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Abstract: In this work, multi-objective optimisation study was performed to determine the per-
formance improvement in a simulated moving bed reactor (SMBR) for biodiesel synthesis. The
selection of the operating parameters such as switching time, liquid flow rates in various sections,
as well as the length and number of columns is not straightforward in an SMBR. In most cases,
conflicting requirements and constraints influence the optimal selection of the decision (operating
or design) variables. A mathematical model that predicts single-column experimental results well
was modified and verified experimentally for multiple-column SMBR system. In this article, a few
multi-objective optimisation problems were carried out for both existing set-up as well as at the
design stage. A non-dominated sorting genetic algorithm (NSGA) was used as the optimisation
tool for the optimisation study. Due to conflicting effect of process parameters, the multi-objective
optimisation study resulted in non-dominated Pareto optimal solutions. It was shown that significant
increase in yield and purity of biodiesel in SMBR was possible both for operating and at design stage.

Keywords: multifunctional reactor; reactive separation; multi-objective optimization; chromato-
graphic reactor; biodiesel synthesis; multi-column chromatography; simulated moving bed

1. Introduction

The simulated moving bed (SMB) technology has gained considerable interest for a
wide variety of applications [1]. It is an adsorption-based chromatographic separation pro-
cess in which the counter-current movement of the mobile phase with respect to stationary
phase is simulated by periodic switching of the introduction and withdrawal ports along a
series of columns. This technology has been successfully used to achieve higher yield in
case of equilibrium-limited reversible reactions in which it helps to push the equilibrium
forward by in situ separation of the products as soon they are formed [2]. However, the
SMB process is complex to implement.

Various operating parameters such as switching time, flow rates in each section, length
of columns, etc., must be appropriately (if possible, optimally) selected for successful and
efficient operation. Hence, systematic optimisation of SMBR is necessary for its industrial
implementation and to make it economically viable [3].

R-COOH + R’-OH⇔ R-COOR’ + H2O
(Acid) (Alcohol) (Biodiesel) (Water)

(1)

The modelling, simulation and experimental study of SMBR for biodiesel synthesis
have been carried out and reported earlier [4]. The reaction investigated is given by
Equation (1).

The free fatty acid used was oleic acid, alcohol used was methanol and fatty acid
ester obtained was methyl oleate, which is biodiesel. A mathematical model was used
to describe the dynamic behaviour of SMBR. The model was validated by carrying out
experiments at different conditions and comparing the experimental results with the model
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predicted values [4]. It was observed that the model predicted the experiments reasonably
well [4]. Thereafter, a parametric sensitivity study was carried out to determine the effect
of various operating parameters on the functioning of SMBR. It was found out that there is
a complex interplay between the various operating parameters such as switching time, the
feed, desorbent and raffinate flow rates. Together, they collectively influence the yield and
purity of biodiesel in SMBR. Sensitivity studies showed that although some parameters
influence yield and purity in conflicting manner, it is possible to further improve the yield
and purity of biodiesel in a SMBR, if systematic optimisation is performed to determine an
optimal set of the operating parameters. To determine these best (optimal) set of values,
a methodical multi-objective optimisation study of the SMBR needs to be done. In this
study, multi-objective optimisation of the SMBR for biodiesel synthesis was carried out for
different sets of objective functions.

2. Multi-Objective Optimisation

The optimisation of a chemical process has been an interesting field of study for quite
some time. Most researchers solve optimisation problems that involve single objective
function. Usually, this single objective accounted for only cost and/or economic efficiency
of the process, which is a scalar quantity. But real world (chemical) engineering problems
often involve a variety of factors that requires multiple objectives to fulfil simultaneously.
For example, yield, purity, selectivity, solvent consumption as well as variables such as
reliability, safety, quality control, etc., which cannot be easily compared to each other.
Hence, very often they cannot be scalarised into a single, meaningful objective function.
Until a few years ago, this scalarisation was done by assigning some weightage to all the
factors involved. But this was not a practical approach, as in real world the various factors
do not equally affect a process. As a result, the solution obtained from such optimisation
was largely dependent on the weightage assigned to the various factors. Moreover, if the
objective function is non-convex, it gave rise to a duality gap because of which optimisation
algorithm misses some optimal solutions which can never be found regardless of the
weighting factors chosen [5]. Furthermore, a single objective function defined as cost or
profit results in solution that is time-specific and site-specific. The optimal value based on
cost of raw material or revenue generated from products differed from region-to-region
and year-to-year. Hence, reported results based on cost or profit cannot be used judiciously
at different region and at different time. However, one can calculate cost or profit at any
location and at any time that is best suited for profitable operation if the optimisation study
is done using real variables such as conversion, yield, selectivity, etc., [6].

Optimisation of multiple criteria simultaneously considers several objectives together,
even when they are conflicting in nature. In case of conflicting effect, instead of finding the
best possible single unique global solution, a set of equally good non-dominated solutions
are obtained. These are known as Pareto optimal solutions. In such a set, no one solution
can be considered superior to other with respect to all objective functions. As one moves
from one optimal solution to another, it results in improvement of at least one objective
function and deterioration of at least another objective function. Hence, an operator must
select, one solution according to priority. In recent years, multi-objective optimisation has
gained popularity for solving problems in various aspects of chemical engineering [7–20].
It has also been used for both reactive and separative SMB processes [21–30].

3. Optimisation Methodology

In this work, Genetic Algorithm (GA), a non-traditional search and optimisation
method that has become quite popular in engineering optimisation has been used. GA
mimics the principles of genetics and the Darwinian principle of natural selection (i.e., sur-
vival of the fittest). A simple genetic algorithm (SGA) is suitable for optimising problems
with a single-objective function. In single-objective function optimisation, one attempts to
find the best solution, which is usually the global minimum (or maximum). However, most
real-world problems involve the simultaneous optimisation of multiple objective func-
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tions (a vector). Such problems are conceptually different from single-objective-function
problems. In multiple objective-function optimisations, a solution that is the best (global op-
timum) with respect to all objectives might not exist due to conflicting effect of one or more
decision variables on objective functions. Instead, an entire set of optimal solutions may
exist that are equally good. These solutions are known as (non-dominated) Pareto-optimal
solutions. A Pareto set, for example, for a two-objective-function problem is described by a
set of points such that, when one moves from one point to any other, one objective function
improves while the other worsens. Thus, one cannot say that any one of these points is
superior (or dominant) to any other. Because none of the non-dominated solutions in the
Pareto set is superior to any other, any one of them is an acceptable solution. The choice
of one solution over another requires additional knowledge of the problem, and often,
this knowledge is intuitive and non-quantifiable. There are various approaches available
for solving a multi-objective optimisation problem: The goal attainment method, the ε-
constraint method and the Non-Dominated Sorting Genetic Algorithm (NSGA) method. In
this work, the NGSA method has been used to carry out the optimisation process to obtain
the Pareto optimal set [31,32].

The Genetic Algorithm method is a search technique developed by Holland [33] in
1975. It imitates the process of natural selection and natural genetics. In this technique, the
decision variables are coded into a set of binary strings or numbers, known as chromosomes,
thereby creating a ‘population (gene pool)’ of such binary strings. These chromosomes
are generated using random number generators. Each chromosome is then mapped into
a set of real values of the decision variables using an upper and lower bound for each
of these decision variables. When all the chromosomes are allocated, the process model
is used to assign a value of the objective function that reflects its ‘fitness’ value. In this
way, a ‘gene pool’ of chromosomes is created, with the value of the objective function of
each chromosome representing its ‘fitness’ value. The Darwinian principle of ‘survival of
the fittest’ is then used to create a new and improved gene pool (new generation). This is
done by preparing a ‘mating pool’ that comprises copies of chromosomes, the number of
copies of any chromosome being proportional to its fitness based on Darwin’s principle
of ‘survival of the fittest’. After this, pairs of chromosomes are randomly selected and
‘mated’ using operations like those in genetic reproduction so that information exchange
takes place between them, giving rise to daughter chromosomes. This gives rise to a new
and improved gene pool with ‘fitness’ value better than the previous one. This process is
repeated over several generations to get a more improved gene pool. The process goes on
until the chromosomes match the criteria assigned by the objective functions [34].

The genetic algorithm is robust and superior to many traditional optimisation algo-
rithms. It has a number of advantages: (a) Efficient handling of uncertainty problems,
stochasticity’s and discrete search spaces; (b) its efficiency has little effect on the shape
and ‘spread’ of the Pareto optimal front, unlike other techniques where efficiency of the
technique determines the spread of the solution obtained; and (c) an entire Pareto set can be
obtained in a single application, unlike other techniques like the ε-constraint method where
the technique must be applied over and over again to generate a Pareto front. Several
versions of the genetic algorithm have been used to solve problems in chemical and reaction
engineering. In this work, the NSGA II has been used to optimise the synthesis of biodiesel
in the SMBR [31].

4. Mathematical Model for Synthesis of Biodiesel in SMBR

Figure 1 shows a schematic diagram of SMBR and the principle of its operation. It
consists of several columns of uniform cross-section, each of length L and packed with the
ion-exchange resin, which acts as both catalyst and adsorbent. The columns are connected
in series in a circular array. Two incoming fluid streams (feed and eluent/desorbent)
and two outgoing fluid streams (extract and raffinate) divide the reactor system into four
sections (P, Q, R and S), with p, q, r and s number of columns in each section respectively, as
illustrated in Figure 1. Qp, the flow rate in section P, is regarded as the reference flow rate, to
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which all other flow rates are described. Ifα, β and γ are assumed to be the ratio of feed flow
rate (F), raffinate flow rate (R) and desorbent flow rate (D) respectively, to the reference flow
rate, Qp, then flow rates in each section can be defined as shown in Figure 1. Simulation of
counter-current movement of the solid is achieved by advancing the inlet and withdrawal
ports, column by column, in the same direction of the fluid flow, at a predetermined
switching time, ts. During a switch, these ports move simultaneously by one column, in
the direction of the flow of mobile phase. To achieve separation between the components,
the internal flow rates of the fluid phases within the four sections, and the switching
time (which defines the hypothetical solid phase velocity) must be specified appropriately.
By suitable selection of switching time, counter-current or co-current movement of the
solid phase with respect to the fluid phase can be achieved in each section. Petroulas
and co-workers [35] defined for true counter-current moving bed chromatographic reactor
(CMCR) a parameter, σi, called relative carrying capacity of the solid relative to the fluid
stream for any component i as:

σi =

[
1− ε

ε

]
N Ki

us

ug
= δi

us

ug
(2)Separations 2021, 8, x FOR PEER REVIEW 5 of 17 

 

 

 
Figure 1. Schematic flow diagram of the SMBR. The inlets and outlets divide the entire system into 
four section, P, Q, R and S with respectively p, q, r and s number of columns. The flow retes in each 
section is given by Qq = (1 − β)Qq, Qr = (1 − β + γ)Qp, Qs = (1 − α)Qp, where α, β and γ are given by 
F/Qp, Ra/Qp, E/Qp. 
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where Ci is the concentration of component i in the mobile phase (mol/L), t is the time (s), 
qi is the concentration of component i in the polymer phase (mol/L), ε is the column void 
fraction (-), u is the superficial fluid phase flow rate (m/s), z is the axial coordinate (m), υi is 
the stoichiometric coefficient of the component i, R is the reaction rate and Di is the apparent 
dispersion coefficient of the component i (m2/s). For the component i in the jth column dur-
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R, S) and the reaction rate expressions and adsorption isotherms are given by  
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Figure 1. Schematic flow diagram of the SMBR. The inlets and outlets divide the entire system into
four section, P, Q, R and S with respectively p, q, r and s number of columns. The flow retes in each
section is given by Qq = (1 − β)Qq, Qr = (1 − β + γ)Qp, Qs = (1 − α)Qp, where α, β and γ are given
by F/Qp, Ra/Qp, E/Qp.

They showed that to achieve counter-current separation between two components,
one must set σ greater than 1 for one and less than 1 for the other. Fish and co-workers [36]
defined Vi, the net velocity at which component i travels (or the concentration front moves)
within the column, which for linear isotherm is given by:

Vi = ug

[
1− σi
1 + δi

]
(3)
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Therefore, when σi < 1, Vi > 0 (species move with the fluid phase), and when σi > 1,
Vi < 0 (species move with the solid phase). When σ = 0, it represents fixed bed. Ray and
co-workers [37] re-defined the above parameter, σ, for SMBR by replacing the solid-phase
velocity, us, in CMCR by a hypothetical solid phase velocity, ζ, defined as ζ = L/ts for
SMBR. They found, both theoretically [1] and experimentally [2], that simulation of the
counter-current movement between two components can be achieved when re-defined σ’s
were set such that it is greater than 1 for one and less than 1 for the other component. Hence,
in the present study if we set σ appropriately, the more strongly adsorbed component
(H2O) will move with the solid (resin) stream and could be collected at the extract port,
while at the same time the less strongly adsorbed component (biodiesel) will travel with
the fluid stream and could be collected at the raffinate port. It should also be noted that the
parameter σ defined by the research group of Carr and Aris [35] is similar to β defined by
the research group of Hashimoto [38], γ defined by the research group of Ruthven [39] and
m defined by the research group of Morbidelli [40].

The material balance of the SMBR is based on the equilibrium dispersive model which
is as follows:

∂C(N)
ij

∂t
+

[
1− ε

ε

]∂q(N)
ij

∂t
+

u∅
ε

∂C(N)
ij

∂z
−
[

1− ε

ε

]
ϑiR

(N)
j = Dik

∂2C(N)
ij

∂z2 (4)

where Ci is the concentration of component i in the mobile phase (mol/L), t is the time
(s), qi is the concentration of component i in the polymer phase (mol/L), ε is the column
void fraction (-), u is the superficial fluid phase flow rate (m/s), z is the axial coordinate
(m), υi is the stoichiometric coefficient of the component i, R is the reaction rate and Di is
the apparent dispersion coefficient of the component i (m2/s). For the component i in the
jth column during the Nth switching period, uØ denotes superficial flow rate in section
φ (where φ = P, Q, R, S) and the reaction rate expressions and adsorption isotherms are
given by

R(N)
j = k f s

q(N)
f a,j −

q(N)
me,j q(N)

w,j

Keq

 (5)

q(N)
ij = KiC

(N)
ij (6)

The initial and boundary conditions are
Initial conditions
When N = 0,

C(0)
ij = C(initial)

ij = 0 (7a)

When N ≥ 1,
C(N)

ij = C(N−1)
i,j+1 f or j = 1 ∼ (Ncol − 1) (7b)

C(N)
ij = C(N−1)

i,1 f or j = Ncol (7c)

Boundary conditions
Feed entry point

C(N)
ij |

z=0
= (1− α) C(N)

i,Ncol |z=L
+ α Ci, f (8a)

Raffinate take-off point

C(N)
i, p+1 |z=0

= C(N)
i,p |

z=L
(8b)
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Eluent inlet point

C(N)
i, p+q+1 |z=0

=

[
1− β

1− β + γ

]
C(N)

i,p+q |
z=L

(8c)

Extract take off point

C(N)
i, p+q+r+1 |z=0

= C(N)
i,p+q+r |z=L

(8d)

The mass balance equation (Equation (4)), initial and boundary conditions (Equa-
tions (7) and (8) respectively), reaction kinetic equation (Equation (5)) and adsorption
isotherm (Equation (6)) completely define the SMBR system. The partial differential equa-
tions were solved using method of lines. They were first discretised using finite difference
method to convert it into a set of several coupled ordinary differential equation of initial
value problems (ODE-IVP) and the resultant stiff ODEs were solved using the DIVPAG
subroutine (which is based on Gear’s method) in the IMSL library. Due to the presence
of periodic switching in the system, whenever a switching is performed, a new IVP must
be solved. Eventually, a periodic steady state with a period equal to the switching time is
attained. After each switching, the column numbering is redefined as follows:

Before switching After Switcing
Column 1 Column Ncol

Column j Column j − 1, j = 1, 2, 3, . . . .., Ncol

(9)

The model can also predict the concentration profiles of the reactant and products.
It was observed that the SMBR reached the pseudo-steady state after about 20 switching
operations. Improved yield and purity of biodiesel was achieved due to reaction and
in-situ separation of products in the system. The time taken for one simulation run to
achieve the cyclic steady state for SMBR was about 4 s in a computer equipped with Intel
Pentium Core 2 Duo CPU.

The design of the SMBR and the operating conditions to be used therein is set such
that the yield and purity of biodiesel are maximised. The yield and purity are defined in
this work as follows:

(1) Yield of methyl ester (YME)—

YME =
methyl oleate collected in raffinate

oleic acid fed
=

β.
[∫ ts

0 C(N)
ME,p

∣∣∣
z=Lcol

dt
]

α.CFA, f .ts

(10)

(2) Purity of methyl ester (PME)—

PME =
methyl oleate collected in raffinate

oleic acid+water+methyl oleate collected in raffinate

=

∫ ts
0 C(N)

ME,p

∣∣∣
z=Lcol

dt∫ ts
0 (C(N)

ME,p+C(N)
W,p+C(N)

FA,p)
∣∣∣
z=Lcol

dt

(11)

As described earlier, the mathematical model was validated with experimental re-
sults [4]. The model was subsequently checked for robustness through a parametric
sensitivity study. It was determined that improved yield and purity were possible if the
various operating parameters were optimised. Moreover, some decision variables found to
be influencing the yield and purity value in conflicting manner. Hence, a multi-objective
optimisation of the SMBR is carried out which is expected to result in non-dominated
equally good Pareto optimal solutions.
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5. Optimisation of Biodiesel Production in SMBR

In the open literature, many investigations of SMBRs can be found, but there are still
no reported industrial application of this technology, probably because of the complexity of
the process and the absence of any general guidelines for the design of the process. Most of
the design approaches are not based on systematic and rigorous mathematical optimisation
methods. In recent years, an extremely robust technique, the genetic algorithm (GA) as
well as its adaptations for more useful but complex multi-objective optimisation problems,
has become popular. GA-based approaches do not require any initial guesses and converge
to the global optimum even when several local optima are present. GA uses a population of
several points (solutions) and works with probabilistic (rather than deterministic) operators.
In addition, GA uses information on the objective function and not its derivatives.

In this article, the multi-objective optimisation of the complex chemical processes
involved in a simulated moving-bed reactor (SMBR) for biodiesel synthesis is reported. For
the proper design of a SMBR, and more importantly, for an understanding of the principles
of operation of a SMBR, a multi-objective optimisation study is much more meaningful. To
the best of our knowledge, this is the first attempt at a multi-objective optimisation study
of simulated moving-bed reactor systems for biodiesel production.

Different objectives can be used for optimisation of reactive SMB. One can select
objectives that are economical (like profit, production cost), safety, environmental impact,
thermodynamic and/or operational (like yield, productivity). Moreover, optimisation
formulation can be categorised into two approaches: (a) Existing stage optimisation: This
involves optimisation of the existing set-up in which one does not have the freedom to
select length, diameter or number of columns in the system. The process variables that
can be used as decision variables are switching time and flow rates in different sections.
Objectives which can be considered for this problem are maximisation of yield and purity
of biodiesel, which are related to increasing quality of the product, or minimisation of
desorbent flow rate, which is related to the operating cost of the system. (b) Design stage
optimisation: This involves performance enhancement by altering the design parameters
of the unit such as length, diameter as well as number of columns as decision variables in
addition to the other operating variables. The objective functions can be same as that of the
existing-stage optimisation.

For biodiesel production in reactive SMBR, the product of interest is methyl ester
which is obtained at the raffinate port. Hence, one can consider objective functions such as
maximisation of the product quality (yield and/or purity of the product at the raffinate port)
or conversion of the limiting reactant. One can also consider minimisation of desorbent
consumption as an objective function. All these objective functions can be considered
together, but that gives rise to complexity in analysing the optimum solutions. For example,
if we want to simultaneously optimise three objectives, non-dominated Pareto optimal
solutions could also include deterioration of two objective functions and improvement
of the third, or vice versa. This will give rise to multi-dimensional solutions, which are
difficult to analyse as optimal solutions lie on 3-dimensional surfaces. Moreover, with large
number of objective functions, the search space will be limited. Hence, in this work, only
two objective functions are considered at any time. Production of high-quality biodiesel
is of paramount importance for their use in engines [41,42]. Therefore, maximisation of
purity is considered one objective function in all the optimisation problems considered.

For this work, a four column SMBR setup was used, with one column in each section.
Both existing stage and design stage optimisation problems were considered. The various
decision variables involved were: process parameter (switching time, ts); throughput
parameters (feed flow rate, α and/or raffinate flow rate, β); and operating cost parameters
(eluent flow rate, γ and flow rate in section P, QP, which is related to the pressure drop
in the system). For the design-stage optimisation, an additional parameter, length of the
column Lcol, was used. Table 1 represents the optimisation problems studied in this work.



Separations 2021, 8, 127 8 of 16

Table 1. Optimisation problems along with their objective functions, constraints, decision variables and fixed parameters.

Case Objective Functions Constraints Decision Variables Fixed Parameters

1.1 Existing setup Maximum YME
Maximum PME

YME ≥ 50%
PME ≥ 50%

1 ≤ ts ≤ 17 (min)
0.1 ≤ β ≤ 1
1 ≤ γ ≤ 5

QP = 1.66 ml/min
α = 0.1

[F] = 0.21 mol/lit
Lcol = 25 cm, Ncol = 4

1.2 Existing setup Maximum PME
Minimum γ

YME ≥ 50%
PME ≥ 50% Same as Case 1.1 Same as Case 1.1

2.1 Design stage Maximum YME
Maximum PME

YME ≥ 50%
PME ≥ 50%

Same as
Case 1.1

0.2 ≤ Lcol ≤ 0.5 (m)

Same as Case 1.1 except
Lcol is not fixed

2.2 Design stage Maximum PME
Minimum γ

YME ≥ 50%
PME ≥ 50%

Same as
Case 2.1 Same as Case 2.1

The Pareto optimal solutions were generated using NSGA-II. 50 chromosomes (so-
lutions) along with 50 generations (iterations) were considered for obtaining converged
Pareto set. Table 2 represents the numerical parameter values used in NSGA II for all the
optimisation runs. The time taken for one optimisation run (50 solutions for 50 generations)
consisting of 2500 simulation runs was about 7 h of clock time in a computer equipped
with Intel Pentium Core 2 Duo CPU.

Table 2. Numerical parameter values used in NSGA optimisation.

Number of generations, Ngen 50
Population size, Ppop 50

Probability of crossover, Pcross 0.65
Probability of mutation, Pmute 0.002

Spreading parameter, σ 0.075
Sharing function exponent, α 2.0

Random number generator seed, Sr 0.455

6. Optimisation of Existing Setup

The first two multi-objective optimisation problems solved were for an existing set-up.
In case 1.1, the objective of this problem is to achieve simultaneous maximisation of yield
and purity. Figure 2 represents the Pareto optimal solutions for this optimisation problem
and the influence of the decision variables on the Pareto set. Some of the decision variables
act on yield and purity in a conflicting manner. A yield of about 79% can be obtained
but the maximum purity possible at that yield is 76%. Whereas increasing the purity
to 87% reduces the maximum possible yield to about 72%. The purity level is also very
sensitive to raffinate flow rate (β), as is clear from the figure; decreasing β below 0.26
results in an increase in purity, with about 87% purity being achieved at β ≈ 0.22. This
happens because increasing the raffinate flow rate decreases the residence time within
the column, thus reducing the conversion of the reactant (oleic acid) to biodiesel. Hence,
lower raffinate flow rate is required to increase the residence time and purity. As far
as optimum switching time is concerned, it seems to remain constant at around 5 min,
indicating it is not affected for achieving high or low purity value. In case of desorbent
flow rate, the purity seems to linearly increase when γ increases from 1 to 2, but further
increase of γ does not significantly affect purity. Hence, at high desorbent flow rates, purity
is not affected. This is because when the desorbent flow rate is set above a minimum
threshold, complete regeneration of column occurs before a switch; its further increase
does not matter thereafter. One should note that the optimal Pareto set presented are nearly
converged solution as to get smooth Pareto curve (global optimal Pareto set) one needs to
run genetic algorithm for many generations with significant increase in computation time
to get insignificant change in the Pareto curve.
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Figure 3 illustrates the steady state concentration profiles of the reactant and products
in the column. Figure 3a corresponds to point 1 and Figure 3b corresponds to point 2
of Figure 2. It is evident that at point 1, water which is more strongly adsorbed breaks
through the raffinate stream, thereby contaminating the desired product, methyl ester.
Hence, purity of the product decreases. On the other hand, a high β (raffinate flow) and
low γ (desorbent flow) results in presence of unreacted oleic acid, which gets recycled
to section P at the end of a switch, resulting in higher yield. Point 2 corresponds to low
raffinate flow rate and increased desorbent flow rate. At this condition, the residence time
of the reactant in section P increases, resulting in higher conversion and increased product
purity. Water is retained in section P and does not breakthrough in the raffinate stream.
Moreover, complete regeneration of column occurs at high desorbent flow rate. However,
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this also means that unreacted oleic acid is washed out in the extract stream, and hence
is not available for recycle after the next switch. Hence yield of the product decreases.
According to this optimisation problem, the product purity is most significantly affected
by β. Increasing γ above a certain point does not affect the SMBR performance.
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Case 1.2: Maximisation of Purity and Minimisation of Desorbent Consumption

This optimisation problem attempts to minimise the operational cost by reducing the
desorbent flow rate (γ) along with maximizing purity of methyl ester. Figure 4 represents
the Pareto set for desorbent consumption compared to product purity. At low values of
γ, it has a linear correlation with P_ME; increasing γ from 1 to 1.5 results in an increase
of purity from 80% to 87%. However, after that even a slight increase in P_ME (88% to
90%) results in exponential increase of γ (1.5 to 3.5). Hence minimisation of desorbent
consumption conflicts with improvement of purity. Note that it was not possible to achieve
purity greater than 90.5% due to column efficiency (mass transfer limitation) of the packed
material (resin) used in the study. Furthermore, note that higher purity is not restricted due
to the range of the decision variables used as none of the decision variables reached the
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upper or lower bounds. The β value is close to lower bound but not exactly at the lower
bound.
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The switch time is relatively constant at around 5 min, as is represented by Figure 4.
Figure 4 represents correlation between raffinate flow rate (β) and P_ME. Unlike the
previous optimisation problem, the purity is not significantly influenced by β when one of
the objectives is minimisation of γ. The only significant observation which can be made is
that for high purity, a low value of β (around 0.1) is desired. This is congruent with the
fact that a low raffinate flow rate is required for increased residence time in section P of
the SMBR to increase product purity. This optimisation problem results in the conclusion
that when desorbent minimisation is one of the objective functions, then after a certain
threshold value an exponential increase in γ will result only in a slight improvement of
purity. Hence to obtain high purity, γmust be kept high just above the threshold value; a
further increase is not required.
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7. Design Stage Optimisation

This problem involves optimisation of SMBR performance by allowing its design
parameters such as length of the column to be selected optimally. It is worthwhile to
consider this problem for industrial application. The parameter which has been considered
for this is column length (Lcol). Two optimisation problems were once again considered for
design-stage optimisation:

7.1. Case 2.1 Simultaneous Maximisation of Yield and Purity

The objective functions, constraints and decision variables for this problem are the
same as those of Case 1.1, with the addition of another decision variable; column length
[0.2 (m) ≤ Lcol ≤ 0.5 (m)]. The Pareto optimal solution is shown in Figure 5. Once again, it
is observed that they act in conflicting manner. But a much higher value of purity (97%)
can be obtained as compared to case 1.1 where the highest purity value obtained was 87%.
Moreover, the highest yield value obtained in case 1.1 was 79% against a purity value of
76%. The yield in this case is 90% corresponding to value of purity being marginally more
than 90%. Hence a drastic improvement is achieved when column length is introduced as
a decision variable. The purity also acts in a conflicting manner against raffinate flow rate,
as is evident from Figure 6. A very low value of β (≈ 0.1) is required to achieve 97% purity,
indicating the requirement of a higher residence time in section P. Figure 6 represents that
a high value of desorbent flow rate (γ ≈ 3.5) is required to achieve a purity in the range of
94% to 97%. Just as in case 1.1, γmust be kept above a threshold value; further increase in γ
will not improve purity. An increase in column length also improves purity, as represented
by Figure 6. Larger column length means that the reactants will have more residence time,
hence improving the conversion, purity and yield. As far as switch time is concerned, it
has increased to about 11 min (see Figure 6) as compared to 5 min in Case 1.1. This is due
to the introduction of column length as a decision variable. A higher Lcol value means
indicates requirement of a higher residence time before a switch is made.
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operating variables for Pareto solutions shown in Figure 5.

One should note that desorbent flow rate (γ) needs to be above a minimum threshold
value for purging the column in section R. Use of length as a decision variable, allows
higher residence time with minimum β value (as used in all other optimisation studies
reported in this article) which results in higher purity that was obtained with existing-stage
optimisation study. Note that γ values are scattered as long as minimum threshold is
attained and much higher purity cannot be achieved by increasing γ due to limitation
of column efficiency. This optimisation problem asserts that SMBR performance can be
improved if design parameters are also optimised along with operating parameters. A high
value of both yield and purity were obtained when column length was also introduced as
a decision variable.

7.2. Case 2.2 Maximisation of Purity and Minimisation of Desorbent Consumption

The objective functions, constraints and decision variables for this problem are the
same as those of Case 1.2, with the addition of another decision variable; column length
[0.2 (m) ≤ Lcol ≤ 0.5 (m)]. The Pareto optimal solutions are shown in Figure 7. Figure 7 shows
the relation between γ and purity. At lower values of γ, a linear relation exists with purity.
However, after that, the graph becomes exponential; indicating that a slight increase in
purity would require a very high desorbent consumption, just as in case 1.2. Hence, γ
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should be just high enough above a threshold value (≈2 in this case). Further increase is
not necessary.
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Figure 7 shows the dependence of purity on raffinate flow rate.
β is constant at a low value (≈0.1). Hence purity is not sensitive to it when column

length is a decision variable and minimisation of desorbent consumption is an objective.
The same trend is shown by switch time; it is constant at around 9 min (Figure 7). The
dependence of purity on column length is uniform, showing requirement of a high column
length for high purity (Figure 7).
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8. Conclusions

Multi-objective optimisation studies were carried out on the performance of a reactive
SMB for synthesis of biodiesel. The NSGA algorithm was used to obtain the Pareto
optimal solutions. Optimisation of both existing set-up and design-stage were studied.
Two multi-objective optimisation problems were solved involving two objective functions
for each mode of operation. Simultaneous maximisation of yield and purity as well as
maximisation of purity and minimisation of desorbent consumption were considered as
objective functions. It was observed that a yield and purity of above 90% can be achieved
by optimizing both operating and design stage parameters. This study extols the usefulness
of multi-objective optimisation for improvement of design and operation of reactive SMB
system for its practical application and successful implementation on industrial scale.
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