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Abstract: The article revisits the discrete recurrence method to model the instruments of liquid–liquid
partition chromatography as counter-current chromatography (CCC) and centrifugal partition chro-
matography (CPC). The purpose is to simplify the computation of the concentration profiles without
supplementary approximations, rather by going back to the seminal model of binomial random
walks, associated with the stochastic master equation that generates simple discrete recurrence
relations. It fits the model of the prototype of liquid–liquid chromatography: the Craig’s apparatus.
Three emblematic separation technique group cases are computed in batch injection, batch multiple
dual mode (MDM), and continuous injection by the “True Moving Bed” (TMB) in CPC.

Keywords: liquid–liquid chromatography; counter-current chromatography; CCC; centrifugal partition
chromatography; CPC; Craig’s apparatus; random walk

1. Introduction

The iterative computation of liquid–liquid preparative chromatography was initiated
first by Martin–Synge in 1941 [1], in relationship with the plate theory already used in
heterogeneous chromatography from the process of distillation [2]. The second opportunity
was derived on purpose in 1944 by Lyman C. Craig, who developed a real iterative
instrument, known as Craig’s counter-current distribution machine, by the use of a series
of “separatory funnels” [3–5].

Often, the equations were translated through time derivatives mixed with discrete
space differences or coupled systems of differential equations. However, their solving and
the combination of analytical solutions quickly become complicated, when the topology
or the dynamic modes increase in complexity. The purpose of this work is to revisit the
simplest mathematical model describing the column in equilibrium, using recurrence
relations that can be easily computed with open tools and basic software knowledge. It
will be applied to the modern instruments of counter-current chromatography (CCC) or
centrifugal partition chromatography (CPC), in their various topologies and modes.

The concept of random walk was introduced as the simplest molecular chromato-
graphic model [6,7], and it will be carefully examined to validate the recurrence principle,
finding the coincidence with the stochastic master equation [8,9]. It will be compared to
the continuous and discrete-continuous models to foster the coherence of the whole. In
the flowchart below (Figure 1), the links are displayed between the plate model theory
and the liquid–liquid reference models, already developed by several authors through the
years [6,10–15].

An illustration will be presented by calculating three chromatographic cases in CPC,
described consistently, as batch injection in single mode or in multiple dual mode [15–19]
and continuous injection in sequential mode [20–22].
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Figure 1. Flowchart of the different modeling methods for liquid–liquid chromatography (*semi-
discrete or discrete-continuous mean with a time derivative and space discrete difference). The
central path (in bold) is the vein of the article.

2. Materials and Methods
2.1. The Modeling of the Craig’s Apparatus, a Precursor in Partition Chromatography

Craig’s apparatus is a former discrete prototype for partition chromatography that
helps to approach the principle of more modern instruments with continuous elution, as
CCC or CPC—even if, in the latter cases, partition equilibrium is not necessarily achieved
when passing to the neighbouring cell.

2.1.1. The System

A number of identical cells (or funnels, or tubes) are assembled in series, assigned as a
total as number of plates N, at constant space interval ∆x. Their individual volume Vc is
invariably partitioned between a mobile phase (MP) with volume Vm and an immiscible
stationary phase (SP) with volume Vs (Figure 2). The cell n contains a solute at the concen-
trations mk

n and sk
n, for MP and SP, respectively, and where k counts constant time intervals

∆t. The principle is to inject and elute a complex sample, by mixing all the cells and then
shifting every mobile phase volume Vm of a cell to its next neighbour.

2.1.2. The Recurrence Phenomenological Model with Concentration

The model that we are going to develop is phenomenological. It fully encodes the
principles implemented in the process, in terms of concentration.

We assume that the partition coefficient Kd of the solute does not depend on concen-
tration and that, at each transfer, the thermodynamic equilibrium is reached satisfying the
condition

Kd =
sk

n
mk

n
. (1)

The Recurrence Relation

The most significant initial condition is when only the first cell is loaded with a solute.
The process then consists, at each instant k, in simultaneously transferring the volume Vm
of all the cells, i.e., generally from the cell (n− 1) to the next n, which leads to the mass
balance

Vmmk+1
n + Vssk+1

n = Vmmk
n−1 + Vssk

n. (2)
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All the cells are then stirred until equilibrium, which amounts to recalculating the
concentrations according to (1) and to arriving at the recurrence relation

mk+1
n =

Vm

Vm + KdVs
(mk

n−1 −mk
n) + mk

n. (3)

This computation highlights the combination of volumes, times the number of cells N
that defines the total retention volume Vr = N(Vm + KdVs).

V , ym m

V , ys s

U = x/ t0 Δ Δ

Cell n

x

Cell (n+1)Cell (n-1)

Δx

(a) State of a Craig’s apparatus at time k. tΔ

(b) Forward transfer before time (k+1). tΔ

(c) Mixing, equilibrium before (k+1). tΔ

m
k

n

s
k

n

m
k

n+1

s
k

n+1

m
k

n-1

s
k

n-1

Figure 2. Mechanism at work in Craig’s machine (a). Between the instant k and (k + 1), all the MP
volumes (light grey) are transferred to the next cell. SP volumes (dark grey) don’t move. Injection
is typically performed in the first cell. Few solute molecules are represented and can be followed
(b). During the same time interval, all the cells are agitated simultaneously to reach the partition
equilibrium sk

n = Kdmk (c). The effective speed of MP results from the space interval between the
cells and the time required for transfer/mixing/equilibrium that is U0 = ∆x/∆t. Then, pure MP
feeds the first cell at each instant.

The Recurrence Relation Approximated by a Time Derivative

Van Deemter et al. introduced this recurrence computation early; however, he used the
infinitesimal approximation for the time interval (mk+1

n −mk
n)/∆t = ∂m/∂t, with the aim

of an analytical solving [6]. Nevertheless, if this formal solving expresses a didactic point of
view and offers a “turn key” solution, they lack flexibility when the technical configuration
becomes more complex. They require a non-negligible effort, on a case-by-case basis,
without any guarantee of success a priori.

2.1.3. The Binomial Phenomenological Model in a Fraction of Injected Quantity

A phenomenological approach by recurrence was experienced also to represent in
each cell the fraction of the injected quantity over time [1]. This approach is based on the
consideration of the initial fractions in thermodynamic equilibrium pt and (1− pt), in MP
and SP, in the first cell. The condition Vm = Vs is usually assumed.
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The partition coefficient takes the form

Kd =
1− pt

pt
. (4)

This iteration develops a binomial distribution. After k transfers, the fraction µk
n in the

cell n is
µk

n =
k!

(k− n)!n!
pt

n(1− pt)
(k−n). (5)

Unlike the Formula (3), this different recurrence computation gives an explicit specific
solution (5). As in the analytical solving in continuous mode, it requires time and skills
of formal calculus, which will increase with the complexity of actual chromatographic
configurations.

2.2. The Binomial Random Walk Model

Naturally, the Craig’s process obeys the case of a binomial random walk perfectly.
The idea was hinted from Gidding and Eyring [23] as a random migration, and later was
presented by Felinger [7].

The most simple explanation of a random walk of a solute is based on the statistical
model of a coin flip, with bias: the probability p to have “heads” is between 0 and 1.
The resulting distribution is binomial when evaluating the chance of having n “heads” on
k trials.

When the individual draw generates a one-dimensional displacement, it is a binomial
random walk. The walk can be symmetrical: on “tails,” one makes a jump to the left and
on “heads” a jump to the right.

Thus, the Craig’s model fulfills the conditions. The walk is the macroscopic shift to
the right of the volume Vm. The random character comes from the chance for the solute
molecule to be in MP, thus to move to the next right cell. If it is in SP, it stays in the same
cell. This is actually an asymmetric random walk.

This chance depends on the Brownian motion in the two phases that can tend to
a rather determined behavior when Kd is relevant. Nevertheless, it relates also to the
probability to catch the wandering solute molecule in the volume ratio Vm/Vc. Therefore,
the probabilities p and q to be in MP and SP are statistic combinations. The fraction pt can
be considered as the thermodynamic probability to be in MP and Vm/Vc the probability
to be transferred (and the complement in SP). The retention factor k′, which is the ratio of
matter when Kd is the ratio of concentration, helps to simplify these probabilities:

p =
ptVm/Vc

ptVm/Vc + qtVs/Vc
=

1
1 + KdVs/Vm

=
1

1 + k′
, (6)

q = 1− p =
ptVs/Vc

ptVm/Vc + qtVs/Vc
=

KdVs/Vm

1 + KdVs/Vm
=

k′

1 + k′
. (7)

2.2.1. The Statistical Moments of the Random Walk

The mean displacement < dk > of the solute molecule in the series of cells (column)
and its standard deviation σk can be expressed. The binomial distribution (5) provides the
statistical moments kp and kp(1− p), in the general condition where Vm 6= Vs. Equivalently,
the recurrence relation (3) gives the same first and second order moments, knowing that
the MP concentration is the statistical distribution along the column. The first moment is
the mean displacement n, or the ”barycenter” of the concentration profile

< dk >= k∆t · p ∆x
∆t

, (8)
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< dk >=
∑N

n=1 nmk
n

∑N
n=1 mk

n
∆x = k∆t · NVm

Vr

∆x
∆t

. (9)

By examining the results of the two methods, we notice that

p =
NVm

Vr
=

1
1 + k′

. (10)

The second moment is the variance or mean of n2

(σk)2 = (σ1)2 + k∆t · p(1− p)
∆x2

∆t
, (11)

(σk)2 =
∑N

n=1 n2mn
k

∑N
n=1 mn

k

−< dk >
2
= (σ1)2 + k∆t · NVm

Vr
(1− NVm

Vr
)

∆x2

∆t
. (12)

The variance of the injection peak (σ1)2 at the first instant is added to the diffusive
variance [24].

2.2.2. Elution Speed and Diffusion Coefficient

The present study will focus on the concept of speed instead of the concepts of flow
rate or residence time. The parameters of the binomial random walk are traditionally
constant: the space jump ∆x, the time period ∆t. In the Craig’s process, there is therefore a
notion of intrinsic speed for the MP: U0 = ∆x/∆t. The elution speed v for the solute comes
out from (8) and (9)

v = pU0 =
NVm

Vr
U0 =

U0

1 + k′
. (13)

The variance of the movement is also expressed from an intrinsic notion, that of the
diffusion coefficient: D0 = ∆x2/2∆t. The diffusion coefficient D of the solute is therefore

D = p(1− p)D0 = (
1

1 + k′
)(

k′

1 + k′
)D0. (14)

2.3. Stochastic Master Equation and Differential Convection-Diffusion Equation

Let P(k; n) be the probability of moving n steps right after k trials. In the case of
the asymmetric walk mode that concerns us, each test gives the possibility of moving
forward one step with the elementary probability p, or of staying motionless with the
complementary probability q = 1− p. Since the decision tree is binary, there exists a
recursive relation connecting the state of the result to the test (k + 1) with the previous one
k [8,9]. The state (k + 1; n) comes either from (k; n− 1) having undergone one step further,
or of (k; n) remaining motionless. These previous states having a probability of the same
type, we can write

P(k + 1, n) = pP(k, n− 1) + qP(k, n). (15)

This relationship is called the stochastic master equation. Since concentration is similar
to probability, then

mk+1
n = pmk

n−1 + qmk
n, (16)

or
mk+1

n = p(mk
n−1 −mk

n) + mk
n. (17)

The recurrence relation expressed in (3), obtained by modeling the instrumental
principle, perfectly fits this master equation. It is a fundamental justification for the early
phenomenological treatment.
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When these discrete deviations become infinitesimal, this master equation tends to
the differential convection–diffusion equation for a continuous concentration ρ(x, t) versus
time t and space x [7]

∂ρ(x, t)
∂t

= −v
∂ρ(x, t)

∂x
+ D

∂2ρ(x, t)
∂x2 . (18)

The binomial solution tends inevitably towards the expected derivable solution of the
differential equation

ρ(x, t) =
1√

4πp(1− p)D0t
exp(− (x− pU0t)2

4p(1− p)D0t
). (19)

Often, the Differential Equation (18) is the source of the models, with independent
parameters v and D. The Stochastic Master Equation (17) generates them both from p and
holds the same concept with a more simple form.

2.4. Model of the Continuous Column in a Non-Equilibrium State
2.4.1. Description of the Geometry

The geometry of the continuous model with axial/longitudinal dispersion Dax is a
simplified model of the real instruments (Figure 3): two continuous longitudinal media for
the MP and SP, with a common interface. The MP is moving to the right with a velocity
field that can undergo mainly longitudinal dispersion or even diffusion. Obviously, the
solute molecules are supposed to migrate radially/transversally from one solvent to the
other one and to be entrained forward by the fluctuations of MP.

This geometrical frame is not monolithic like in the geometry of the Craig’s principle.
The mobile medium, for instance, can be decomposed into infinitesimal elements dx · dy,
according to the axes x and y, longitudinal and radial.

V , ym m

V , ys s

Mass transfer
of solute

L

Axial dispersion
of solvent

Axial diffusion
of solvent

dx

dy

Figure 3. The continuous column model with axial dispersion. A continuous volume of MP (light
grey) above a volume of SP (dark grey). Solute molecules diffuse radially in both directions. The move-
ment of the mobile solvent is also subjected to an axial dispersion–diffusion phenomenon, around
a given average speed. The degrees of freedom of movement can be studied by an infinitesimal
fragmentation dx · dy.

2.4.2. Coupled Differential Equations

The space and time variations of the concentrations, m in MP and s in SP, respectively,
are derived from two coupled differential equations [11]

∂m
∂t

= −U
∂m
∂x

+ Dax
∂2m
∂x2 −

k0a
εm

(m− s
Kd

), (20)

∂s
∂t

=
k0a

1− εm
(m− s

Kd
). (21)
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where k0 is the global interfacial speed of transfer for the solute, a the specific interface
area, U the speed of MP, and εm its retention ratio.

These equations are solved by Laplace transforms L(m) or L(s) of variable S. In terms
of the characteristic transfer time Tm = (1− εm)/k0a, we get

U
∂L(m)

∂x
− Dax

∂2L(m)

∂x2 + S(1 +
k′

1 + TmS
) = 0. (22)

2.4.3. Comparison with the Model of Craig
Limit of Null Transfer Time

In order to retrieve the Craig’s model, we can assume the extreme limit Tm = 0. Then,
we switch back to the time domain and find an uncoupled equation for m

∂m
∂t

= − U
1 + k′

∂m
∂x

+
Dax

1 + k′
∂2m
∂x2 = −v

∂m
∂x

+
Dax

1 + k′
∂2m
∂x2 . (23)

The agreement with the elution speed pU (13) is verified and in the same way the
dispersion–diffusion coefficient is the ratio of Dax according to p (14)

D = pDax. (24)

The conditions of motion of the mobile solvent with its own convective and diffu-
sive parameters, U and Dax, are adopted by the solute molecule in proportion p to its
impregnation.

The question remains: if the dispersion–diffusion Dax plays a role in the continuous
model, how can one reconcile the Craig’s model that has an autonomous coefficient D?

Van Deemter et al. [6] gives the argument that we want to put forward here, if the
transfer time Tm is null or negligible compared to ∆t. The Craig’s macroscopic-microscopic
and the purely microscopic continuous processes operate in a similar way, however with a
different geometric partition. In the first case, the phenomenon is constrained strictly in a
single unit volume, defined by the vertical extent y and horizontal width X of the cells.

When in the continuous case the height is diced into infinitesimal intervals, dym · X
or dys · X, a certain longitudinal dispersion is allowed in MP, with various horizontal
progressions. The longitudinal diffusion is then revealed in the fragmentation along the
x-axis, which will provide some variability in the migration (Figure 4). This diffusion
comes out explicitly when the clusters of solvent transport solute molecules.

Axial dispersion
of solvent

Axial diffusion
of solvent

(a) (b)

Solvent axial
dispersion
diffusion

(c)

Figure 4. Extrapolation of axial dispersion (a) and diffusion (b) of MP from a re-inspired “exploded”
Graig’s cell. The equivalence of the Craig’s model with the continuous model (c) is found on a
two-phase infinitesimal element (in zoom).
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A solute molecule therefore borrows randomly “individual vehicles”, dym · dx or
dys · dx, instead of the “synchronized bus” ym · X or the “sidewalk” ys · X. The scheme can
be summarized by identifying a purely microscopic random walk of parameters p, 1− p,
dx, dt, with the intrinsic dynamic characters U0 = dx/dt and D0 = dx2/2dt.

Strictly, if Dax is exceptionally null, Equations (20) and (21) no longer work correctly.
Thus, Dax implicitly takes into account the fundamental diffusion which arises from the
solute migration in the form (1− p)D0, with a term purely dedicated to the mobile solvent
“Dax”. The usual absence of the term function of D0 is, however, legitimate because it is
very low and indeed negligible.

2.5. Plate Model Out of Equilibrium

The model of the single continuous column does not allow for detailing the par-
ticularities along the fluidic path, for a finer modeling. A better approach is to cut the
geometry into sections, which will describe, for instance, several periodic patterns of a CPC
instrument, with three zones of one cell and the connection duct as a particular dispersive
medium [25]. For the modeling of such a “plate” i, a system of paired equations is estab-
lished, for the concentrations mi, si in MP and SP, similar to (20) and (21), but differential in
time and discrete in space as in (3)

∂mi
∂t

=
n
∆t

(mi−1 −mi)−
k0a
εm

(mi −
si
Kd

), (25)

∂si
∂t

=
k0a

(1− εm)
(mi −

si
Kd

). (26)

This system of equations makes it possible to manage any topologies, but also to give
access to symmetrical modes, where the two phases are simultaneously put in motion in
opposite directions. This concerns the dual mode of CCC and TMB of CPC [14,20,26].

In these equations, the use of an explicit diffusion term D is not essential. We know
that this parameter, as in the discrete case, must emerge. On the other hand, the coefficient
Dax can be handled on purpose in the ducts connected to the cells [25].

Van Deemter et al. [6] and Kostanyan et al. [14] both show thoroughgoing and com-
plete model representation, even though sometimes they could be relatively complex
analytical solutions. Consequently, the computational process could be arduous and com-
plicated because it would be necessary to acquire manually long expressions or for instance
to solve technical problems as calculating heavy factorials.

3. Results

Three configurations of liquid–liquid chromatography will be presented. The recur-
rence formula will lead to concentration profiles, chromatograms, and space-time maps of
concentration. The fitting with a real chromatogram will confirm the interest of the Craig’s
model that plays the role of the historical plate model.

3.1. Batch Injection in Simple Elution Mode
3.1.1. Topology and Mode

The topology needed for a batch elution is simply a column filled of SP (solvent
2), in equilibrium with MP (solvent 1). At least one pump is necessary for preparation,
injection, and then elution (Figure 5). The chromatographic mode consists of injecting a
certain amount Qinj of sample at the inlet in MP (solvent 1) and in eluting it until its total
release.
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Elution solvent 1
with the separated
compounds

Pump 1

CCC, CPC

Injected sample in
solvent 1 and then
pure solvent 1

Solvent 2 is
stationary

Figure 5. Simple topology of batch mode. Solvent 1 is the MP, solvent 2 is the SP.

3.1.2. System of Equations
Coding Injection

The injection determines the initial conditions of concentration in equilibrium in MP
until the instant kinj. For k ≤ kinj, the load can be equally distributed on each instant with
a constant concentration:

n = 1 : mk
1 =

Qinj

Vmkinj
. (27)

For k > kinj, there is no injection: mk
1 = 0.

Coding Elution

For each k > 1, we compute mk
n by incrementing n from 2 to N, by using the Recurrence

Formula (3):

mk
n =

Vm

Vm + KdVs
(mk−1

n−1 −mk−1
n ) + mk−1

n . (28)

The SP concentrations sk
n are uncoupled and obtained by multiplying by Kd.

3.1.3. Special Case

We compute here the case of an injection of two solutes of Kd1 = 0.2 and Kd2 = 0.8, in
a column of N = 40 plates, with a retention ratio εm = Vm/Vc = 0.1, an unit plate volume
Vc = 1, an amount Qinj = 2.5. Two injection times, 10 and 100 ticks, are studied.

Concentration Profiles and Chromatogram for Two Solutes

Since the injection into the plate 1, the concentration profile of each solute is supposed
to evolve from a triangular shape, then trapezoidal towards a Gaussian limit that can be
approximated by (19). At each moment, the barycenter of concentration, formally defined
in (9), moves at constant speed v (13). The standard deviation should increase according to
the typical law of diffusion:

√
2Dt =

√
p(1− p)t =

√
k′t/(1 + k′)2 (with D0 = 1).

In Figure 6, we display the sum of the profiles of two solutes, injected together over
the shortest period, at successive instants. Separation occurs with the speed difference
but the profile spread out. In Figure 7, for the longest injection, the total separation is not
reached even later, with the same injected amount.

The chromatograms c(k) = mk
N are displayed in Figure 8. In the case of long injection,

the first one is rather square, which is the trace of the large rectangular injection smoothed
by diffusion.
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Figure 6. Batch mode: spatial concentration in a column of 40 plates, with a retention ratio εm = 0.1,
an unit plate volume Vc = 1, an amount Qinj = 2.5, from a 10 tick-injection, with two solutes of
Kd1 = 0.2 and Kd2 = 0.8. As the elution proceeds, the two solutes spread out according to a diffusion
process and are separated. The list of instants is color coded: 1 (black), 20 (blue), 30 (green), 40 (red),
80 ticks (black).
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Figure 7. Batch mode: spatial concentration in a column of 40 plates, with a retention ratio εm = 0.1,
an unit plate volume Vc = 1, an amount Qinj = 2.5, from a 100 ticks injection, with two solutes
of Kd1 = 0.2 and Kd2 = 0.8. As elution proceeds, the two solutes are not totally separated in the
column.The list of instants is color coded: 1 (black), 50 (blue), 100 (green), 150 (red), 200 ticks (black).
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Figure 8. Batch mode: on the left graph (a), the chromatogram measured at the outlet of the column
of 40 plates is displayed, with a retention ratio εm = 0.1, an unit plate volume Vc = 1, an amount
Qinj = 2.5. The first peak corresponds to the solute of Kd1 = 0.2 and the next one to that of Kd2 = 0.8,
for an injection 10 ticks long. On the right graph (b), the injection is 100 ticks long. The two peaks are
larger and are not completely resolved.

Space-Time Maps

Each trajectory is therefore a straight line in a space-time graph, with a slope all the
weaker as this speed is high. The advantage of the model presented here is the capability
to generate this synthetic graph, representing in a single image the matrix of concentration
mk

n (Figure 9). This very visual tool can help to develop a separation strategy. Maps can
be easily compared within different conditions depending on the mobile phase ratio εm,
the characteristics of injection, and the number of plates. We can see where and when the
peaks separate.(a) (b)
Figure 9. Batch mode: in these two figures, the space-time concentration map is displayed, where
each colored point encodes the value mk

n. The lowest trace is the path of the solute of Kd1 = 0.2 and
the upper one is related to Kd2 = 0.8. The left picture (a) is related to a 10-tick injection, the right one
(b) to 100 ticks. In the latter case, the two peaks are larger and are not completely resolved.

3.1.4. Correspondence with a Real Chromatogram

The plate theory can make a computed chromatogram coincide with that resulting
from a continuous process because they have in common the concept of random walk. For
the same k′, the retention time in ticks and the real time, expunged of all accessory volumes,
allow a time conversion to be established. The two chromatograms can be superimposed.
We can then vary the number of plates N so as to obtain a width equivalent to that of the
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chromatogram. This number is by definition the effective number of plates for the isolated
substance.

The variation of N must be done by keeping constant: the column volume Vc, its
length L, the flow F, the rate εm, the speed U0 of MP, the quantity of material injected,
and the duration of injection. In this context, the parameters of the discrete process are
constrained:

∆t =
Vm

F
=

εmVc

NF
, (29)

∆x =
L
N

. (30)

The coefficient of intrinsic diffusion is inversely proportional to N:

D0 =
L2F

2NεmVc
. (31)

We can see again that, when N is high, D0 is negligible, which can be expected in an
ideal continuous column.

Incidentally, an amplitude adjustment to accommodate the molar extinction coeffi-
cients and an offset for the baseline of the actual chromatogram will be necessary.

A special case is studied with a 250 mL, 240 cells CPC instrument that elutes two
standards at low concentration, hydroquinone of Kd1 = 0.07 and pyrocathecol of Kd2 = 0.34,
with the Arizona N solvent system (heptane/ethyl acetate/methanol/water (1/1/1/1)).
The conditions are: an effective volume Vc = 210 mL, a flow rate F = 12 mL/min, with a
measured retention ratio εm = 0.07.

Each compound has its own number of theoretical plates. Thus, two different adjust-
ments are performed (Figure 10). The plate model gives N1 = 15 and N2 = 40.

1 
 

 
(a) (b) 

 
Figure 8 
 

 
(a) (b) 

 
Figure 10 
 
 

 
(a) (b) 

 

Figure 10. Batch mode: a real chromatogram (solid line) with two solutes, hydroquinone and
pyrocatechol in Arizona N solvent system, from a 250 mL, 240 cells CPC instrument, at a flow rate of
12 mL/min. The number of plates is not uniform from peak to peak. A simulated chromatogram
(dashed line) is made to coincide on the peak of hydroquinone at Kd1 = 0.07 (a) and on the peak of
pyrocatechol at Kd2 = 0.34 (b). We find the theoretical number of plates N1 = 15 and N2 = 40 . For
a low number of plates, even if the retention time is well computed, the maximum of the peak is
slightly shifted.

Independently, we have superimposed a formal solution of the coupled Equations (20)
and (21) with the criterion of the least square and found N1 = 20 and N2 = 42, with the
arbitrary hypothesis that Dax = 1000. By the rough manual method of the tangents, we
should have N1 = 27 and N2 = 48.
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In the two cases, the number of plates is rather low, so even if the retention time is
very well computed, the maximum of the theoretical chromatogram is not perfectly at the
same location.

3.2. Batch Injection in Multiple Dual Mode (MDM)

The separating power of a chromatography column is limited by its number of plates.
Fortunately, some solutions exist, by valves sequencing, to artificially improve it [27–29].
We can slow down the process in the column, by a back and forth movement of “shuttle,”
which will allow the separation to naturally increase: this is what the dual mode does.
The dual mode highlights the advantage to have a lack of solid support and operates an
inversion in elution, using the “stationary” as a “mobile” phase.

The multiple dual mode (MDM) is at least a dual mode repeated several times.
The multiple inversions are time consuming but hedge the problem of poor selectivity that
is often encountered in a complex mixture to separate and when the retention ratio of MP
is not ideal.

3.2.1. Topology and Mode

It is therefore necessary to have two three-way valves at the inlet and at the outlet
which simultaneously select one or the other solvent as mobile. A second pump 2 is then
devoted to the solvent 2 that was stationary (Figure 11). Once injected, in batch mode, the
solutes are eluted by alternation. At the end of these cycles, the last one can be extended to
complete the elution on the opposite side of that of injection. We’ll compute this case, but
several other configurations are possible.

Pump 1 Pump 2

CCC, CPC

Injected sample in
solvent 1 and then
pure solvent 1

Pure solvent 2

Elution solvent 2
pure or with
separated
compounds

Elution solvent 1
pure or with
separated
compounds3 ways

valve
3 ways
valve

Figure 11. Typical topology of multiple dual mode (MDM). Here, the direction of elution with solvent
1 (light grey) is represented. In the following cycle, pump 2 can put in motion the second immiscible
solvent 2 (dark grey). It is assumed here in the special case that an injection is made in solvent 1
(grey) and that the collection of separated solutes is done on the right in solvent 1.

3.2.2. System of Equations

Let k1, k2, ..., k2J be the instants when the solvents switch. We therefore proceed to the
following system or recurrence relations. The notation mk

n relates to solvent 1 and sk
n to

solvent 2.

Coding Injection

For k ≤ kinj:

n = 1 : mk
1 =

Qinj

Vmkinj
. (32)

For k > kinj, mk
1 = 0.



Separations 2021, 8, 41 14 of 21

Coding the First Forward Elution

For each k∈[2, k1], we compute mk
n by incrementing n from 2 to N, to represent the

forward elution:
mk

n =
Vm

Vm + KdVs
(mk−1

n−1 −mk−1
n ) + mk−1

n . (33)

It is now necessary to take care of sk
n obtained by multiplication by Kd to feed the

reverse computation, even for k = 1.

Coding the First Backward Elution

In the next step, the SP becomes mobile. Thus, for each k∈[k1 + 1, k2], we compute sk
n

by decrementing n from (N − 1) to 1, for a backward elution:

sk
n =

KdVs

Vm + KdVs
(sk−1

n+1 − sk−1
n ) + sk−1

n . (34)

The concentration mk
n is prepared also for the next forward phase. The condition

sk
N = 0 is imposed during this backward phase because pure solvent 2 is now pumped in.

Coding J Dual Cycles

This is the first cycle corresponding to the dual mode, with J = 1. Multiple dual mode
can be developed for J cycles, by running new forward and backward elutions, each time
with the respective condition mk

1 = 0 and sk
N = 0.

Coding a Final Forward Elution

At the end of these cycles, a final forward step is computed to collect the solutes.
Thus, for each k > k2J , we reuse the first iterations (33), until the final instant kend. The
chromatogram is obtained by mk

N = c(k).

3.2.3. A Typical Case of Amplified Separation

Because of these alternations, the retention ratio of MP in CPC can hardly be low in
search of a more resolutive separation. It will probably find a balance for εm = 0.5. This
loss of performance is, however, very quickly compensated for by the efficiency of the
mode. In addition, in essence, MDM is a solution for those processes that have difficulty
with finding a low MP ratio.

Two solutes of Kd1 = 0.2 and Kd2 = 0.8 are eluted in a column of 500 plates. The con-
ditions are Vc = 1, Qinj = 500 and a 10-tick long injection. They are pushed forward
during 500 ticks, then backward 500 ticks. In the next forward progress, the fastest solute
is collected at the exit of the column. We go on one cycle more for the slower solute and
finally elute it to the exit. The map of mk

n (Figure 12) clearly shows the amplifying effect of
the separation in multiple dual mode.

By way of comparison, the trajectories of the two solutes are extended, if they were to
be conventionally eluted on the same column. In this case, the time difference is 250 ticks.
Thanks to the long sojourn of the slow solute and the fast output of the other, this difference
becomes 1500 ticks, magnified by 6. The chromatogram (Figure 12) shows a first peak which
is very narrow because it elutes quickly and a second very much wider (to be compared
with the relative widths of a direct elution of the same solutions (right of Figure 8).
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1 
 

 
(a) (b) 

 
Figure 8 
 

 
(a) (b) 

 
Figure 10 
 
 

 
(a) (b) 

 Figure 12. Multiple Dual Mode: two solutes of Kd1 = 0.2 and Kd2 = 0.8 are eluted in a column
of 500 plates (Vc = 1, Qinj = 500 with a 10 ticks long injection). There are two cycles of 500 ticks
followed by a final forward elution. The map of mk

n displays the strategy adopted in MDM to improve
the natural separation between two solutes (a). The long sojourn time obtained for the slowest solute
magnifies by a factor of 6 the retention time between two solutes. The corresponding chromatogram
(b) shows the distortion of width due to the too short sojourn time for the first peak and the long one
for the second.

3.3. Continuous Injection in “True Moving Bed” Mode

We just studied two cases of batch injection continuously eluted—one time in simple
mode, several times in opposite alternations in MDM. The next emblematic configura-
tion will authorize a continuous central injection, synchronously with the same principle
of solvent alternation through the two opposite ends of the column. The concept was
patented [21] and identified as “TMB” as a response to the wish of seeing the bed of silica
mobile. It was done before in the solid–liquid case, by the Simulated Moving Bed (SMB)
devices, thanks to the principle of relativity of speed by reference to injection. Afterwards, a
similar concept was applied, using two hydrodynamic liquid–liquid CCC columns [30,31].

3.3.1. Topology and Mode

The topology which corresponds to the TMB mode is close to that of MDM, but differs
by the injection terminal at the center of the column (Figure 13). We can have practically
two identical columns connected in series. An additional pumping system is required
for injection. The injection pump 1 introduces the sample at equilibrium in solvent 1, in
conjunction with the elution pump 1, towards the right end of the column (and vice versa).
By this process, the solutes of Kd < 1 will be eluted to the right and those of Kd > 1 to the
left. In the simplest principle, the injection flow rate is negligible.

3.3.2. System of Equations

We re-use the recurrence equations of MDM, for forward and backward elution (33)
and (34). k1, k2, ..., k2J being again the switching times of the solvents, but with ki = iT and
T the dimensionless period of alternation. The number of cycles is indicated by J.

Apart from the batch injection in MDM, the initial conditions at the inlet and outlet of
the column are identical: mk

1 = sk
1 = 0 if i is odd, or mk

N = sk
N = 0 if i is even.
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Elution1 Elution 2

CCC, CPC

Injected sample in
solvents 1 & 2

Pure
solvent 2

Elution solvent 2
with separated
compounds

Elution solvent 1
with separated
compounds

3 ways
valve

3 ways
valve

Inject 1 Inject 2

Pure
solvent 1

Figure 13. The topology which corresponds to the TMB mode is close to that of MDM. Injections in
between two columns are performed by dedicated pumps. Elution pump 1 works synchronously
with injection pump 1 in the forward direction (and vice versa pump 2).

The specificity of this mode is to provide a different equation for the cell in the middle,
of index |N/2|. Thus, in the incrementation cycle (33), we insert an equation which adds
the constant injected concentration in solvent 1 minj, so

mk
|N/2| =

Vm

Vm + KdVs
(minj + mk−1

|N/2|−1 −mk−1
|N/2|) + mk−1

|N/2|. (35)

In the decrementation cycle (34), we insert an equation which adds the constant
injected concentration in solvent 2 sinj = Kdminj, so

sk
|N/2| =

KdVs

Vm + KdVs
(sinj + sk−1

|N/2|+1 − sk−1
|N/2|) + sk−1

|N/2|. (36)

By this way, we neglect the flow of solvent injected at the same time with the solutes.
We are restricted here to the essential principle, but the model can be sophisticated.

3.3.3. Special Case

We adopt the values Kd1 = 0.5 and Kd2 = 2, N = 80, T = 15, J = 20, minj = 5 and
εm = 0.5.

It is possible to follow the time evolution in the column for these two solutes of Kd
symmetrical with respect to 1 (Figure 14). Therefore, they will have equal and opposite
migration speeds. In the steady state, the concentration profiles in the right column and
the left column are flat, except at the point of injection where the feed peak is diffused on
either side.

The alternating arrival of pure solvents cancels out the concentration at one end, while
at the other the concentration is maximum for the collection of the solute. Accordingly,
the chromatograms show output in bunches according to the period of alternation (Figure 15).

The maps in Figure 16 provide a nice illustration of what is a diffusion process with
the shades of color like that of ink stains on wet paper. It also shows that the two columns
are well leveraged.
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Figure 14. TMB mode: concentration profiles in the two columns of 40 plates, in solvent 2 on the
left (a) for Kd2 = 2 and in solvent 1 on the right (b) for Kd1 = 0.5. This is the start of the twentieth
cycle of ebb/flow. Each cycle has a duration of 15 ticks. The separation regime is established. The
concentration profile is flat, except at the peak of injection into the 40 cell, which diffuses. We have
just injected solvent 2 on the right end of the column, while the solute of Kd2 = 2 is collected. The
profile of each solute encroaches a little on the column, which is unfavorable to it.
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Figure 15. TMB mode: chromatograms of the solute of Kd2 = 2 in solvent 2, on the left (a), and of
the solute of Kd1 = 0.5 in solvent 1, on the right (b). The initiation of the process and the established
regime are identified. Collections can be made every 15 ticks.
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(a) (b)

Figure 16. TMB mode: space-time maps of the solute concentration of Kd2 = 2 in solvent 2, on the
left (a), and of the solute of Kd1 = 0.5 in solvent 1, on the right (b). The shades of color highlight the
phenomenon of diffusion, like that of ink stains on wet paper. The zigzags in the center represent
the alternate diffusion of the continuous injection. The incursion of each solute in the zone, which is
unfavorable to it (in dark), is limited. The delivery corresponds to the clear triangles, which point to
the plate 1 on the left and 80 on the right.

4. Conclusions

Finally, the benefits of the solution by discrete recurrence could be summarized on
several advantages. First and foremost, there is no need for sophisticated digital computa-
tions and we could have an exact solution of Craig’s model. This approach of liquid–liquid
chromatography is then rather a translation of the problem by a feasible assembly with
displacements of plates, for any topology or mode. Furthermore, the mathematical tech-
nique can lead us a step further by the simultaneous treatment of several solutes, assuming
their number of plates, to assess selectivity, purity, and productivity. It makes it possible to
compare, for instance, MDM to TMB and find the optimum configuration for production.
Otherwise, the involvement of the nonlinear effects due to saturation solubility is rather
easy to envision: the partition coefficient is modifiable with concentrations. The combina-
tion of solvent flow rates can also be computed in detail at each displacement, like in TMB
mode where injection and elution meet or when the stationary phase leaks, decreasing
selectivity. At the end, the method proposed in the current work is mainly dedicated to
the chemistry lab staff during the process development. Implemented in Python, Matlab,
Scilab, OpenBasic, Pascal, amongst others, it does not assume particular sophisticated skills.
The purpose is to save time and solvents, keeping the reproducibility and the efficiency of
the separation process.
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Abbreviations
The following abbreviations are used in this manuscript:

a Specific interfacial area (per unit volume)
c Celerity of solvents in dual or TMB modes or celerity of light
c(k) Concentration profile for a chromatogram
CCC Counter-Current Chromatography
CPC Centrifugal Partition Chromatography
dk Displacement of a solute molecule after k instants
D Diffusion coefficient for the solute in the plate theory
Dax Dispersion–diffusion coefficient for the mobile solvent
Dm Diffusion coefficient in mobile phase for the solute
Ds Diffusion coefficient in stationary phase for the solute
D0 Intrinsic diffusion coefficient of random walk, i.e., of mobile phase
∆t Time step for the plate model or Craig’s apparatus
∆ x Space step for the plate model or Craig’s apparatus
εm Ratio of mobile phase
εs Ratio of stationary phase
F Flow rate of mobile phase
k Index of time
k′ Retention factor of a solute
k0 Global speed of transfer of a solute
km Speed of transfer of a solute in the mobile phase
ks Speed of transfer of a solute in the stationary phase
Kd Partition coefficient of a solute
L Notion of length of column
m Concentration of mobile phase without index
mk

n Concentration of mobile phase in cell n and at instant k
MDM Multiple dual mode
MP Mobile phase
µk

n fraction of solute in a cell or plate
n Current index of cell or plate
N Total number of cells or plates

p
Probability for a solute molecule to be in mobile phase due to volume selection
and partition

pt Probability for a solute molecule to be in mobile phase due to partition

q
Probability for a solute molecule to be in stationary phase due to volume selection
and partition

Qinj Amount of injected solute
ρ(x, t) Concentration in mobile phase in the continuous case for a solute
s Concentration of stationary phase without index
sk

n Concentration of stationary phase in cell n and at instant k
σk Standard deviation of the displacement of a solute molecule after k instants
SP Stationary phase
U Speed of convection
U0 Intrinsic speed of random walk, i.e of mobile phase
T Duration of a TMB cycle
TMB True Moving Bed
Vc Volume of one cell or plate
Vc Total volume of a column
Vm Volume of mobile phase of one cell or plate
Vs Volume of stationary phase of one cell or plate
Vr Total retention volume for a solute
x Horizontal space axis
X Width of a cell or plate
y Vertical space axis
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