 1,2, Linglong Liu 4, Xihai Li 2,4,*
and Jun Peng 1,2,*

����������
�������

Citation: Wang, L.; Xu, H.; Yu, L.;

Zhu, Z.; Ye, H.; Liu, L.; Li, X.; Peng, J.

Simultaneous Separation and

Analysis of Five Compounds in

Cibotium barometz by Micellar

Electrokinetic Chromatography with

Large-Volume Sample Stacking.

Separations 2021, 8, 147. https://

doi.org/10.3390/separations8090147

Academic Editor: Beatriz Albero

Received: 14 August 2021

Accepted: 2 September 2021

Published: 7 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
wanglili9268@126.com (L.W.); xuhf@fjtcm.edu.cn (H.X.); zuzaishi@163.com (Z.Z.); yelin0930@163.com (H.Y.)

2 Fujian Key Laboratory of Integrative Medicine on Geriatrics,
Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China

3 College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
yuls66@fjtcm.edu.cn

4 College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
liulongcqz@163.com

* Correspondence: lixihaifz@163.com (X.L.); pjunlab@hotmail.com (J.P.)

Abstract: A large volume sample stacking (LVSS) method in micellar electrokinetic chromatography
(MEKC) with diode array detector was developed for the simultaneous separation and analysis of
five compounds: protocatechuic acid, protocatechuic aldehyde, caffeic acid, syringetin and vanillin
in Cibotium barometz. The electrophoretic separation was performed in a 10 mM sodium dodecyl
sulfate (SDS) and 50 mM sodium borax-sodium dihydrogen phosphate system (pH = 8.5) with 10%
methanol at a separation voltage of 30 kV after optimizing the typical parameters. The detection
limits were from 32 pg to 65 pg, which were around 12–27 times lower than MEKC, and 500 times
less than reported methods. Finally, the established method was validated to be applicable for the
determination of protocatechuic acid and caffeic acid in Cibotium barometz. This proposed method is
expected to facilitate the quality control of Cibotium barometz.

Keywords: capillary electrophoresis; Cibotium barometz; large volume sample stacking; micellar
electrokinetic chromatography

1. Introduction

As an important traditional Chinese medicine, Cibotium barometz is widely used to
treat limb-ache, rheumatism, sciatica and osteoporosis [1]. It has the properties of being
anti-inflammatory [2], reducing bone loss [3], increasing antioxidant activity [4,5] and
promoting chondrocyte proliferation [6]. The pharmacological effects of herbs are often
attributed to their chemical components. Cibotium barometz mainly contains protocatechuic
acid [1,7] and protocatechuic aldehyde [1,7], in addition to caffeic acid [1,8], syringetin and
vanillin [8]. Evidence shows that protocatechuic aldehyde, protocatechuic acid, caffeic acid
and polysaccharides from rhizomes of Cibotium barometz had a significant proliferative
effect on osteoblasts [9,10].

Up to now, some works on the main ingredients in Cibotium barometz have been
reported. Protocatechuic acid and protocatechualdehyde were determined by HPLC [11,12].
The organic acids, alkaloids, small molecular aldehyde ketones and other substances [13–15]
in Cibotium barometz were qualitied by UPLC/Q-TOF and GC-MS. However, in view of
the fact that the physicochemical properties result from multiple components at multiple
targets, the quantity of one or two components does not always reflect its quality. Thus, it
is necessary to establish qualitative and quantitative methods for simultaneous analysis of
more constituents in Cibotium barometz.
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Based on the concepts of positive environmental impact and health, capillary elec-
trophoresis (CE) has versatility and high separation power, which can satisfy the quantita-
tive separation and identification of traditional Chinese medicine [16,17]. However, the
sensitivity and selectivity of CE are limited due to the small injection volume (nL range) [18]
and short optical path length, which hamper the determination of low-concentration
components [19]. Fortunately, it can be solved by special electrophoresis patterns (e.g.,
capillary zone electrophoresis and electrokinetic chromatography) and on-line enrichment
sample stacking techniques (e.g., large-volume sample stacking (LVSS), field-amplified
sample injection and sweeping) [20].

In micellar electrokinetic chromatography (MEKC), analytes are separated by the dif-
ferential partition between the pseudo-stationary phase and the surrounding electrolyte [21].
MEKC can also combine different stacking techniques to separate analytes simultaneously ac-
cording to the properties of the analytes [22], and LVSS is one of the typical representatives [23].

In this work, LVSS method was combined with the MEKC to simultaneously determine
five compounds in cibotium baromet, including protocatechuic acid, protocatechuic aldehyde,
caffeic acid, syringetin and vanillin. Compared with traditional methods, this online
approach can provide higher determination sensitivity and less use of organic solution.
This environmentally friendly analysis method has great application potential in the quality
control of Cibotium barometz and relevant crude plant extracts.

2. Materials and Methods
2.1. Chemicals and Materials

Protocatechuic acid, protocatechuic aldehyde, caffeic acid, syringetin and vanillin
(the structures are shown in Table 1) were obtained from Yuanye Biotech (Shanghai, China)
Co., Ltd. Cibotium barometz was obtained from Fujian Youxi Xianjin Pharmaceutical Co., Ltd.
(Sanming, Fujian Province, China). All chemicals were analytical grade. High-purity water
was prepared by a Milli-Q water purification system (Millipore, MA, USA).

2.2. Instruments

All CE separations were conducted on a Beckman PA800plus system (Beckman,
Fullerton, CA, USA) equipped with DAD detector. The system was controlled by 32-Karat
Software. Electrophoretic separation was carried out in a fused-silica capillary of 60.0 cm
length (50.0 cm effective length) × 75 µm I.D. × 370 µm O.D. (Yongnian photoconductive
Fiber Factory, Handan, Hebei, China). A PHS-3C meter (Shanghai Dapu Instrument
Company, Shanghai, China) was used to measure the pH value of the running buffer. The
ultrasonic cleaner was purchased from Kunshan Ultrasonic Instrument Co., Ltd. (Kunshan,
Jiangsu Province, China).

2.3. Preparation of Solutions and Samples

Stock solutions of each compound were prepared in anhydrous ethanol at 1 mg/mL,
and diluted to the final concentration with water before using.

The dried Cibotium barometz was cut into pieces and finely ground, then 1.0 g Cibotium
barometz powder was extracted with 6 mL ethanol in an ultrasonic bath for 0.5 h. This
extraction process was repeated twice before filtering. Subsequently, the volume was fixed
with ethanol to 25 mL and stored at 4 ◦C. Before use, it was diluted with water and filtered
through a 0.22 µm membrane filter.

2.4. Electrophoretic Procedure

New capillaries were flushed with water, 1 M HCl, 1 M NaOH and running buffer
alkali solutions [24]. To achieve better reproducibility, the capillaries were pretreated by
flushing with 0.5 M NaOH for 10 min, water for 10 min every day. The capillaries were
flushed with buffer for 5 min (20 psi) between injections.
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Table 1. Five compounds in Cibotium barometz.

Representative Number Analyte Structure pKa

1 protocatechuic acid
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7.80 [27]

MEKC injection conditions: 0.5 psi, 5 s. LVSS-MEKC injection conditions: 0.5 psi, 100 s,
negative 30 kV, 0.5 min. The running buffer was 50 mM sodium borax-sodium dihydrogen
phosphate (pH = 8.5) containing 10 mM sodium dodecyl sulfate and 10% methanol (Note:
First borax was dissolved at the concentration of 50 mM, then the pH was adjusted to
8.5 with 50 mM sodium dihydrogen phosphate solution. Finally, sodium dodecyl sulfate
was added to the concentration of 10 mM and mixed with methanol at the ratio of 10%.).
The temperature of the capillary cartridge was set at 25 ◦C. Separations were carried out at
a voltage of 30 kV and detected at 214 nm. Moreover, sample solution, standard solution
and running buffer were all filtered through a syringe cellulose acetate filter (0.45 µm) prior
to use.

3. Results and Discussion
3.1. Optimization of the Type and Concentration of Background Electrolytes (BGE)

Types of BGE, such as citrate buffer and borax buffer were tested first. The best repro-
ducibility of five compounds was obtained in the borax buffer. Thus, the concentrations of
borax buffer were further investigated. The best separation effect was achieved at 50 mM
as shown in Figure 1, and this concentration was selected in the following experiments.

3.2. Optimization of the pH of BGE

The separation of CE was based on the differences in the charge-to-mass ratio of the
analytes and the electroosmotic flow (EOF). Based on their pKa value (4.26–7.80), the effect
of buffer pH in the range of 7.5–9.0 on the resolution of separation and intensity of analyte
peaks was investigated. As shown in Figure 2, the best separation was obtained at the
pH of 8.5. Thus, pH 8.5 was selected in the following experiments.
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Figure 2. Electropherograms of five compounds at different pH values of buffer. Running buffer: 50 mM
sodium borax-sodium dihydrogen phosphate system. Other conditions are the same as Figure 1.

3.3. Optimization of MEKC Conditions

In order to increase the solubility of analytes, micelles were further introduced in this
work. SDS concentrations in this study were ranged from 10 mM to 30 mM (slightly higher
than the critical micelle concentration value of 7.4 mM [16,28,29]). The best peak area and
peak-to-peak resolution of the five compounds were obtained at 10 mM SDS, so 10 mM
SDS [30] was added to the buffer to improve the solubility of samples in the buffer.

In addition, since nonaqueous media can increase the solubility of hydrophobic
compounds and also improve the selectivity [17], organic solvents are widely used in
MEKC analysis. Thus, several types of organic solvents, such as methanol, acetonitrile and
ethanol, were added to the buffer to investigate their influence on the separation effect.
As shown in Figure 3, when a constant concentration of 10% methanol was maintained in
buffer, none of the analytes precipitated, and a stable current was obtained in the process
of electrophoretic separation [19].

3.4. Optimization of LVSS Stacking Time and Injection Time

In order to eliminate the interference of sample matrix, the stacking time was varied
in the range of 0.3–1.0 min at negative 30 kV (as shown in Figure 4). Long sample stacking
time would lead to the loss of analytes (Figure 4A,B), but insufficient stacking time would
lead to incomplete elimination of sample matrix (Figure 4D), so 0.5 min was chosen for the
further study (Figure 4C).
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Figure 4. Electropherograms of five compounds at the sample stacking time of 1.0 min (A), 0.75 min (B),
0.5 min (C) and 0.3 min (D). LVSS-MEKC inject: 0.5 psi, 130 s, negative 30 kV. Running buffer: 50 mM
sodium borax-sodium dihydrogen phosphate (pH = 8.5) containing 10 mM sodium dodecyl sulfate
and 10% methanol. Other conditions are the same as Figure 3.

Increasing the injection volume is an efficient way to attain the highest sensitivity in
peak area. Herein, the injection time was varied between 80 s and 180 s at 0.5 psi (as shown
in Figure 5). It was found that both of the peak area and peak height of the analytes
increased with the injection time from 80 s to 100 s. However, when the time was longer
than 100 s, there was almost no change in peak efficiency and peak areas. Based on the
above results, the optimum time occurred at 100 s.
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3.5. The Principles of This LVSS-MEKC Method

The on-line sample enrichment technique combines the principles of large volume [22],
and the focusing mechanism is shown in Figure 6. The fused silica capillary was filled
with BGE, and then a large volume of a sample with low electric conductivity was injected
hydrodynamically (Figure 6A). The inlet and outlet vials were then replaced by vials
containing the BGE, and a reverse polarity voltage was applied. The negatively charged
sodium dodecyl sulfate (SDS) micelles started to focus the analytes rapidly to an outlet
because of the high electric field strength of the sample matrix. At the same time, the sample
matrix was pumped out from the inlet driven by electroosmotic flow (EOF) (Figure 6B).
Once the SDS micelles reached the boundary between the sample matrix and BGE at the
outlet, they slowed down because of the reduced electric field strength in BGE. Finally, a
narrow sample zone was formed (Figure 6C). Combined with Figure 4, it can be inferred
that the analytes were arranged in order of pKa values, which may be due to the interaction
between the analytes and SDS (Figure 6B,C). After the sample matrix was completely
removed from the capillary by the EOF, the inlet and outlet vials were replaced by vials
containing the same new BGE. Then a normal polarity voltage was applied, the analytes
moved toward the detector and started to separate (Figure 6D). Finally, the negatively
charged SDS micelles and the analytes migrated to the detector end (outlet end) according
to the value of pKa (Figure 6E).

3.6. Stacking Efficiency

The stacking efficiency was investigated by calculating the ratio of peak areas
(ALVSS-MEKC/AMEKC). Compared with the hydrodynamic injection, the LVSS gave a
stacking efficiency of about 24, 24, 27, 12 and 14 folds for vanillin, syringetin, protocatechuic
aldehyde, caffeic acid and protocatechuic acid, respectively (see Figure 7).

3.7. Method Validation

Standard mixture solution of the five analytes with a concentration of 0.5 µg/mL was
analyzed three times in a day and for three consecutive days to determine the intraday
and interday repeatability under the optimum condition. The results were given in Table 2.
The relative standard deviations (RSDs) for analyte peak area response of the five analytes
were 0.6–2.0% (intra-day, n = 5), and 2.4–4.9% (inter-day, n = 5), respectively.
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Figure 6. Schematic presentation of this LVSS-MEKC method. (A) A large volume of a sample is
injected hydrodynamically. (B) SDS micelles transported together with the analytes migrate rapidly
toward the outlet end. (C) The analytes were enriched and arranged in order of pKa values. (D) The
sample matrix was pumped out from the inlet and the analytes started to separate. (E) The analytes
migrated to the detector according to the value of pKa.
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Figure 7. Electropherograms of five compounds by (A) LVSS-MEKC and (B) normal MEKC. MEKC
inject: 0.5 psi, 5 s; LVSS-MEKC inject: 0.5 psi, 100 s, negative 30 kV, 0.5 min. The concentrations of
analytes: 5.0 µg/mL. Other conditions are the same as Figure 5.

Table 2. Intraday and interday repeatability of the peak area for all analytes (n = 3) by using LVSS-MEKC method.

Analyte Content (µg/mL) Intra-Day Peak Area RSD (%) Inter-Day Peak Area (%)

protocatechuic acid 0.5 0.68 5.47
protocatechuic aldehyde 0.5 0.47 3.50

caffeic acid 0.5 0.94 5.07
syringetin 0.5 0.47 2.05

vanillin 0.5 0.48 2.71

Furthermore, the linearity, linear range and detection limits (LODs) of this method
were evaluated, and the results were presented in Table 3. The calibration curves exhibited
excellent linearity over the concentration range of 0.25–10 µg/mL for all the five com-
pounds. Three times the area signal-to-noise ratio (S/N = 3.0) was defined as LOD [31].
Under the optimum condition of online-MEKC method, the injection amount of each
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compound was calculated by CE Expert software, so the detection limits were from 32 pg
to 65 pg, which were around 500 times the level of conventional methods.

Table 3. Analytical performance of LVSS-MEKC for five compounds.

Analyte Calibration Curve
Determination
Coefficient (R2)

Linearity
Range(µg/mL)

Detection Limit(µg)

This Work Reference

protocatechuic acid y = 48,389x + 1603.2 0.999 0.25–10 6.5 × 10−5 0.032 [11], 0.0124 [12]
protocatechuic aldehyde y = 52,313x + 6216.2 0.9927 0.25–10 6.5 × 10−5 0.0144 [11], 0.0102 [12]

caffeic acid y = 61,388x + 11,869 0.9985 0.25–10 6.5 × 10−5 ND 1

syringetin y = 163,658x − 38,019 0.9961 0.25–10 3.3 × 10−5 ND 1

vanillin y = 293,371x + 51,259 0.9993 0.25–10 3.3 × 10−5 ND 1

1 ND stands for not detect.

3.8. Analysis of Sample and Recoveries of Spiked Sample

The proposed LVSS-MEKC method was applied to analyze the five compounds in
Cibotium barometz under the optimum conditions above. Figure 8 shows the chromatograms
of the sample of Cibotium barometz injected for 100 s (Figure 8 left) and standard spiked
sample (Figure 8 right) under the same conditions. Finally, protocatechuic acid and caffeic
acid were detected in Cibotium barometz (Table 4). The other three compounds were not
quantified because baseline isolation was not achieved and the content of syringetin may be
lower than its LOD. The contents of protocatechuic acid and caffeic acid found in the herb
were 0.11 mg/g and 0.04 mg/g, respectively. Our results were consistent with the previous
studies [11,12], while the content of protocatechuic acid was 0.11 mg/g (0.01%), which
was lower than 0.02% of dry products in the Chinese pharmacopoeia (2020 edition) [32].
This may be attributed to the differences in the origin, storage conditions and time of the
medicinal materials [12]. The recovery rates were 83.2–97.4% for protocatechuic acid and
81.5~95.4% for caffeic acid (Table 5).
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Figure 8. Electropherograms of Cibotium barometz nonspiked (left) and spiked (right). Running buffer:
10 mM sodium dodecyl sulfate and 50 mM sodium borax-sodium dihydrogen phosphate −10% methanol
system (pH = 8.5). Separation voltage: 30 kV. Wavelength: 214 nm. LVSS-MEKC inject: 0.5 psi, 100 s,
negative 30 kV, 0. 5 min. The extract was diluted 5 times with water. The compounds represented by
the numbers 1–5 are listed in Table 1.

Table 4. Determination of protocatechuic acid and caffeic acid with LVSS-MEKC in Cibotium barometz.

Number Protocatechuic Acid (mg/g) Caffeic Acid (mg/g)

1 0.11 0.04
2 0.12 0.04
3 0.11 0.04

average 0.11 0.04
RSD (%) 3.81 3.39
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Table 5. Recoveries (%) of protocatechuic acid and caffeic acid spiked at different levels using
LVSS-MEKC in Cibotium barometz.

Analyte Spiked (µg/mL) Recovery (%) RSD (%)

protocatechuic acid
0.5 97.4 1.1
1.0 96.4 2.7
1.5 83.2 3.1

caffeic acid
0.5 95.4 3.2
0.7 81.5 4.1
1.0 84.4 4.8

4. Conclusions

A simple micellar electrokinetic chromatography with large-volume sample stacking
method for the analysis of five compounds in Cibotium barometz sample was reported in this
work. Under the optimized conditions, obvious enrichment efficiency from 12 to 27 folds
was confirmed and the detection limits were around 500 times less than conventional meth-
ods. In addition, satisfactory recovery and repeatability were obtained. This method was
successfully applied to determine protocatechuic acid and caffeic acid in Cibotium barometz.
Good recoveries at three spiked concentrations between 81.5% and 97.4% and the relative
standard deviations (RSDs, n = 3) between 1.1% and 4.8% were obtained for protocate-
chuic acid and caffeic acid. In conclusion, the developed LVSS-MEKC method was simple,
sensitive, low-cost, more environmentally acceptable and can be used for simultaneous
qualitative analysis of five compounds and quantitative analysis of two compounds in
Cibotium barometz.
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