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Abstract: Lumnitzera littorea and Lumnitzera racemosa are mangrove species distributed widely along
the Indonesian coasts. Besides their ecological importance, both are of interest owing to their wealth
of natural products, some of which constitute potential sources for medicinal applications. We aimed
to discover and characterize new anti-infective compounds, based on population-level sampling
of both species from across the Indonesian Archipelago. Root metabolites were investigated by
TLC, hyphenated LC-MS/MS and isolation, the internal transcribed spacer (ITS) region of rDNA
was used for genetic characterization. Phytochemical characterization of both species revealed an
unusual diversity in sulfated constituents with 3,3’,4’-tri-O-methyl-ellagic acid 4-sulfate representing
the major compound in most samples. None of these compounds was previously reported for
mangroves. Chemophenetic comparison of L. racemosa populations from different localities provided
evolutionary information, as supported by molecular phylogenetic evidence. Samples of both species
from particular locations exhibited anti-bacterial potential (Southern Nias Island and East Java
against Gram-negative bacteria, Halmahera and Ternate Island against Gram-positive bacteria).
In conclusion, Lumnitzera roots from natural mangrove stands represent a promising source for
sulfated ellagic acid derivatives and further sulfur containing plant metabolites with potential human
health benefits.

Keywords: sulfated natural products; ellagic acid; Lumnitzera; Combretaceae; mangrove;
anti-infectives; phylogenetic analysis; metabolite profiling

1. Introduction

Mangrove forests represent a unique habitat that comprises salt-tolerant plant species
(mostly trees), predominantly bordering tropical and subtropical coastlines [1]. Besides their
ecological significance, mangrove plant species have a wide variety of economic uses, such
as construction material, fodder or textiles [2,3]. In addition, many mangrove plant species
possess medicinal value and have been used traditionally in several regions of the world [4–7].
Due to the tidal influence, mangrove soils contain high levels of sulfate which is connected to
the occurrence of sulfate-reducing microbial communities [8]. Nevertheless, the investigation
of bioactive natural sulfur compounds in mangrove species was so far completely neglected.
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The most diverse mangrove systems on earth can be found in Southeast Asian seas [9].
Comprising five main and more than 17,500 smaller islands, Indonesian mangroves cover
around 30% of the total mangrove area of the world [10]. Lumnitzera littorea (Jack) Voigt and
L. racemosa Willd., two true mangrove species belonging to the plant family Combretaceae (Myr-
tales), are distributed widely across the Indonesian coastline. In Africa, where L. racemosa also
naturally occurs at the eastern coast, other members of Combretaceae (Combretum, Terminalia)
are widely used for medicinal purposes due to their anti-microbial [11–16], anti-fungal [17,18],
antioxidant and anti-inflammatory activities [16]. In Asia, L. racemosa from Taiwan was reported
to contain antihypertensive tannins [19]. Furthermore, hepatoprotective, antioxidant [20–23],
antibacterial [24,25], anti-angiogenic, anti-inflammatory [26], anti-cancer [23,27], and anti-
coagulant effects [23] were described in L. racemosa from different parts of Asia. In leaves
and twigs of L. racemosa mainly flavonoids and triterpenes [22,28] as well as phenolic acids
and their derivatives, such as gallic acid and related compounds—galloyl sugars, ellagic acid,
3,3’,4-tri-O-methylellagic acid, neolignans and tannic acid—were found [22,26]. The extract
of L. littorea leaves from Malaysia was reported to possess anti-microbial potential [29]. The
leaf n-hexane extract of this species yielded triterpenes and sterols [30] whereas the twigs
of L. littorea were described to contain macrocyclic lactones (represented by corniculatolide
derivatives) and 6,7-dimethoxycoumarin [31].

Medicinally active compounds from mangroves are not always produced by the plant
itself, but often by associated microorganisms such as endophytic fungi [32–34]. For ex-
ample, the extracts of endophytic fungi isolated from leaves of ten mangrove species from
Thailand, including L. littorea, showed some cytotoxic activity against cancer cell lines [35].
In line with the agenda of discovering new anti-infective and neuroactive constituents
while at the same time promoting the protection and sustainable development of mangrove
ecosystems, our work was focused on two mangrove species, namely Lumnitzera littorea
and L. racemosa. Our aim was to (1) investigate the diversity of natural products present
in the roots of L. littorea and L. racemosa from Indonesia, (2) evaluate selected biological
effects, and (3) investigate the phylogenetic relationships of the two species as well as the
chemophenetic patterns of their natural products across Indonesia. Therefore, we combined
a molecular phylogeny of Lumnitzera based on the internal transcribed spacer (ITS) region
with phytochemical analyses by hyphenated chromatographic and tandem mass spectro-
metric techniques. Chromatographic separation using reversed phase HPLC connected
to high resolution ESI-MS that allow the determination of accurate mass and elemental
composition represents a suitable technique to identify sulfur containing metabolites [36].
For the calculation of the molecular composition of sulfur-containing compounds, the small
negative mass defect of sulfur isotopes and the isotopic pattern of sulfur distinct from that
of carbon, nitrogen and hydrogen can be applied [36]. Since sulfur in addition to the most
abundant isotope 32S (95%) possesses a 34S isotope (4.2%), also the larger as usual M+2
peak contributes to the determination of sulfur in compounds or fragments. Nevertheless,
for complete structure elucidation, compounds have to be isolated and characterized by
NMR. Phylogenetic approaches can be useful for identifying plant lineages with potential
medicinal properties [37,38], the interpretation of chemical profiles [39], and might be
a powerful tool for discovering novel compounds or novel compound variants [40–42],
including antibiotic sources [43,44].

2. Materials and Methods
2.1. Plant Material

Leaf and root material of Lumnitzera littorea (Jack) Voigt and Lumnitzera racemosa Willd.
was collected from 27 locations across the Indonesian archipelago (Table 1). Voucher
specimens of the plants are deposited at Herbarium Bogoriense (BO), Indonesian Institute of
Sciences (LIPI). Root samples for phytochemical analyses were cleaned and air-shadow-
dried in the field, then kept in resealable zipper storage bags until being used for further
treatment. For phylogenetic analyses, fresh leaves from the same plants were collected and
dried in silica gel in resealable zipper storage bags.
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Table 1. Samples from L. littorea (no. 1–12) and L. racemosa (no. 13-31) used for phytochemical and DNA analyses. Abbreviations: J.M. = Jeprianto Manurung, Fr = Fine root, Rb = Root
bark, NS = North Sumatra, EK = East Kalimantan, SS = Southeast Sulawesi, NS = North Sulawesi, CS = Central Sulawesi, ENT = East Nusa Tenggara.

No. Code Collector´s No. Voucher No. Collection Date GenBankAccession (ITS) Location
Coordinates Lat.

(S)/ Long. (E) Tissue Extract Amount (mg) Growth Form

1 LL1 J.M. 02L-02 BO1959909 20-04-2018 MT251443 Ladong Village, Aceh 5.61/95.49 Rb 11 tree

2 LL2 J. M. 03L-7 BO1959584 25-04-2018 MT251447 Northern Nias Island 1.51/ 97.37 Fr 6 tree

3 LL3 J.M. 03L-10 BO1959583 26-04-2018 MT251438 Southern Nias Island 0.56/97.78 Fr 8 tree

4 LL4 J.M. 04L-3 BO1959578 30-04-2018 MT251446 Batam Island 0.91/104.15 Fr 7 tree

5 LL5 J.M. 05L-10 BO1959420 09-05-2018 MT251437 Balikpapan, EK −1.20/116.84 Fr 2 tree

6 LL6 J.M. 07L-8 BO1959417 16-05-2018 MT251442 Kendari, SS −4.48/122.13 Rb 13 tree

7 LL7 J.M. 08L-10 BO1959415 19-05-2018 MT251444 Manado, NS 1.60/124.85 Rb 10 tree

8 LL8 J.M. 09L-15 BO1959410 23-05-2018 MT251439 Halmahera Island, Maluku 1.04/127.50 Rb 4 tree

9 LL9 J.M. 13L-12 BO1959404 31-05-2018 MT251440 Peling Island, CS −1.23/123.40 Fr 7 tree

10 LL10 J.M. 14L-11 05-06-2018 MT251436 Luwuk, CS −0.74/122.96 Fr 6 tree

11 LL11 J.M. 16L-3 BO1959651 29-06-2018 MT251445 Banten, West Java −6.83/105.45 Rb 21 tree

12 LL12 J.M. 24L-4 BO1959653 27-07-2018 MT251441 Banyuwangi, East Java −8.59/114.27 Rb 14 tree

13 LR1_1
J.M. 01-13

BO1959913 18-04-2018 MT251462
Batu Bara, North Sumatra

3.22/99.57
Fr 7 treeLR1_2 MT251463

LR1_3 MT251464

14 LR2 J.M. 02R-01a BO1959908 21-04-2018 MT251467 Ladong Village, Aceh 5.65/95.45 Fr 8 shrub

15 LR3_1
J.M. 02R-02L

BO1959580 21-04-2018 MT251461
Durung Village, Aceh

5.61/95.49
Rb 22 shrubLR3_2 MT251470

LR3_3 MT251469

16 LR4_1
J.M. 5R-11

BO1959421 08-05-2018 MT251473
Kartanegara, EK

−1.05/117.10
Fr 4 treeLR4_2 MT251471

LR4_3 MT251468

17 LR5 J.M. 06R-3 BO1959416 11-05-2018 MT251454 Makassar, South Sulawesi −5.49/119.32 Fr 10 shrub

18 LR6 J.M. 07R-3 BO1959413 16-05-2018 MT250380 Kendari, SS −4.51/122.10 Fr 6 shrub

19 LR7 J.M. 10R-2 BO1959402 24-05-2018 MT251456 Ternate Island, Maluku 0.84/127.31 Fr 3 shrub

20 LR8_1
J.M. 11R-8

BO1959776 29-05-2018 MT251472
Seram Island, Maluku

−3.35/128.36
Fr 2 shrubLR8_2 MT251466

LR8_3 MT251465

21 LR9 J.M. 13R-12 BO1959649 04-06-2018 MT251458 Peling Island, Central Sulawesi −1.23/123.40 Fr 9 shrub

22 LR10 J.M. 16R-1 BO1959655 29-06-2018 MT251457 Banten, West Java −6.83/105.45 Rb 10 tree

23 LR11 J.M. 18R-14 BO1959641 05-07-2018 MT251451 East Sumba, ENT −9.67/120.33 Fr 14 shrub

24 LR12 J.M. 18R-15 BO1959646 05-07-2018 MT251450 East Sumba, ENT −9.64/120.24 Fr 19 shrub

25 LR13 J.M. 17R-13 BO1959642 04-07-2018 MT251449 Kupang, ENT −10.15/123.64 Fr 5 shrub
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Table 1. Cont.

No. Code Collector´s No. Voucher No. Collection Date GenBankAccession (ITS) Location
Coordinates Lat.

(S)/ Long. (E) Tissue Extract Amount (mg) Growth Form

26 LR14 J.M. 19R-15 BO1959644 09-07-2018 MT251459 Labuan Bajo, ENT −8.46/119.88 Fr 37 tree

27 LR15 J.M. 20R-3 BO1959423 11-07-2018 MT251453 Komodo Island, ENT −8.54/119.55 Rb 32 tree

28 LR16 J.M. 21R-9 BO1959591 13-07-2018 MT251455 Padar Island, ENT −8.64/119.58 Rb 19 tree

29 LR17 J.M. 22R-15 BO1959588 13-07-2018 MT251448 Rinca Island, ENT −8.65/119.72 Fr 21 tree

30 LR18 J.M. 23R-3 BO1959586 20-07-2018 MT251460 Bali Island −8.73/115.20 Fr 9 tree

31 LR19 J.M. 24R-15 BO1959640 27-07-2018 MT251452 Banyuwangi, East Java −8.59/114.27 Fr 17 tree
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2.2. Root Sample Extraction

Air-dried samples (root bark and fine roots) were ground using a ball mill (Retsch,
MM400) for two minutes. In extraction experiments with n-hexane, ethyl acetate and
methanol, the highest extract amount could be obtained with methanol. Therefore, 100 mg
of each sample were vortexed with 5 mL methanol in Eppendorf tubes before sonication
for an hour. All samples were centrifuged for fifteen minutes using a Megafuge 1.0R
(Unity Lab Services) to gain pure solutions. The extracts were aliquoted for analytical
investigations and bioassay screening. The crude extracts were directly used for TLC and
low-resolution ESI-MS analyses. For LCMS measurements, 250 µL of each extract were
purified by an SPE cartridge (RP18, Chromabond, Macherey-Nagel, Düren, Germany),
using methanol as eluent, and the concentration was afterwards adjusted to 1 mg/mL.

2.3. General Experimental Procedures

Thin layer chromatography (TLC) analyses were done with silica gel 60 F254 (Merck,
Darmstadt, Germany) using the solvent system CHCl3:MeOH 6:4. Compound spots were
visualized using long-wavelength UV light (366 nm), short-wavelength UV light (254 nm)
and spraying with vanillin-H2SO4 reagent, followed by heating. As sample LR15 in TLC
displayed stronger spots compared to the others, preparative TLC (thickness 0.5 mm) was
performed using the same conditions. The major bands were scraped off and extracted to
verify the compound identity by MS investigations.

Low-resolution ESI-MS spectra were obtained from a Sciex API-3200 instrument
(Applied Biosystems, Concord, ON, Canada) combined with an HTC-XT autosampler
(CTC Analytics, Zwingen, Switzerland).

1H and 13C NMR spectra were recorded on an Agilent DD2 400 NMR spectrometer at
399.917 and 100.570 MHz, respectively. Chemical shifts are reported relative to TMS (1H
NMR) or peaks of solvent (13C, CD3OD 49.0 ppm and DMSO-d6 39.5 ppm). For samples
with low concentration, 1H and 13C NMR spectra were recorded on a Bruker Avance Neo
500 NMR spectrometer at 500.234 and 125.797 MHz, respectively, using a 5 mm prodigy
probe with the TopSpin 4.0.7 spectrometer software. 2D NMR spectra were recorded on
an Agilent VNMRS 600 MHz NMR spectrometer using standard CHEMPACK 8.1 pulse
sequences (1H, 13C gHSQCAD and 1H, 13C gHMBCAD) implemented in Varian VNMRJ
4.2 spectrometer software.

Preparative HPLC was performed using an Agilent 1260/1290 system equipped with
a quaternary pump and a diode array (DAD) detector (Agilent, VL+). Chromatographic
separation was performed using a Macherey-Nagel Chromcart C18ec column (ID 4.6 mm,
length 150 mm, particle size 5 µm) using bidest. water (TKA ultrapure water system) and
methanol (Roth, Rotisolv HPLC Gradient Grade) as eluents.

2.4. UHPLC-ESI-QqTOF-MS and MS/MS

Samples (2 µL) were loaded on an EC 150/2 Nucleoshell RP 18 column (C18-phase,
ID 2 mm, length 150 mm, particle size 2.7 µm, Macherey Nagel, Düren, Germany) under
isocratic conditions (5% eluent B, 2 min), and separated using a linear gradient from 5% to
95% eluent B in 17 min. Separation was performed on an ACQUITY UPLC I-Class UHPLC
System (Waters GmbH, Eschborn, Germany) with a flow rate of 0.4 mL/min and 40 ◦C
column temperature. Eluents A and B were 0.3 mmol/L aq. ammonium formate and
acetonitrile, respectively. The column effluent was introduced on-line into a TripleTOF 6600
QqTOF mass spectrometer equipped with a DuoSpray ESI/APCI ion source, operating
in negative ion SWATH (Sequential Windowed Acquisition of All Theoretical Fragment
Ion Mass Spectra) mode and controlled by the Analyst TF 1.7.1 software (AB Sciex GmbH,
Darmstadt, Germany). The TOF scans (MS experiments) were acquired in the m/z range
of 65 to 1250 (accumulation time 100 ms) with an ion spray voltage of −4.5 kV and 450 ◦C
source temperature. For precursor selection, totally 38 SWATH windows (total m/z range
of 65–1250) of 26 m/z were used. Nebulizer and drying gases were set to 60 and 70 psi,
respectively, whereas the curtain gas was set to 55 psi. Declustering (DP) and collision (CE)
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potentials were−35 and−10 V, respectively. The product ion spectra (tandem mass spectra,
MS/MS) were acquired in the high sensitivity mode (accumulation time 20 ms) in the m/z
range of 65–1250 using unit Q1 resolution with mass resolution above 30,000. Collision
potential (CE) was set to −35 V, whereas collision energy spread (CES) was 15 V. The data
were evaluated by Peak View 1.2.0.3 software (AB Sciex GmbH, Darmstadt, Germany).

2.5. RP-UHPLC-ESI-LIT-Orbitrap-MS

Samples (2 µL) were loaded on an ACQUITY UPLC reversed-phase BEH column (C18-
phase, ID 1 mm, length 50 mm, particle size 1.7 µm, Waters GmbH, Eschborn, Germany)
under isocratic conditions (95% A + 5% eluent B, 2 min), and separated using a linear
gradient from 5% to 95% eluent B in 10 min using water and acetonitrile (both containing
0.1% v/v formic acid) as eluents A and B, respectively. The separations were performed
with a Dionex Ultimate 3000 UHPLC System (Thermo Fisher Scientific, Bremen, Germany)
at the flow rate of 400 µL/min and column temperature of 40 ◦C. The column effluents
were transferred on-line into a hybrid LTQ-Orbitrap Elite mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany), equipped with a heated electrospray ionization (HESI)
source at 300 ◦C and operated in the negative ion mode. The analysis was performed under
ion spray (IS) voltage of 3.8 kV, with nebulizer and auxiliary gases set to 10 and 5 psig,
respectively. The capillary temperature was set to 325 ◦C. The spectra were acquired at
the mass to charge ratio (m/z) range of 120–2000 and resolution of 30,000. Tandem mass
spectra were acquired with isolation width of 0.5–2 m/z and collision induced dissociation
mode (30–35% normalized intensity), activation time 10 ms and activation frequency 250.
Spectra evaluation was performed in Xcalibur 2.2 software (Thermo Fisher Scientific).

2.6. Extraction and Isolation

62.58 g roots of LR7 were exhaustively extracted with methanol to give 3.86 g of crude
extract after evaporation of the solvent.

1.5 g crude extract was separated on a silica gel column with an increasing polar
gradient, started with pure chloroform, followed by 2.5%, 5%, 10% and 50% methanolic
chloroform and a final elution with pure methanol (volume of each step: 250 mL). Based
on the TLC profiles, the fractions were combined into 21 main fractions. Fraction 5, eluted
with 2.5% MeOH, could be identified as 3,3’4’-tri-O-methylellagic acid (16) (12 mg, Rf = 0.92
in CHCl3/MeOH (3:1, v/v) on SG60). Fraction 18 (252.6 mg) eluted with 50% MeOH was
further separated on a Sephadex LH20 column eluted with MeOH followed by repeated
CC on a reverse phase column (C18) using H2O:MeOH (60:40, v/v) as eluents to give
3,3’4’-tri-O-methylellagic acid 4-sulfate (15) (3.9 mg, Rf = 0.33 in MeOH/H2O (2:3, v/v)
on RP18) and mixtures of compounds 2, 3 and 4. Final purification was performed by
preparative HPLC. Compound 2 (0.6 mg, Rf = 0.70 in MeOH/H2O (2:3, v/v) on RP18) was
purified using a water (A)/methanol (B) gradient system (0–1.5 min, 20% B; 1.5–14 min,
20–50% B, 14–16 min 50–100% B (isocratic for 8 min)) and a flow rate of 0.8 mL/min at
25 ◦C, absorbance detection at 210 to 254 nm (Rt = 6.605 min). Compound 3 (3.2 mg,
Rf = 0.15 in MeOH/H2O (2:3, v/v) on RP18) was obtained using the following gradient:
0–18 min, 40% B; 18–20 min, 40–100% B (isocratic for 10 min), and a flow rate of 0.6 mL/min
at 15 ◦C, absorbance detection at 210 to 254 nm (Rt = 15.41 min).

1.35 g crude extract were partitioned by liquid-liquid-extraction between water and
ethyl acetate. The ethyl acetate phase (419.8 mg) was further separated using a Sephadex
LH20 column eluting with MeOH (h: 37.5 cm, d: 2.5 cm). Based on TLC profiles seven main
fractions were combined. Fraction 6 could be identified as ellagic acid (6) (7.5 mg, Rf = 0.08
in H2O/MeOH (3:2, v/v + 1% formic acid) on RP18). Rechromatography of fraction 5
(16.2 mg) on Sephadex LH20 with MeOH (h: 76 cm, d: 2.5 cm) resulted in the isolation of
3,4-di-O-methylellagic acid (13) (4.7 mg, Rf = 0.02 in H2O/MeOH (3:2, v/v + 1% formic
acid) on RP18).

4-(4-Hydroxyphenyl)-2-butanol 2-sulfate (2): white amorphous compound; 1H NMR
(400 MHz, methanol-d4) δ 7.03 (d-like, J = 8.4 Hz, 2H, H-2’/6’), 6.67 (d-like, J = 8.4 Hz,
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2H, H-3’/5’), 4.46 (m, 1H, H-2), 2.55-2.70 (m, 2H, H-4), 1.89 (m, 1H, H-3a), 1.75 (m, 1H,
H-3b), 1.33 (d, J = 6.3 Hz, 3H, H-1). 13C NMR (δ determined from cross peaks in HSQC
and *HMBC experiments, methanol-d4) δ 156.4* (C-4’), 134.6* (C-1’), 130.3 (C-2’/6’), 116.1
(C-3’/5’), 76.8 (C-2), 40.5 (C-3), 31.8 (C-4), 21.2 (C-1). 2D-NMR see Table S2.; HRESIMS m/z
245.0484 [M-H]- (calcd for C10H13SO5, 245.0489).

4-(4-Sulfoxy-3-methoxyphenyl)-butan-2-one (3): yellow oily compound; 1H NMR
(400 MHz, methanol-d4) δ 6.77 (d, J = 2.0 Hz, 1H, H-2’), 6.68 (d, J = 8.0 Hz, 1H, H-5’), 6.61
(dd, J = 8.0, 2.0 Hz, 1H, H-6’), 3.82 (s, 3H, 3’-OMe), 2.76 (s, 4H, H-3’/4’), 2.11 (s, 3H, H-1).
13C NMR (126 MHz, methanol-d4) δ 211.5 (C-2), 149.0 (3’), 145.8 (C-4’), 134.0 (C-1’), 121.7
(C-6’), 116.2 (C-5’), 113.1 (C-2’), 56.4 (3’-OMe), 46.3 (C-3), 30.5 (C-4), 30.1 (C-1). 2D-NMR
see Table S3.; HRESIMS m/z 273.0435 [M-H]- (calcd for C11H13SO6 273.0438).

Ellagic acid (6): 1H NMR (400 MHz, DMSO-d6) δ 7.46 (s, 2H, H5/H5′), HRESIMS m/z
300.9996 [M-H]− (calcd for C14H6O8 300.9990).

3,4-O-Dimethylellagic acid (13): yellowish amorphous compound, 1H NMR (600 MHz,
DMSO-d6) δ 7.53 (s, 1H, H5), 7.09 (s, 1H, H5′), 3.99 (s, 4H, 3-OMe), 3.96 (s, 3H, 4-OMe). 13C
NMR from HMBC (600/150 MHz, DMSO-d6) δ 160.22 (C-7), 159.15 (C-7’), 156.46 (C-4‘),
152.73 (C-4), 151.92 (C-3‘), 141.79 (C-2), 140.04 (C-3), 134.51 (C-2‘), 115.00 (C-1), 114.97
(C-1‘), 113.09 (C-6‘), 112.95 (C6). 105.83 (C-5), 104.63 (C-5‘), 60.83 (3-OMe), 56.32 (4-OMe).
2D-NMR see Table S4. HRESIMS m/z 329.0370 [M-H]− (calcd for C16H10O8 329.0303).

3,3’4’-Tri-O-methylellagic acid 4-sulfate (15): white yellowish amorphous compound;
1H NMR (400 MHz, DMSO-d6) δ 8.24 (s, 1H, H-5), 7.66 (s, 1H, H-5′), 4.12 (s, 3H, 3-OMe),
4.06 (s, 3H, 3′-OMe), 4.02 (s, 3H, 4′-OMe). 13C NMR (126 MHz, DMSO-d6) δ 158.46 (C-7′),
158.31 (C-7), 154.37 (C-4′), 147.64 (C-4), 143.32 (C-3), 141.34 (C-3’), 140.89 (C-2’), 140.86
(C-2), 117.61 (C-5), 114.13 (C-1′), 112.96 (C-1), 112.83 (C-6′), 111.52 (C-6), 107.50 (C-5′), 61.47
(3-OMe), 61.32 (3′-OMe), 56.75 (4′-OMe). 2D-NMR see Table S5; HRESIMS m/z 423.0024
[M-H]− (calcd for C17H11SO11 423.0028)

3,3′,4-Tri-O-methylellagic acid (16): white yellowish amorphous compound. 1H NMR
(400 MHz, DMSO-d6) δ 7.61 (s, 1H, H-5′), 7.52 (s, 1H, H-5), 4.06 (s, 3H, 3-OMe), 4.04 (s, 3H,
3′-OMe), 4.00 (s, 3H, 4′-OMe); 13C NMR (126 MHz, DMSO-d6) δ 158.44 (C-7′), 158.24 (C-7),
153.62 (C-4′), 152.96 (C-4), 141.37 (C-2′), 140.85 (C-3′), 140.67 (C-2), 140.18 (C-3), 113.33
(C-6′), 112.39 (C-6), 111.74 (C-1′), 111.67 (C-5), 110.80 (C-1), 107.33 (C-5′), 61.19 (3′-OMe),
60.83 (3-OMe), 56.60 (C-4′). 2D NMR see Table S6; ESI-HRMS m/z 343.0423 [M-H]- (calcd
for C17H11O8 343.0459).

2.7. DNA Extraction, Polymerase Chain Reaction, and Sequencing

Genomic DNA was isolated from leaf samples using the Nucleo Spin Plant II Kit
(Macherey-Nagel GmbH & Co. KG, Dueren, Germany), with minor modifications, using
buffer PL2 and adding 20 µL RNAse, 30 µL mercaptoethanol and PVP (2%). The yield of
DNA extraction was measured using a Qubit® 3.0 Fluorometer (Thermo Fischer Scientific,
Waltham, MA, USA) and DNA bands were visualized with SYBR® Safe DNA gel stain
(Thermo Fisher Scientific) on 1% agarose gels (1× TAE buffer solution) using a GenoPlex
VWR® gel documentation system with GenoCapture version 7.12.07.0 (Synoptics Ltd.,
Cambridge, UK). We performed polymerase chain reaction (PCR) of the ITS region, which
comprises the ITS1 spacer, 5.8S rRNA gene, and ITS2 spacer using primers 17SE_m (5’-
CGGTGAAGTGTTCGGATCG- 3’) and 26SE_m (5’-CGCTCGCCGTTACTAGGG-3’) [45],
with reaction volumes of 25 µL, including 2 µL of genomic DNA, 0.3 µL of each primer,
0.5 µL BSA, 1µL DMSO and 20.9 µL, and 1 × Dream TaqGreen Master Mix, on a Labcycler
Gradient PCR machine (SensoQuest GmbH, Germany). The initial denaturation step was
set at 95 ◦C for 2 min, followed by 35 cycles of denaturation at 95 ◦C for 1 min, primer
annealing at 53 ◦C for 1 min, extension at 72 ◦C for 2 min, followed by final extension at
72 ◦C for 10 min. PCR products were purified using a Nucleo Spin Gel and PCR clean-up
kit (Macherey-Nagel GmbH & Co. KG, Dueren, Germany). The purified DNA samples
were then measured using an Eppendorf Biophotometer to adjust the DNA concentration
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before Sanger sequencing at LGC Genomics GmbH, Berlin, Germany, using the same
primers as mentioned above.

2.8. Phylogenetic Analyses

All sequences were aligned using the MUSCLE algorithm as implemented in Geneious
6.1.8 [46] and corrected by hand. Phylogenetic analyses were done using Maximum
Likelihood (ML) with RAxML [47,48], and Bayesian inference with MrBayes v3.2.7 [49].
We used the GTR + Γ substitution model in all analyses to ensure comparability between
the Maximum Likelihood and Bayesian analyses. In RaxML, we inferred the maximum
likelihood tree with 100 non-parametric bootstrap replicates. In MrBayes, we ran the
inference for 5 million generations (sampling every 5000 generations) with four runs and
four chains each. The appropriateness of sampling (all Effective Sample Sizes (ESS) >200)
was checked in Tracer v1.7.1 [50], before building a majority-rule consensus tree (with
2 million generations excluded as burn-in). In both analyses, Laguncularia racemose (L.)
C.F.Gaertn. was set as outgroup.

2.9. Anti-infective Bioassays

Crude extracts (50 and 500 µg/mL) were tested in triplicate for antibacterial activity
against the Gram-negative Aliivibrio fischeri and the Gram-positive Bacillus subtilis following
the procedure described by dos Santos et al. [51]. Chloramphenicol (100 µM) was used as
positive control and induced the complete inhibition of bacterial growth. The results are
presented as relative values (% inhibition) in comparison to the negative control (bacterial
growth in medium containing 1% DMSO without test compound = 0% inhibition). Negative
values indicate an increase of bacterial growth, which is common with testing extracts
containing further nutrients by nature.

The anthelmintic bioassay for all extracts (500 µg/mL) was performed in triplicate
according to the method developed by Thomson and coworkers [52] using the model
organism Caenorhabditis elegans (Bristol N2 wild-type strain) that previously was shown to
correlate with anthelmintic activity against parasitic trematodes. The solvent DMSO (2%)
and the standard anthelmintic drug ivermectin (10 µg/mL, 100% dead worms after 30 min
incubation) were used as negative and positive controls, respectively. The number of dead
and living nematodes in each sample was counted using the microscope Olympus CKX41.
Results are given as percentage of dead worms.

The cytotoxic activity of selected samples (LL3, LL11, LR5, LR15) was evaluated at
the concentrations of 0.05 and 50 mg/mL against the human prostate cancer cell line PC3
and the colon adenocarcinoma cell line HT-29 by determining cell viability in MTT and CV
assays as described previously [51]. Digitonin (125 g/mL) was used as positive control.
The results are given as percentage of control values without treatment (=100%).

3. Results and Discussion
3.1. Phytochemcial Analyses

The metabolite profiles of roots from 12 accessions of Lumnitzera littorea and 19 acces-
sions of L. racemosa collected across Indonesia were investigated by TLC (Figure 1) and
liquid chromatography, coupled on-line to mass spectrometry (LC-MS) or tandem mass
spectrometry (LC-MS/MS). For structure verification, selected compounds were isolated
and investigated by nuclear magnetic resonance spectroscopy (NMR).
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Quadrupole-time of flight mass spectrometry (QqTOF-MS) allowed annotation of 21 
individual metabolites in the total ion current chromatograms (TICs) of L. littorea (LL11) 
and L. racemosa (LR15) root extracts (Table 2, Figure 2). The majority of the analytes could 
be detected in both species, while compound 17 could only be found in L. littorea, and 
constituents 7 and 10 are predominantly occurring in L. racemosa (Figure 2). These com-

Figure 1. TLC profiles of root extracts from Lumnitzera littorea and L. racemosa showing the occurrence of dimethylellagic
acid sulfate (9), 3,4-dimethylellagic acid (13), 3,3’,4’-trimethylellagic acid 4-sulfate (15) and 3,3’,4’-trimethylellagic acid
(16): (A) Detection of bands at 366 nm (fluorescence), (B) Detection of bands at 254 nm (fluorescence quench). The red box
highlights the samples LR1, LR2, LR3, LR4 and LR8 forming “Clade 2” in the phylogenetic analysis (Figure 4).

Quadrupole-time of flight mass spectrometry (QqTOF-MS) allowed annotation of
21 individual metabolites in the total ion current chromatograms (TICs) of L. littorea (LL11)
and L. racemosa (LR15) root extracts (Table 2, Figure 2). The majority of the analytes
could be detected in both species, while compound 17 could only be found in L. littorea,
and constituents 7 and 10 are predominantly occurring in L. racemosa (Figure 2). These
compounds were successfully cross-annotated in the root extracts obtained from other
accessions by ultra-high-performance liquid chromatography – quadrupole mass spec-
trometry (RP-UHPLC-Q-MS) with detection in UV and visible (UV-VIS) spectra (Table S1,
Figure S2).
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Table 2. Metabolites annotated in roots of Lumnitzera littorea and L. racemosa by reversed phase ultra-high-performance chromatography-tandem mass spectrometry (RP-UHPLC-MS/MS).
The annotated metabolites are numbered according to peak numbers in Figure 2. Individual tandem mass spectra are shown in Figure S1.

No tR
(min)

m/z [M−H]−
Observed

m/z [M−H]−
Calculated Elemental Composition Fragmentation Patterns RDB Error (ppm) Assignment

1 3.5 305.0702 305.0700 C12H18SO7 96.9596 (54) 4 0.7 unknown

2 3.8 245.0488 245.0489 C10H14SO5

79.9566 (22), 96.9592 (53), 130.9649 (9),
165.0506 (100), 168.9878 (77), 201.8320 (8),

219.8438 (8), 243.0313 (7), 245.0478 (53)
4 −0.4 4-(4-hydroxyphenyl)-2-butanol

2-sulfate

3 3.9 273.0436 273.0438 C11H14SO6 193.0867 (100), 258.0201 (4), 273.0434 (6) c 5 −0.7
4-(4-sulfoxy-3-methoxy

phenyl)-2-butanone
(zingeron sulfate)

4 3.9 275.0591 275.0595 C11H16SO6

79.9567 (30), 121.0274 (16), 135.0441 (6),
178.0625 (15), 180.0786 (100), 193.0859 (35),

195.1019 (63), 273.0418 (19), 275.0583
(47).180.0791 (6), 195.1025 (100), 260.0357

(5), 275.0592 (6) c

4 −1.5 unknown(e.g. zingerol sulfate)

5 4.4 499.1267 499.1280 C22H28SO11 96.9594 (5), 499.1267 9 −2.6 unknown

6 a 4.4 300.9989 300.9990 C14H6O8
173.0237 (4), 201.0188 (5), 229.0121 (5),

283.9959 (6), 299.9890 (6), 300.9992 (100) 12 −0.3 ellagic acid

7b 5.3 394.9707 394.9715 C15H8SO11 299.9906 (41), 315.0141 (100), 394.9662 (4) 12 −2.0 methylellagic acid sulfate

8 5.5 487.0179 487.0188 C18H16SO14
300.9981 (15), 316.0218 (17), 331.0445 (37),

375.0351 (100) 11 −1.8 unknown ellagic acid derivative

9 5.7 408.9898 408.9871 C16H10SO11 298.9820 (11), 314.0063 (40), 329.0256 (100) 12 −6.6 dimethylellagic acid sulfate,
isomer I

10 b 6.0 551.1027 551.1026 C24H24O15
312.9971 (4), 328.0211 (14), 343.0452 (100),

491.0806 (2) 13 0.2 unknown trimethyl ellagic
acid derivative

11 6.1 369.1221 369.1225 C14H26SO9
96.9593 (17), 177.0397 (18), 256.9953 (14),

369.1211 (100) 2 −1.1 unknown

12 6.3 449.2027 449.2028 C20H34O11

81.0338 (8), 83.0500 (57), 127.0395 (23),
233.1026 (100), 343.1388 (9), 361.1494 (6),

449.2016 (64)
4 −0.2 unknown

13 6.4 329.0301 329.0303 C16H10O8
242.9944 (5), 270.9875 (35), 298.9824 (60),

314.0052 (100), 329.0290 (29) 12 −0.6 3,4-O-dimethylellagic acid

14 6.5 408.9867 408.9871 C16H10SO11 298.9813 (6), 314.0049 (15), 329.0292 (100) 12 −1.0 dimethylellagic acid sulfate,
isomer II

15 6.9 423.0035 423.0028 C17H12SO11
297.9752 (5), 312.9987 (42), 328.0223 (100),

343.0480 (100), 423.0026 (5) 12 1.7 3,3’,4’-trimethyl ellagic acid
4-sulfate
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Table 2. Cont.

No tR
(min)

m/z [M−H]−
Observed

m/z [M−H]−
Calculated Elemental Composition Fragmentation Patterns RDB Error (ppm) Assignment

16 7.7 343.0455 343.0459 C17H12O8
269.9798 (9), 285.0031 (6), 297.9744 (28),

312.9981 (69), 328.0217 (100), 343.0443 (18) 12 −1.2 3,3’,4’-trimethyl ellagic acid

17 a 9.8 487.3425 487.3429 C30H48O5
379.3010 (12), 391.3011 (11), 393.3163 (8),
409.3113 (100), 421.3114 (26), 441.3372 (8) 7 −0.8 unknown triterpene acid

18 12.2 265.1476 265.1479 C12H26SO4

79.9562 (12), 96.9596 (100), 98.9556
(9),134.8930 (5), 166.8646 (4), 185.8829 (5),

201.8339 (6), 203.8311 (4) 265.1468 (95)
0 −1.1 unknown aliphatic sulfate

19 13.4 309.1733 309.1741 C14H30SO5 96.9604 (45), 122.9761 (5), 309.1744 (100) c 0 −2.6 unknown aliphatic sulfate

20 13.4 311.1685 311.1686 C17H28SO3 183.0113 (28), 311.1677 (100) 4 −0.3 unknown

21 14.6 325.1833 325.1843 C18H30SO3 183.0111 (23), 325.1833 (100) 4 −3.1 unknown

The metabolites were annotated by the exact m/z values and tandem mass spectra (MS/MS) of corresponding [M−H]− ions in both species or exclusively in L. littorea a (LL11) or L. racemosa b (LR12)
by RP-UHPLC, coupled on-line to a quadrupole-time of flight (QqTOF) or hybrid linear ion trap-orbital trap (LIT-Orbitrap) c mass spectrometer. Elemental compositions and RDB values refer to the
non-ionized compounds.
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Figure 2. Overlay of the total ion chromatograms (TICs), acquired for the methanolic extracts obtained from Lumnitzera
littorea (red, LL11) and L. racemosa (blue, LR15) roots (A) and tandem mass spectrum, acquired for the m/z 423.0 correspond-
ing to 3,3’,4’-tri-O-methylellagic acid 4-sulfate (15) (B). The insert in A represent the chromatogram section in the tR range
3.0–6.8 min. The individual annotated metabolites are numbered with rising retention time according to Table 2.

The major metabolites detected in samples from both species were ellagic acid deriva-
tives (Figures 1–3, Table 2), mostly O-methylated at different positions. Commonly, ellagic
acid derivatives, including ellagitannins, are widespread in Combretaceae: Ellagic acid
and several methylated derivatives were previously detected in leaves and twigs of L. race-
mosa [26,30] and in related species such as, e.g., in Terminalia species which are widely used
in traditional medicine [53], in Pteleopsis hylodendron Mildbr. [54] and in Combretum alfredii
Hance [55]. In our samples, the broad bands in TLCs along with multiple signals in specific
extracted ion chromatograms (XICs) acquired in RP-UHPLC-QqTOF-MS experiments, indi-
cate the presence of several positional isomers, i.e., compounds characterized by the same
molecular weight, but featured with different substitution patterns. Such O-methylated
species can be assigned by characteristic losses of 15 u, accompanying formation of an odd
[M-H-15]− ion [53]. The corresponding signals are characteristic for methyl substitution
both in cyclic [56] and aromatic (often in combination with a carbonyl loss) systems [57].
High intensities of such signals in tandem mass spectra of phenolic compounds typically
indicate methylation as part of a methoxy group (OCH3) [58].
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Figure 3. Ellagic acid derivatives and phenylbutanoides detected in root samples from Lumnitzera littorea and L. racemosa.
The location of methyl and sulfate residues in compounds 7, 9 and 14 is not determined. Compound numbers refer to peak
numbers shown in Figure 2/Table 1.

Surprisingly, most of the O-methylated ellagic acid derivatives contain a sulfate moiety
(Figure 3). This moiety can be easily identified by a characteristic loss of 80 u from the
deprotonated ions, corresponding to the cleavage of sulfur trioxide (SO3) under CID con-
ditions resulting in the formation of characteristic [M−H−SO3]− fragments (for example
m/z 315.0140 and 329.0296 for 7 and 9, respectively, Table 2, Supplementary Figure S1).
This neutral loss is well-known for sulfated phenolic compounds [59] which not only
occur naturally in plants (reviewed by Correira de Silva and co-workers [60]), and marine
organism [61,62] but are also quite typical as an important group of polyphenol metabolites
dedicated for kidney-clearance from human plasma [63]. In addition to the characteristic
loss of 80 u, the tandem mass spectra of sulfated compounds feature diagnostic signals
in the low m/z range, which can be attributed to SO3

− (m/z 79.9567) and HSO4
− (m/z

96.9594) (Table 2 and Supplementary Figure S1). However, to the best of our knowledge,
sulfated ellagic acid derivatives were not reported in mangrove species before.

Remarkably, further sulfur containing compounds could be detected (compounds 1–5,
8, 11, 18–21, Table 1, Figure S1). In compounds 20 and 21 the sulfur appears to be integrated
in another form than as sulfate, based on the molecular formula and the MS/MS spectra.
However, the exact structures of these compounds could not be assigned based on the ac-
quired SWATH tandem mass spectra. Compounds 8 (m/z 487.0179) and 10 (m/z 551.1027)
share common fragments with ellagic acid (6) and trimethylellagic acid (16), respectively,
suggesting a structural relationship. Indeed, the mass difference of 208 u between 10 and
16 is, most likely, due to moieties localized outside the aromatic core. Its elemental composi-
tion (C7H12O7) might indicate a probable presence of a sugar acid (hexahydroxyheptanoic
acid) or a substituted sugar in the structure (Supplementary Figure S1–11).

The most prominent compound 15 present in both species was isolated and identified
as 3,3’,4’-tri-O-methylellagic acid 4-sulfate by 1D and 2D NMR measurements (Table S5)
and comparison to published data [64]. Compound 16 (Table S6) was verified as the
corresponding 3,3’,4-tri-O-methylellagic acid without sulfation [65]. During separation,
the sulfation of this compound is reflected in a clear enhancement of polarity visible by
lower Rf value on normal phase TLC (Figure 1) and reduced retention time on reversed
phase column (Figure 2). 1D and 2D NMR allowed the elucidation of compound 13 as
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3,4-di-O-methylellagic acid (Table S4). The substitution pattern was established by HMBC
correlations and a ROESY correlation between 4-OMe and H-5. According to its chro-
matographic behavior compound 9 can be assigned as the derived sulfate. Compound 6
was verified as ellagic acid by 1H NMR and comparison of MS data to a reference stan-
dard. Furthermore, we could obtain several sulfated phenylbutane derivatives including
4-(4-hydroxyphenyl)-2-butanol 2-sulfate (2, Table S2) previously isolated from roots of
Rheum maximowiczii [66]. The downfield shift of H-2 and C-2 compared to the aglycon
indicates sulfation at this position. However, due to the low amount of isolated compound
we could not determine the configuration at C-2. Compound 3 was identified as the
previously undescribed 4-(4-sulfoxy-3-methoxy phenyl)-butan-2-one (zingerone sulfate).
NMR data (Table S3) are in good agreement with data published for the basic skeleton
4-(4-hydroxy- 3-methoxyphenyl)-butan-2-one [67]. Compound 4 represents according to
the MS fragmentation pattern most likely the corresponding zingerol sulfate.

Sulfated phenolics are rare natural products in plants and were not described before
for Combretaceae. There are only a few reports about the occurrence of sulfated ellagic
acid derivatives in plants, e.g., 3-O-methylellagic acid 4-sulfate and 3,3′-di-O-methylellagic
acid 4-sulfate were detected previously in Jaboticaba wood from Myrciaria cauliflora (Mart.)
O. Berg (Myrtaceae) [68]. The first compound was found to exhibit antioxidant and anti-
inflammatory activities in cigarette smoke extract-exposed small airway epithelial cells
and may be useful for the treatment of COPD [68]. The major metabolite 3,3’,4’-tri-O-
methylellagic acid 4-sulfate (15) found in this study in most of the Lumnitzera samples was
reported to occur in rhizomes of Geum rivale L, [64] and roots of Potentilla candidans Humb.
& Bonpl. Ex Nestl. [69], both members of the Rosaceae family.

So far, the biological function of sulfated secondary phenolics in plants is unknown.
The presence of a sulfate moiety enhances the water solubility of compounds and increases
ion strength in the containing tissue. The accumulation of sulfates may be organ-specific.
In case of the investigated Lumnitzera species, they are found in the roots, which normally
are in contact with sea water, while they were not reported from studies on leaves and
twigs [26,29–31]. In this study, both species showed similar patterns of sulfated metabolites
despite L. littorea is predominantly occurring at well-drained sites with less salinity, and
typically growing as a tree, while L. racemosa is more resistant to saline conditions and
occurs at the margin of bare salt pans [70] often growing as a shrub. It was postulated
before that the occurrence of sulfated flavonoids in plants is an ecological trait rather than
a systematic feature [64,71] and that these compounds might play a role in adaptation to
water-stress in salty soils. Furthermore, natural products with a sulfated scaffold have
emerged as antifouling agents with low or nontoxic effects to the environment [72] Thus, a
similar function can be assumed for the detected sulfated compounds in Lumnitzera roots.

In general, marine organisms contain a significant number of phenolic metabolites
which occur in sulfated form [61,62,73]. Given the high concentration of sulfate in sea
water, mangrove soils contain high levels of sulfate and thus, sulfate is easily available
for plants. Sulfate-reducing bacteria influence iron, phosphorus and sulfur availability in
anoxic mangrove sediments and mangrove species zonation across the intertidal zone [74].
Anaerobic sulfate reducing microbial communities are involved in sulfur cycling in these
soils and in the decomposition of mangrove-derived soil organic matter [8,75].

3.2. Phylogenetic Analyses

The variation of the metabolite pattern across different populations could be supported
by molecular phylogenetic evidence. As Bayesian and ML analyses yielded topologically
identical trees, we here only show the results from the Bayesian analysis (with support
values from both; Figure 4).
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Figure 4. Bayesian majority-rule consensus tree based on the ITS rDNA region of Lumnitzera littorea
and L. racemosa samples collected from various locations in Indonesia. Numbers above branches
show Bayesian posterior probability values and corresponding bootstrap support values from the
maximum likelihood analysis. Grey: highly supported clade, forming a different chemotype.

Both species form well-supported monophyletic groups. Notably, within L. racemosa,
samples from populations LR1, LR2, LR3, LR4 and LR8 form a well-supported clade
(Clade 2, Figure 4), which is characterized by sharing the same TLC and mass spectrometry
metabolic profile, thus suggesting a different chemotype. These samples completely lacked
sulfated and nonsulfated trimethylellagic acids, but were dominated by dimethylellagic
acid and its sulfate. In contrast, the phylogenetic tree does not show a geographical pattern,
at least not on the level where we have appropriate resolution. In order to confirm these
results, we sequenced a second individual from each of these specific populations, except
for LR2 (for which only one plant had been found at the location). On the one hand,
the infraspecific, interpopulational variation in metabolic profiles calls for caution when
selecting cultivated mangrove plants for the purpose of metabolic profiling for medicinal
purposes (compare to [76]). On the other hand, the nuclear ITS region seems to constitute a
useful guide for selecting individuals for cultivation, at least for Lumnitzera and some other
mangrove plant species (this study, and [76]).

3.3. Evaluation of Anti-Infective Properties

To evaluate the anti-infective potential of the Lumnitzera root extracts, the antibacterial
and anthelmintic activities were determined using nonpathogenic model organism as test
systems. The samples from different locations varied significantly in their antibacterial
activities (Figure 5).
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Only two extracts (LL8 and LR7) completely inhibited the growth of the Gram-posi-
tive Bacillus subtilis at 500 µg/mL after 16 h (Figure 5A). The activity against Gram-nega-
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completely inhibited the growth of the test organism Allivibrio fischeri at a concentration 
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negative test organism since it induced 100% growth inhibition already at the lower test 
concentration of 50 µg/mL. At this point, the assignment of the antibacterial properties to 
a certain (group of) constituents is not possible. The selective antibacterial activity of dif-
ferent accessions of only a few samples of the same plant species suggests, however, that 
the effects might be connected to associated microorganisms rather than intrinsic plant-
produced metabolites.  

None of the Lumnitzera crude extracts showed anthelmintic activity against the nem-
atode Caenorhabditis elegans (Figure S3). This is in contrast to studies on mangrove plant 
species from other families. For example, anthelmintic activity was found for leaf and 
stem extracts of Acanthus ilicifolius L. (Acanthaceae) [77,78]. 

Two samples from each species (LL3, LL11, LR5, LR15) were exemplarily tested for 
their cytotoxic activity against the human prostate cancer cell line PC3 and the colon ade-
nocarcinoma cell line HT-29. The investigated samples did not influence the viability of 

Figure 5. Antibacterial activity of Lumnitzera littorea and L. racemosa extracts against (A) Gram-
positive Bacillus subtilis and (B) Gram-negative Aliivibrio fischeri. Chloramphenicol (100 µM) was
used as positive control and induced the complete inhibition of bacterial growth. Negative values
indicate growth enhancement.

Only two extracts (LL8 and LR7) completely inhibited the growth of the Gram-positive
Bacillus subtilis at 500 µg/mL after 16 h (Figure 5A). The activity against Gram-negative bac-
teria showed a different pattern (Figure 5B). Here, samples LL3, LL12 and LR19 completely
inhibited the growth of the test organism Allivibrio fischeri at a concentration of 500 µg/mL
after 24 h, LL8 and LR9 induced 71% and 81% inhibition, respectively. Especially the
extract LR19 exhibited a noteworthy antibacterial potential against the Gram-negative test
organism since it induced 100% growth inhibition already at the lower test concentration of
50 µg/mL. At this point, the assignment of the antibacterial properties to a certain (group
of) constituents is not possible. The selective antibacterial activity of different accessions of
only a few samples of the same plant species suggests, however, that the effects might be
connected to associated microorganisms rather than intrinsic plant-produced metabolites.

None of the Lumnitzera crude extracts showed anthelmintic activity against the ne-
matode Caenorhabditis elegans (Figure S3). This is in contrast to studies on mangrove plant
species from other families. For example, anthelmintic activity was found for leaf and stem
extracts of Acanthus ilicifolius L. (Acanthaceae) [77,78].

Two samples from each species (LL3, LL11, LR5, LR15) were exemplarily tested for
their cytotoxic activity against the human prostate cancer cell line PC3 and the colon
adenocarcinoma cell line HT-29. The investigated samples did not influence the viability
of the cancer cell lines at a concentration of 0.05 µg/mL, however, completely inhibited
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the cell growth at a concentration of 50 µg/mL indicating a moderate cytotoxic potential
(Figure S4).

Ellagic acid is known to possess a wide range of biological activities based on its
antioxidant and chemopreventive potential including antimicrobial, anti-inflammatory,
neuroprotective, antihepatotoxic, anticholestatic, antifibrogenic, anticarcinogenic, cytotoxic,
and antiviral effects [79,80]. Several of these multiple activities may, however, be related
to general tanning properties of polyphenolics, rather than being specific effects [81,82].
Furthermore, ellagic acid and related compounds are potent Aldose reductase inhibitors
that could play an important role in the management of diabetic complications [69]. Methy-
lation often reduces these effects whereas the introduction of a sulfate group increases the
inhibitory activity [69], but reduces membran permeability. In contrast, the only moderate
cytotoxicity of ellagic acid against cancer cell lines is further decreased by the presence
of a sulfate moiety [64]. The potassium salts of 3,3’-dimethylellagic acid 4-sulfate and
3,3’,4’-trimethylellagic acid 4-sulfate were also found to exhibit moderate antimicrobial
potential against Gram-positive Bacillus subtilis and Staphylococcus aureus with MIC values
in the range of 22.5–50.8 µg/mL [83]. These compounds were, however, not effective
against Gram-negative Escherichia coli. [83].

In our investigations the antibacterial activity is likely not directly connected to the
sulfated ellagic acid derivatives or the other sulfated metabolites. These metabolites oc-
cur across all samples, but the antibacterial effects are limited to samples from particular
locations (Figure 5). Nevertheless, Lumnitzera roots are a promising source for pharmaco-
logically interesting sulfated ellagic acid derivatives and further sulfated plant metabolites.

4. Conclusions

In our study, a series of unusual sulfated constituents was characterized in root
samples from the mangrove species Lumnitzera littorea and L. racemosa (Combretaceae).
Thus, most of the methylated ellagic acid derivatives isolated from both species possess
a sulfate moiety. However, L. racemosa samples from North Sumatra (LR1), Aceh (LR2,
LR3), East Kalimantan (LR4), and Maluku (LR8), completely lack sulfated and non-sulfated
trimethylellagic acid, but instead are dominated by dimethylellagic acid and its sulfate.
This phytochemical pattern is corroborated by phylogenetic data, where these specific
samples form a well-supported clade in the ITS tree. Interestingly, the occurrence of
antimicrobial activity and sulfated ellagic acid derivatives are not connected. Although the
ellagic acid derivatives are present within all samples, the antibacterial effects are limited
to samples from particular locations in Indonesia, suggesting that other compounds from
the plant or root-associated microorganisms might be responsible. The moderate cytotoxic
effect, in contrast, can be attributed to the occurrence of the ellagic acid derivatives. In
summary, Lumnitzera roots represent a potentially promising source for sulfated ellagic
acid derivatives and further sulfur containing plant metabolites.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/separations8060082/s1, Figure S1: MS/MS spectra of compounds 1–21, Figure S2: PDA
chromatograms of root extracts from L. littorea (LL1-LL12) and L. racemosa (LR1-LR19), Figure S3:
Anthelmintic activity of root extracts from Lumnitzera littorea (LL1-LL12) and L. racemosa (LR1-LR19),
Figure S4: Cytotoxic activity of root extracts from L. littorea (LL3, LL11) and L. racemosa (LR5, LR15)
against PC3 and HT29 cells, Figure S5: NMR and MS spectra of compound 2, Figure S6: NMR and
MS spectra of compound 3, Figure S7: NMR and MS spectra of compound 6, Figure S8: NMR and
MS spectra of compound 13, Figure S9: NMR and MS spectra of compound 15, Figure S10: NMR and
MS spectra of compound 16, Table S1: Peak areas (TIC) of main compounds detected in root extracts
of L. littorea (LL1-LL12) and L. racemosa (LR1-LR19), Table S2: 2D NMR data of compound 2, Table S3:
2D NMR data of compound 3, Table S4: 2D NMR data of compound 13, Table S5: 2D NMR data of
compound 15, Table S6: 2D NMR data of compound 16.
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