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Abstract: In order to better understand the floral fragrance compounds of Chimonanthus praecox
belonging to genus Chimonanthus of Chimonanaceae in Yunnan, headspace solid-phase microextraction
combined with gas chromatography-mass spectrometry was used to analyze these compounds from
four C. praecox plants with different floral colors. Thirty-one types of floral fragrance compounds
were identified, among which terpenes, alcohols, esters, phenols, and heterocyclic compounds were
the main compounds. Interestingly, the floral fragrance compounds identified in the flowers of C.
praecox var. concolor included benzyl acetate, α-ocimene, eugenol, indole, and benzyl alcohol. By
contrast, the floral fragrance compounds β-ocimene, α-ocimene, and trans-β-ocimene were detected
in C. praecox var. patens. Cluster analysis showed that C. praecox var. concolor H1, H2, and C. praecox
var. patens H4 were clustered in one group, but C. praecox var. patens H3 was individually clustered in
the other group. Additionally, principal component analysis showed that α-ocimene, benzyl alcohol,
benzyl acetate, cinnamyl acetate, eugenol, and indole were the main floral fragrance compounds that
could distinguish the four C. praecox with different floral colors in Yunnan. This study provides a
theoretical basis for further elucidating the mechanism and pathway of the floral fragrance release of
C. praecox.

Keywords: floral fragrance compounds; Chimonanthus praecox; different floral colors; HS-SPME-GC-MS

1. Introduction

Chimonanthus praecox (L.) Link, belonging to the genus Chimonanthus of Chimonanaceae,
is primarily distributed in the south, central, east, southwest, and northwest of China [1].
Due to its fragrance, C. praecox has been widely used in landscaping and as cut flowers and
bonsai materials [2,3]. Furthermore, it also has important economic value in the tea kiln,
essential oil, and cosmetics industries [4]. In addition, C. praecox is rich in numerous volatile
components and has great potential for use in drug research and development [5–7].

Floral fragrance, derived from volatile compounds in plants, is an important charac-
teristic of C. praecox. Flower fragrance is useful for driving away herbivores [8,9], resisting
pathogens [10], protecting flowers from harmful insects [11], attracting pollinators [12],
communicating with other plants [13,14], treating diseases [15], improving esthetic value,
attracting tourists [16], etc. Floral fragrances have important scientific and economic signif-
icance. Therefore, cultivating ornamental plants with floral fragrance has always been the
goal of scientists.

Previous studies have shown that terpenes, esters, and alcohols are the main floral
fragrance compounds of C. praecox var. concolor and var. patens [17–20]; however, a
marked difference was observed in the diversity of floral fragrance compounds in C.
praecox with different floral colors. Different studies have shown that the main floral
fragrance compounds of C. praecox var. concolor were different, including trans-β-ocimene,
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linalool, and β-myrcene [17]; alloocimene, benzyl acetate, and methyl salicylate [18];
linalool, benzyl acetate, and methyl salicylate [19]; linalool, benzyl alcohol, and methyl
salicylate [20]; and z-muurolene, z-elemene, and L-bornyl acetate [21], respectively. For C.
praecox var. patens, the main floral fragrance compounds vary in different studies, such as
benzyl acetate, linalool, and caryophyllene [17]; benzyl acetate, alloocimene, and methyl
salicylate [18]; linalool, benzyl acetate, and methyl salicylate [19]; β-ocimene, linalool,
and benzyl acetate [20]; elemol, z-elemene, and β-cubebene [21]; and trans-β-ocimene,
2,6-dimethyl-1,3,5,7-octatetracene, and (1S, 2S, 3R, 5S) -(+)-2,3-pinanediol [22]. Hence, it is
necessary to analyze the diversity of floral fragrance compounds in C. praecox with different
floral colors.

There are also considerable differences in the composition of floral fragrance com-
pounds in Chimonanthus plants from different geographical regions. The floral fragrance
compounds of C. praecox are primarily terpenes, benzene derivatives, alkanes, esters, acids,
and other types of compounds [23]. Marked differences were observed in the floral fra-
grance compounds of C. praecox, with different floral colors from the same region. For
example, the main floral fragrance compounds of C. nitens, C. zhejiangensis, and C. salicifolius
from Zhejiang were hedycaryol and α-myrcene [24]. However, linalool, benzyl acetate,
trans-β-ocimene, and β-ocimene were found in different genotypes of C. praecox (H93, H36,
SW001, and H29) from Wuhan, and the contents of these floral fragrance compounds were
different [19,20]. At the same time, the floral fragrance compounds of the same variety of
C. praecox also differed in different planting areas. For example, the main floral fragrance
compounds of C. nitens in Zhejiang and Jiangxi are hedycaryol and α-myrcene [24] and
dehydroaromadendrene and (-)-spathulenol [25], respectively. The C. praecox var. concolor
main floral fragrance compounds in Hubei and Sichuan were alloocimene and benzyl
acetate [18] and z-muurolene and z-elemene [21], respectively. Benzyl acetate and allooci-
lene [18] and elemol and z-elemene [21] were the main floral fragrance compounds of C.
praecox var. patens in Hubei and Chongqing, respectively. In addition, similar research
results showed that there were considerable differences in the floral fragrance compounds
of C. praecox var. grandiflorus in Jinhong and Nanjing, and ocimene, a mixture of ocimene
isomers, and linalool were the main floral fragrance compounds [26]. As mentioned above,
different geographical regions have an important influence on the floral fragrance com-
pounds of C. praecox with different floral colors. However, the diversity of floral fragrance
compounds among different floral colors of C. praecox in Yunnan has not been reported.

In this study, headspace solid-phase microextraction combined with gas chromatography-
mass spectrometry (HS-SPME-GC-MS) was used to analyze the diversity of floral fragrance
compounds of four C. praecox plants with different floral colors from Heilongtan Park,
Yunnan. The present study aimed to explore the diversity of floral fragrance compounds
in C. praecox with different floral colors and aimed to identify the typical floral fragrance
compounds of C. praecox in Yunnan. This study also aims to provide a theoretical basis for
the further exploration of the metabolic pathways and changing trends of floral fragrance
compounds in C. praecox and to lay a foundation for the development and utilization of the
plant resources of C. praecox from Yunnan.

2. Materials and Methods
2.1. Plant Materials

Four C. praecox plants with different floral colors in Heilongtan Park (Kunming,
Yunnan) were collected, including two species of C. praecox var. concolor (H1 and H2)
and two species of C. praecox var. patens (H3 and H4) (Figure 1). The morphological
characteristics of C. praecox were as follows: (I) H1, light yellow flowers, white heart
with rolled outer perianth, medium flowers, and sweet fragrance; (II) H2, dark yellow
flower, white heart with slightly wrinkled perianth edge, large flower, and sweet fragrance;
(III) H3, yellow and white flowers, cover with deep purple stripes, small flowers, and
strong fragrance; (IV) H4, dark yellow flowers with light purplish red halo and stripes on
the inner surface, wrinkled edge, large flowers, and strong fragrance.
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Figure 1. The flower morphological characteristics of C. praecox with different floral colors.

2.2. Plant Collection

In sunny weather without wind, at 10:00 a.m. on 21 December 2020, different floral
colors of C. praecox flowers were collected on the same branch and then placed in headspace
bottles. This was repeated three times, and the total number of flowers was 24 (2 flow-
ers/bottle). After the sample was collected, it was quickly placed in a 20 mL SPME bottle
(clear glass, flat bottom; 20 mm open seal with PTFE/silicone septa, aluminium crimp
cap, Thermo Fisher Scientific, Waltham, MA, USA) and immediately sealed with a sealing
clamp for aroma collection.

2.3. HS-SPME Analysis

HS-SPME analysis was performed using an automatic SPME device (Supelco, Belle-
fonte, PA, USA) equipped with a 100 µm polydimethylsiloxane SPME fiber. At room
temperature, all samples were equilibrated for 30 min and prepared for analysis. The SPME
fiber was conditioned at the GC injection port for 40 min at 260 ◦C before volatile collection.
The fiber was then inserted into a capped SPME vial with an automatic SPME device (fiber
conditioning temp 250 ◦C, 20 min, TriPlus autosampler, Thermo Fisher Scientific, Waltham,
MA, USA) to absorb floral fragrance compounds for 40 min at room temperature.

2.4. GC-MS Analysis

When the adsorption was complete, the SPME fibers were withdrawn, inserted into
the GC-MS injection port (Trace GC Ultra/ITQ900, Thermo Fisher Scientific, Waltham,
MA, USA), and desorbed for 1 min at 250 ◦C. GC-MS was then used to collect the data.
GC conditions were as follows: An DB-624UI (60 m × 0.32 mm × 1.80 µm, Agilent J&W,
Santa Clara, CA, USA) capillary column was used, and helium (99.999%) was used as the
carrier gas with a flow rate of 1.0 mL/min. The sample volume was 1 µL, without splitting.
Temperature rising procedure was conducted as follows: The injection port temperature
was 250 ◦C, and the initial column temperature was 60 ◦C. The temperature was increased
by 10 ◦C/min for 2 min to 90 ◦C, and then the temperature was raised by 3 ◦C /min to
220 ◦C and maintained for 12 min. MS conditions were proceeded follows: An EI ion
source with an ionization energy of 70 eV was used. The temperature of the ion source and
the transfer line was 200 ◦C and 260 ◦C, and the scan mass range was 50–650 amu.

2.5. Data Analysis

The data for aroma chemical compounds were identified and confirmed by the Na-
tional Institute of Standards and Technology mass spectrometry database (NIST 14). The
relative content of each compound was determined by using a peak normalization proce-
dure based on the total ion flow chromatogram. The statistics of all data were obtained by
using Microsoft Excel 2019. GraphPad Prism 8 software was used for the PC stacking dia-
gram. In addition, hierarchical cluster analysis was performed by using TBtools software
and PCA using IBM SPSS 22.0 software to calculate the eigenvector load values.

3. Results
3.1. Analysis on Types of Floral Fragrance Compounds of C. praecox with Different Floral Colors

The floral fragrance compounds of C. praecox with different floral colors are summa-
rized in Table 1. A total of eight types of floral fragrance compounds were detected in
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the four C. praecox with different floral colors from Yunnan (H1, H2, H3, and H4 with
seven, seven, three, and six types compounds, respectively). In terms of floral fragrance
compounds, terpenes were the most abundant (7–12 compounds), whereas the amount of
alcohols was relatively small (≤2).

Table 1. Classification statistics of floral fragrance compounds and contents of C. praecox with
different floral colors.

Compound Category
Relative Content (%) ± SD and Type Number

H1 H2 H3 H4

Terpenes 28.48 ± 0.37 (9) 1 26.04 ± 1.18 (7) 96.65 ± 2.98 (9) 88.15 ± 2.28 (12)
Alcohols 4.23 ± 0.46 (2) 11.85 ± 0.65 (2) 0.84 ± 0.03 (1) 3.12 ± 0.14 (2)

Esters 39.88 ± 1.27 (3) 31.90 ± 1.46 (5) - 2 6.89 ± 0.54 (2)
Phenols 10.63 ± 0.38 (1) 16.44 ± 0.30 (1) - 0.06 ± 0.02 (1)

Aldehydes 0.42 ± 0.03 (2) 0.64 ± 0.13 (1) - -
Aromatic

hydrocarbons - - 0.43 ± 0.09 (1) 0.56 ± 0.10 (2)

Heterocyclic 9.88 ± 0.46 (1) 4.86 ± 0.63 (1) - -
Others 1.22 ± 0.08 (1) 0.87 ± 0.20 (1) - 0.02 ± 0.01 (1)
Total 94.74 ± 3.05 (19) 92.60 ± 4.55 (18) 97.92 ± 3.10 (11) 98.8 ± 3.09 (20)

1 The number of compounds types. 2 Not detected or did not exist.

Terpenes, alcohols, esters, phenols, and heterocyclic compounds contents were more
abundant in the main floral fragrance compounds. The relative abundances of terpenes
and alcohols detected in C. praecox were as follows: H1, 28.48% and 4.23%; H2, 26.04%
and 11.85%; H3, 96.65% and 0.84%; and H4, 88.15% and 3.12%, respectively. Except for
C. praecox var. patens, esters and phenols accounted for the highest percentage in the C.
praecox var. concolor and varied from 31.90% to 39.88% and 10.63% to 16.44%, respectively.
Additionally, heterocyclic compounds were detected only in C. praecox var. concolor (H1
and H2), and the relative amounts were 9.88% and 4.86%, respectively.

3.2. Analysis of Floral Fragrance Compounds of C. praecox with Different Floral Colors

In total, 31 different floral fragrance compounds were identified from four C. praecox
plants with different floral colors. As shown in Table 2, four C. praecox plants with different
floral colors emitted higher amounts of β-ocimene, α-ocimene, benzyl alcohol, benzyl
acetate, eugenol, indole, and trans-β-ocimene.

In C. praecox var. concolor (H1 and H2), the most abundant relative floral fragrance
compound (top 5) was benzyl acetate, followed by α-ocimene and eugenol. Indole or
benzyl alcohol had the lowest abundance. In C. praecox var. patens, the floral fragrance
compounds of H3 had a higher relative content of α-ocimene (45.09%), trans-β-ocimene
(18.75%), germacrene D (9.70%), β-caryophyllene (6.25%), and α-phellandrene (4.45%).
Different results showed that the main floral fragrance compounds, including β-ocimene
71.51%), α-ocimene (11.92%), benzyl acetate (4.49%), benzyl alcohol (2.95%), and methyl
salicylate (2.40%), were detected in H4.

3.3. Principal Component (PC) Stacking Diagram of Floral Fragrance Compounds of C. praecox
with Different Floral Colors

Eighteen compounds represented more than 1% of the total emission in C. praecox
with different floral colors, among which α-ocimene (12.23% to 46.25%) and benzyl alcohol
(0.86% to 9.71%) accounted for a large percentage of the total (Figure 2). Except for H3, the
relative amounts of benzyl acetate (4.61–39.26%) and eugenol (0.06–17.96%) were higher
in C. praecox var. concolor (H1 and H2) than in C. praecox var. patens (H4). Moreover,
valencene, β-caryophyllene, and α-phellandrene were not detected in H1, H2, and H4,
respectively. Cinnamyl acetate was detected only in C. praecox var. concolor (H1 and H2),
whereas isoledene and alloocimene were only detected in C. praecox var. patens (H3 and
H4). In addition, indole was only emitted from C. praecox var. concolor, which changed
from 5.31% (H2) to 10.53% (H1). The relative amounts of β-ocimene accounted for the
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highest proportion (77.37%) in H4, indicating that β-ocimene contributed the most to the
floral fragrance of C. praecox var. patens (H4). As mentioned above, β-ocimene, α-ocimene,
benzyl alcohol, benzyl acetate, eugenol, indole, and trans-β-ocimene were the main floral
fragrance compounds of C. praecox in Yunnan.

Table 2. Relative content of floral fragrance compounds of C. praecox with different floral colors.

Classification Compound Name RI 1
Relative Content (%) ± SD

H1 H2 H3 H4

Terpenes Cyclooctatetraene 850 - 2 0.07 ± 0.02 - 0.10 ± 0.02
α-Thujene 929 0.19 ± 0.04 - - -
α-Pinene 937 0.78 ± 0.10 0.80 ± 0.16 3.60 ± 0.27 1.02 ± 0.16
Sabinene 974 - - - 0.33 ± 0.06

α-Phellandrene 1005 0.04 ± 0.01 0.12 ± 0.02 4.45 ± 0.38 -
β-Ocimene 1037 - - - 71.51 ± 0.60
α-Ocimene 1047 24.59 ± 0.05 24.52 ± 0.88 45.09 ± 0.87 11.92 ± 0.94

trans-β-Ocimene 1049 0.85 ± 0.00 0.25 ± 0.01 18.75 ± 0.23 1.09 ± 0.14
γ-Terpinene 1060 0.04 ± 0.00 - - 0.11 ± 0.03
Terpinolene 1088 0.15 ± 0.00 - - -
Alloocimene 1131 - - 3.57 ± 0.18 0.63 ± 0.10

Isoledene 1375 - - 1.61 ± 0.38 -
β-Caryophyllene 1419 1.30 ± 0.13 - 6.25 ± 0.12 0.71 ± 0.08
Aromandendrene 1440 - - - 0.24 ± 0.04

Germacrene D 1481 0.54 ± 0.04 0.15 ± 0.06 9.70 ± 0.28 0.25 ± 0.07
Valencene 1492 - 0.13 ± 0.03 3.63 ± 0.27 0.24 ± 0.04

Alcohols Benzyl alcohol 1036 3.62 ± 0.33 8.89 ± 0.64 0.84 ± 0.03 2.95 ± 0.10
Cinnamyl alcohol 1313 0.61 ± 0.13 2.96 ± 0.01 - 0.17 ± 0.04

Esters Benzyl acetate 1164 36.85 ± 0.97 28.97 ± 0.97 - 4.49 ± 0.24
Methyl salicylate 1192 1.72 ± 0.14 0.96 ± 0.14 - 2.40 ± 0.30

Bornyl acetate 1285 - 0.28 ± 0.07 - -
Methyl cinnamate 1379 - 0.05 ± 0.01 - -
Cinnamyl acetate 1445 1.31 ± 0.16 1.64 ± 0.27 - -

Phenols Eugenol 1357 10.63 ± 0.38 16.44 ± 0.30 - 0.06 ± 0.02
Aldehydes Benzyaldehyde 962 0.24 ± 0.00 - - -

Cinnamal dehyde 1274 0.18 ± 0.03 0.64 ± 0.13 - -
Aromatic p-Xylene 865 - - - 0.40 ± 0.07

hydrocarbons o-Cymene 1022 - - - 0.16 ± 0.03
m-Cymene 1023 - - 0.43 ± 0.09 -

Heterocyclic Indole 1295 9.88 ± 0.46 4.86 ± 0.63 - -
Others Phenyl-pentamethyl-disiloxane 1157 1.22 ± 0.08 0.87 ± 0.20 - 0.02 ± 0.01
Total 31 19 19 11 19

1 The values of the Kovats retention index. 2 Not detected or did not exist.
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3.4. Hierarchical Cluster Analysis of Floral Fragrance Compounds of C. praecox with Different
Floral Colors

In order to explore the relationship between C. praecox and different floral colors in
Yunnan, hierarchical cluster analysis was conducted on the main floral fragrance com-
pounds. As shown in Figure 3, the four C. praecox plants with different floral colors were
clustered into two groups. C. praecox var. concolor H1, H2 and C. praecox var. patens H4 were
clustered into one group because of their similar contents of α-ocimene in which C. praecox
var. concolor H1 and H2 were grouped into one subgroup because of the near contents of
benzyl acetate, eugenol, indole, and benzyl alcohol. However, C. praecox var. patens H3 was
individual clustered in the other group as it contained high contents of trans-β-ocimene,
β-caryophyllene, and germacrene D.
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3.5. PC Analysis (PCA) of Floral Fragrance Compounds of C. praecox with Different Floral Colors

PCA was performed in order to simplify the multidimensional dataset based on floral
fragrance compound profiles (Table 2). The variances of PC1, PC2, and PC3 were 68.409%,
24.314%, and 7.277%, respectively. In total, the cumulative contribution rate was 98.187%,
which indicated that the three PCs covered most of the floral fragrance compounds of C.
praecox in Yunnan. Moreover, we created a 3D loading plot to further explore the influence
of each floral fragrance compound on the differentiation of C. praecox with different floral
colors (Figure 4). As a result, the three compounds with the highest loading values in each
of the three PCs were selected as the main factors, which showed that α-ocimene, eugenol,
and indole contributed the most to the floral fragrance compounds. Additionally, other
compounds, including benzyl acetate, benzyl alcohol, cinnamyl acetate, trans-β-ocimene,
isoledene, germacrene D, α-phellandrene, and β-caryophyllene were also representative
floral fragrance compounds of C. praecox with different floral colors.
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4. Discussion
4.1. Comparison of Floral Fragrance Compounds of C. praecox with Different Floral Colors

Floral scents vary among C. praecox of different species or cultivars [17–21]. The
difference in floral scents resulting from the specific flower fragrance was determined by
the composition and amount of volatiles [27]. In our study, 23 floral fragrance compounds
were identified in C. praecox var. concolor (H1, H2), which is not in accordance with the
results of previous studies [17–21]. These studies have indicated that the types of floral
fragrance compounds identified in C. praecox var. concolor ranged from 26 to 38. Moreover,
the main floral fragrance compounds of C. praecox var. concolor are esters, terpenes, phenols,
alcohols, and heterocyclic compounds, whereas previous studies have found that terpenes,
esters, and alcohols are the main compounds [17–21]. Additionally, the floral fragrance
compounds with relatively high contents in C. praecox var. concolor were benzyl acetate,
α-ocimene, eugenol, benzyl alcohol, and indole. It has been reported that benzyl acetate
and benzyl alcohol are the main fragrance compounds in C. praecox var. concolor [17–20].
Interestingly, high levels of α-ocimene, eugenol, and indole were found in C. praecox var.
concolor flowers, which differ from the reported results of other studies [17–21]. Therefore,
it was speculated that α-ocimene, eugenol, and indole were the typical characteristic
compounds responsible for the floral aroma of C. praecox var. concolor in Yunnan.

In total, 23 compounds were identified in C. praecox var. patens (H3 and H4), which
is lower than the number identified in other studies (27 [17], 30 [19], 36 [20], 42 [21], and
34 [22]). The floral fragrance compounds of C. praecox var. patens are primarily terpenes,
esters, alcohols, and phenols [20]. Except for phenols, the other main floral fragrance
compounds identified in our study were similar to those reported in previous studies.
β-Ocimene was the main floral fragrance compound of C. praecox var. patens, which is
similar to the results of Li et al. [20] but different from the results of Yu et al. [19]. Feng et al.
found that although β-ocimene is a floral fragrance compound of C. praecox var. patens, it is
not the main floral fragrance compound [22]. In addition, trans-β-ocimene was identified
as the main floral fragrance compound in some C. praecox var. patens, which is consistent
with our results [22]. α-Ocimene, one of the main floral fragrance compounds, was only
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found in Yanling C. praecox [28]. Surprisingly, α-ocimene was discovered for the first time
in C. praecox var. patens.

Phenol and ester contents in C. praecox var. concolor were higher than in C. praecox var.
patens. By contrast, the content of terpenes in C. praecox var. concolor was lower than that of
C. praecox var. patens. Moreover, aldehydes and heterocyclic compounds were detected only
in C. praecox var. concolor, whereas aromatic hydrocarbons were only detected in C. praecox
var. patens. PCA showed that α-ocimene, benzyl alcohol, benzyl acetate, cinnamyl acetate,
eugenol, and indole were the main factors distinguishing C. praecox in Yunnan. β-Ocimene
is the main floral fragrance compound in C. praecox [19]. However, in the present study,
α-ocimene was found to be the main floral fragrance compound in C. praecox var. concolor
and var. patens. The results showed that a high content of benzyl alcohol was detected in C.
praecox with different floral colors, which is consistent with the results of Zhou et al. [18].
Previous studies have shown that linalool is the main floral fragrance compound emitted
from different species, such as C. praecox var. concolor (H64) [20], C. praecox var. patens [22],
Yanling C. praecox [28], and C. praecox var. intermedius [29]. However, the main alcohol
identified in this study was benzyl alcohol rather than linalool. In addition, higher contents
of benzyl acetate and indole and a lower content of cinnamyl acetate were found in C.
praecox var. concolor, and the results agree with those of Azuma et al. [30] and Li et al. [31],
respectively. Other studies have found that benzyl acetate is the main floral fragrance
compound of C. praecox [18]. Furthermore, a higher content of eugenol (10.63–16.44%) was
found only in C. praecox var. concolor, whereas only trace eugenol (0.03–2.2%) was detected
in different genotypes of C. praecox [19]. Therefore, we speculated that eugenol might be a
typical floral fragrance compound emitted from C. praecox var. concolor in Yunnan.

4.2. Comparison of Floral Fragrance Compounds of C. praecox in Different Geographical Areas

The geographical environment results in variations in floral fragrance compounds
in different plants [32,33]. In this study, 31 types of floral fragrance compounds of C.
praecox with different floral colors were identified, whereas 86, 48, 72, 31, 15, 31, 71, and
65 compounds were identified in C. praecox from Hubei [20], Chongqing [21], Jiangxi [25],
Henan [28], Japan [30], Shanghai [34], Zhejiang [35], and Shandong [36], respectively. The
typical floral fragrance compounds emitted from C. praecox in Yunnan consist of β-ocimene,
α-ocimene, benzyl alcohol, benzyl acetate, eugenol, trans-β-ocimene, and indole. As a
result, floral fragrance compounds from C. praecox in Yunnan are similar to those of C.
praecox in Hubei [20] but are different from those of C. praecox in Jiangxi [25], Shandong [36],
and Zhejiang [37].

For C. praecox var. concolor, benzyl acetate, α-ocimene, eugenol, indole, and benzyl
alcohol were observed to be the main floral fragrance compounds, which was in disagree-
ment with the studies in Sichuan and Japan [21,30]. Moreover, β-ocimene, α-ocimene, and
trans-β-ocimene were the main floral fragrance compounds of C. praecox var. patens, which
was different from the floral fragrance compounds of C. praecox var. patens in Hubei and
Chongqing [21,22]. In summary, the main floral fragrance compounds emitted from the
same variety of C. praecox in different regions were significantly different; this may be
due to the influence of the growth environment, which changes the main floral fragrance
compounds of C. praecox. Furthermore, we found that C. praecox with different floral colors
in Yunnan had a shorter flowering period than those in Henan and Sichuan [38,39]. In the
future, comparative transcriptome and metabolomics analyses are necessary in order to
better understand the fragrance mechanism and pathway in C. praecox with different floral
colors in Yunnan.

5. Conclusions

In total, 31 floral fragrance compounds were identified in different C. praecox with
different floral colors in Yunnan, among which terpenes, alcohols, esters, phenols, and het-
erocyclic compounds were the main floral fragrance compounds. Moreover, benzyl acetate,
α-ocimene, eugenol, indole, and benzyl alcohol were identified as the main floral fragrance
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compounds of C. praecox var. concolor, whereas the main floral fragrance compounds of C.
praecox var. patens were β-ocimene, α-ocimene, and trans-β-ocimene. In addition, cluster
analysis showed that C. praecox var. concolor H1, H2, and C. praecox var. patens H4 were
clustered in one group, but C. praecox var. patens H3 was individual clustered in the other
group. PCA showed that α-ocimene, benzyl alcohol, benzyl acetate, cinnamyl acetate,
eugenol, and indole are the typical characteristic floral fragrance compounds that can be
used to distinguish C. praecox with different floral colors in Yunnan.
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