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Abstract: This paper aims to cover the main strategies based on ion mobility spectrometry (IMS) for
the analysis of biological samples. The determination of endogenous and exogenous compounds in
such samples is important for the understanding of the health status of individuals. For this reason,
the development of new approaches that can be complementary to the ones already established
(mainly based on liquid chromatography coupled to mass spectrometry) is welcomed. In this
regard, ion mobility spectrometry has appeared in the analytical scenario as a powerful technique
for the separation and characterization of compounds based on their mobility. IMS has been used
in several areas taking advantage of its orthogonality with other analytical separation techniques,
such as liquid chromatography, gas chromatography, capillary electrophoresis, or supercritical fluid
chromatography. Bioanalysis is not one of the areas where IMS has been more extensively applied.
However, over the last years, the interest in using this approach for the analysis of biological samples
has clearly increased. This paper introduces the reader to the principles controlling the separation in
IMS and reviews recent applications using this technique in the field of bioanalysis.
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1. Introduction

Methods and technologies for the determination of endogenous and exogenous com-
pounds in biological matrices such as plasma, urine, saliva, sweat, infected tissues, infected
exudates, feces, breath, and breast milk [1–12] are under continuous development as a
consequence of society’s growing interest in improving the knowledge of individuals’
health conditions. In this regard, the research on proper biomarkers or biological indica-
tors of a medical state observed from outside the patient, which can be accurately and
reproducibly measured, has gained special interest in the pharmaceutical and biomedical
fields [13]. In addition, in the bioanalysis area, the determination of drugs and related
compounds in biological samples is essential not only for correlating drug exposure to
efficacy but also for predicting adverse effects related to the drug or its metabolites. In
bioanalysis, samples are analyzed for qualitative or quantitative purposes, i.e., for the
identification and structural elucidation or the quantitation of exogenous or endogenous
molecules [14–16]. Due to the inherent complexity of biological matrices, samples are
usually subjected to clean-up or preconcentration procedures to enrich the sample and to
eliminate possible interferences that can hinder the determination of the compound(s) of
interest. The complexity of such procedures ranges from simple dilution of the sample (di-
lute and shoot (DAS)) [17–19] or protein precipitation (PPT) [20,21] to intricate procedures
dealing with solid-phase (SPE) [22–24] or liquid–liquid (LLE) [25] extractions [26,27]. It
is clear that the sample treatment procedure is determined by the information available
regarding the structural and the physicochemical properties of the analytes, the matrix, and
the purpose of the analysis. Thus, for metabolomic fingerprinting, nonspecific methods
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(such as DAS or PPT) are preferred to prevent the loss of compounds that can result in
important features [28]. On the contrary, the quantitative determination of drugs and/or
known metabolites often requires high sensitivity, which means that specific methods
developed considering the physicochemical properties of the analyte(s) should be used.
Extracts obtained after sample treatment are then analyzed using several instrumental
platforms. In metabolomics, analytical techniques, such as NMR, which can provide a
huge amount of data that can be analyzed using mathematical models are commonly used
for the analysis of the biological matrices [29–32]. However, in bioanalysis in general,
high-performance separation techniques are usually welcomed to improve the efficiency
of the analysis. In this regard, liquid chromatography (LC) has been the most extensively
exploited technique. While first LC was used mostly with UV detection (LC-UV), nowa-
days, LC coupled with mass spectrometry has become the gold standard in bioanalysis
combining high (compound) resolution, sensitivity, and specificity with a high sample
throughput [33–35]. In addition, mass spectrometry provides structural information that is
essential for identification purposes. Other separation techniques such as gas chromatog-
raphy (GC), capillary electrophoresis (CE), or supercritical fluid chromatography (SFC)
have also been considered as an alternative because of their complementary selectivity to
LC [36–41]. However, the application of these techniques is by far less extended because of
instrumental or methodological drawbacks.

In the last decades, ion mobility spectrometry (IMS), which separates gas ions ac-
cording to their size-to-charge ratio, has gained interest as a powerful separation method.
Ion mobility studies were already conducted in the early 20th century [42–45]; however,
it was not until the 1970s that IMS was introduced as an analytical tool by Cohen and
Karasek [46,47]. Since then, IMS has been extensively used in a wide range of research
areas from environmental and security fields to biomedical and pharmaceutical appli-
cations [48–57]. For instance, IMS has been used for the detection of illegal drugs and
their precursors (such as acetic anhydride or pyridine) [58,59], environmental analysis [60],
the diagnosis of bacterial infections [61], forensic examination [62], military and chemical
weapons monitoring [63,64], and aerospace applications [65]. The use of ion mobility has
also gained relevance in bioanalysis in recent years owing to the potential improvement of
the sensitivity and the capacity of the technique to separate strongly related compounds
based on their conformational differences. In addition, ion mobility can provide some struc-
tural information by means of CCS determination (see below), which can be considerably
helpful for the identification of unknown compounds. Initially, IMS was mainly used as a
standalone technique; however, in recent years the coupling of IMS with mass spectrometry
has spectacularly gained in importance [66]. This fact responds to the improvement in the
analysis of complex samples that can be obtained taking advantage of (1) the separation
based on the different mobility of the ions and (2) the structural information that mass
spectrometry provides. Besides, the addition of a third separation dimension that is ob-
tained with the coupling of an orthogonal technique, mainly liquid chromatography, has
also shown a high potential for the analysis of complex samples [67,68]. In this case, the
separation of the compounds of interest from other matrix components is driven by their
lipophilicity (LC), shape (IMS), mass (MS), and charge (IMS and MS).

Bioanalysis has remarkable relevance in the analytical field owing to the necessity of
linking human health conditions with objective indicators or descriptors. In this regard, the
development of new analytical approaches for the characterization of biological samples
is fundamental to increase the understanding of human health status. Hence, this paper
is an overview of the use of ion mobility mainly coupled with mass spectrometry in the
bioanalytical field. A brief introduction to the theoretical background of the technique is
given, followed by a description of the different ion mobility techniques used in bioanalysis.
Recent applications are described to provide insights into the current landscape of this field.
However, an exhaustive coverage of applications is beyond the scope of the present contri-
bution, and therefore, this paper focuses on some relevant applications published over the
last few years. The main search was done using SciFinder, considering publications from
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2015 to the present time and using concepts such as ion mobility, bioanalysis, metabolism,
and drugs as the general search inputs. However, to cover other more specific points,
keywords such as different ion mobility types, mass spectrometry, and liquid chromatogra-
phy and a more extended period were also considered. Besides, relevant papers from a
historical perspective that deal with fundamentals and background are also included.

2. Theoretical Background

In this section, a brief introduction to the technique is given. However, for a more
comprehensive description of the principles governing IMS separations as well as the
instrumental characteristics, readers are referred to more specific publications [69–75].

Ion mobility spectrometry is an analytical technique that allows the separation of
ions in the gas phase based on their mobility, which depends on their charge, size, and
shape. Thus, the velocity of the ions, or drift velocity (νd), in the gas-phase medium is
proportional to the strength of the electric field (E) applied, with the ion mobility (K) being
the proportionality coefficient:

νd = K E (1)

According to the Mason–Schamp equation [76], the mobility of the ions in the gas
phase can be related to the compound properties as follows:
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where KB is the Boltzmann constant (1.38065 × 10−23 J·K−1), T is the gas temperature, m
and M are the mass of the buffer gas and the ion, respectively, q is the ionic charge (q = ze,
with z being the number of elemental charges and e being the elementary charge), and Ω is
the collision cross-section (CCS).

Equation (2) clearly shows the dependence of the ion mobility on the charge (q) and
the mass (M) of the ion but also on the ion CCS, which is related to its size and shape
and reflects its chemical structure and its three-dimensional conformation. In fact, for
small molecules, CCS is characteristic of each ion and then can be used for structural
identification purposes [77–80]. However, from a practical point of view, not all the IM
instruments enable CCS calculation. As we will see in the following section, drift tube ion
mobility spectrometry (DTIMS) allows the direct determination of CCS. On the contrary,
its determination can only be accomplished upon calibration with other IM modes, such as
traveling wave ion mobility spectrometry (TWIMS), differential mobility analysis (DMA),
and trapped ion mobility spectrometry (TIMS), but not with field asymmetric waveform
ion mobility spectrometry (FAIMS).

IMS can be classified into three different categories according to the mechanism of
separation of the ions [81]. In time-dispersive methods, the separation occurs based on the
different times that ions require to go through the same pathway, as happens in DTIMS
and TWIMS (Figure 1a). In a different way, the separation in FAIMS and DMA is governed
by space-dispersive methods, where ions describe different trajectories according to their
mobility (Figure 1b). Note that in this type of technique, the mobility spectrum is obtained
from a voltage scan, and each ion will reach the end of the path at a specific voltage value.
Finally, in the case of ion trapping with selective release methods, such as in TIMS, ions
are trapped in a pressurized region and are selectively ejected based on their mobilities
(Figure 1c).
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Figure 1. Classification of IMS based on the mechanisms of separation. (a) Time-dispersive methods,
(b) space-dispersive methods, and (c) ion trapping with selective release methods.

3. Ion Mobility Techniques

As mentioned before, different ion mobility technologies have been developed, with
the mobility of gas ions being the common driving force for their separation. However,
the design and thus, the specific principle of separation is characteristic of each of the
different technologies. Note that new variants are being developed, but the lack of com-
mercial instrumentation makes them unfeasible from a practical point of view. In the
following paragraphs, the specificities of ion mobility modes mostly used in bioanalysis
are described, illustrating their applicability by reviewing some examples. In addition, in
Table 1, manufacturers of each type of IMS are given.

Table 1. Manufacturers of the different ion mobility analyzers.

Technology Manufacturer

DTIMS AgilentTOFwerk

TWIMS Waters

DMA SEADM

FAIMS ThermoFisherOwlstone

DMS Sciex

TIMS Bruker

3.1. Drift Tube Ion Mobility Spectrometry (DTIMS)

In this case, the ion mobility analyzer is a tube (drift tube) consisting of a series of
stacked-ring electrodes with a current of an inert gas flowing through the tube (mostly
nitrogen or helium) (Figure 2A). The application of a uniform electric field along the drift
tube makes the ions move towards the detection region. The collisions of the ions with
the drift gas, which moves in the opposite direction than the ions do, determine their
mobility; more compact ions, which suffer fewer collisions, move faster than extended



Separations 2021, 8, 33 5 of 14

ones. Thus, the time that ions need to reach the detector (drift time) depends on their
shape, which is related to the CCS value [69,70]. In fact, DTIMS is the only analyzer that,
if conditions are well controlled, allows one to directly determine CCS values with high
accuracy without the need to use calibrators. For instance, CCS values in combination
with mass spectrometry information were used for the identification of antiepileptic drugs
in human serum [78]. DTIMS provides an orthogonal dimension to the LC separation,
and furthermore, CCS measurements increase the confidence in the identification [78]. A
clear example of the utility of CCS values for differentiating isobaric compounds is the
case of carbamazepine epoxy, oxacarbazepine, and phenytoin with CCS values of 154.0,
155.8, and 166.6 Å2, respectively [78]. The relevance of measuring CCS is also pointed
out by Nichols et al., who created a CCS library based on the analytical standards in the
Mass Spectrometry Metabolite Library of Standards [82]. The addition of these values in
the analysis of human serum extracts has been shown to be advantageous as a molecular
descriptor [82]. Apart from the use of DTIMS for obtaining structural information, the
technique has been exploited for the separation of isomers. This is the case for bile acids,
for which separation by liquid chromatography is long and offers poor resolution for some
isomeric compounds. After the application of ion mobility, good resolution outcomes were
obtained for small bile acids (BAs), but BAs with high m/z values still remained unresolved.
The addition of metal ions such as copper and zinc to the sample resulted in complexes that
had differentiated mobilities and, thus, were separable by DTIMS [83]. Ion mobility has
also shown to be an interesting option for the analysis of metabolites in biological samples
for metabolite profiling, the so-called metabolomics [84–87]. As an example, Zhang and
coworkers compared three different operation modes, namely FIA/IM-MS, LC-MS, and
LC-IM-MS for metabolomics analyses of human plasma and HaCaT cells using DTIMS [85].
A clear benefit was observed by the addition of the third dimension (ion mobility) to the
LC-MS analyses. In this regard, a reduction of chemical noise, an accurate measurement
of isotope ratios, an increased peak capacity, and additional structural information were
achieved by LC-IM-MS [85]. CCS determination has also been demonstrated to be useful
in metabolomics since it can aid in the small molecule identification for both targeted and
untargeted metabolite screening [87]. Reisdorph and coworkers described a typical DTIMS
metabolomics workflow as a proposal to investigators who are interested in using IM-MS
in their metabolomic studies [84].

Figure 2. Schematic representation of the commercially available IMS technology: DTIMS (A),
TWIMS (B), FAIMS (C), DMA (D) and TIMS (E) Reproduced from [70] with permission.
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3.2. Travelling Wave Ion Mobility Spectrometry (TWIMS)

Traveling wave ion mobility spectrometry (TWIMS), like DTIMS, is a time-dispersive
technique. The separation cell also consists of a series of stacked-ring electrodes. However,
in TWIMS, the separation is obtained by a dynamic application of the electric field rather
than a linear one. This is obtained through the alternative application of positive and
negative radio frequency voltages to adjacent electrodes. In this way, a traveling wave is
created, in which magnitude and speed govern the ion separation. As in the case of DTIMS,
more compact ions suffer less friction with the buffer gas, and as a result, they move faster
than extended ones [69,70]. Figure 2B shows a scheme of the technique.

In general, TWIMS has been extensively applied as a separation technique; however,
the possibility of determining CCS offers the potential of using it for characterization
purposes. Nevertheless, unlike in DTIMS, in TWIMS, a calibration with reference stan-
dards is needed for CCS calculation. In the bioanalytical field, one can find CCS libraries
that are generated for a specific set of compounds, such as steroids [88] or rat metabo-
lites [89]. More specifically, CCS values were also used for the structural elucidation of
small molecules. In this regard, several publications using TWIMS have been found to
deal with the identification of metabolites of drugs or specific compounds [90–92]. For
instance, Ross et al. developed a workflow for the structural elucidation of drug metabo-
lites using TWIMS [91]. After in vitro metabolite generation, the samples were analyzed by
FIA-IM-MS. The analysis of the obtained data (CCS values and MS information) allowed
them to characterize drug metabolites from a diverse panel of drugs. They found that
CCS changes depend not only on the type and position of the modification but also on the
structural characteristics of the parent drug. As mentioned before, a previous calibration
was needed for CCS determination. They used a mixture of polyalanines and drug-like
compounds with known DTIMCCS values to calibrate TWIMCCS values (Figure 3). Regard-
ing the use of this technique for separation purposes in bioanalysis, some applications
can be found in combination with LC as an orthogonal separation dimension [93–95] or
as a standalone separation technique [96]. In the latter case, a rapid and sensitive method
was developed for the quantification of drugs in tissue sections using matrix-assisted
laser desorption ionization (MALDI) as an ionization source. Isomer separations can also
be accomplished with TWIMS. As an example, the separation of bile acid isomers was
successfully achieved [97]. As has been pointed out before, the small differences in the
mobility of some of these isomeric compounds are not enough for a baseline separation. In
this case, Chouinard and coworkers used cyclodextrin adduct formation to increase ion
mobility resolution [97]. Finally, it is worth mentioning the use of TWIMS in metabolomic
studies, which has been reviewed elsewhere [98]. Following a metabolomic approach,
Poland and coworkers were able to profile changes in the gut metabolome after biliary
diversion surgery. For such a purpose, an untargeted UPLC-IM-MS method was optimized
for fecal samples obtained from mice that have undergone bile diversion surgery [99].
Urinary metabolic phenotyping can also be mentioned as an example of metabolomics
studies performed using TWIMS [100,101].
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Figure 3. Calibration of TWIMCCS values using known DTIMCCS values from a mixture of polyala-
nines and drug-like compounds. This figure was adapted from [91] with the permission of the pub-
lisher.

3.3. Differential Mobility Analysis (DMA)

Differential mobility analysis (DMA) is a space-dispersive technique in which the
ions are separated based on their capacity to reach the ion mobility cell exit so that a scan
is needed for the detection of different ions. In this approach, a constant electric field
is applied between two cylindrical and concentric metal electrodes. Ions are introduced
between the two electrodes where they are pushed towards the exit by means of an or-
thogonal flow of sheath gas. Only those ions with the appropriate mobility will reach
the cell exit. The other ions will collide with the electrode, thus preventing their detec-
tion. By scanning the electric field, an ion spectrum based on the different ion mobilities
can be recorded (Figure 2D). In general, DMA is mainly used for the determination of
large analytes such as aerosol particles or macromolecules and is less applied for small
molecules [72]. In fact, very few bioanalytical applications for DMA have been found. Even
so, the potential of the technique has been proven in several cases. As an example, the
isomers sarcosine and L-alanine were partially resolved in urine, and for such a purpose,
a minimal sample preparation consisting of a simple dilution step was required [102]. It
is also worth mentioning that the technique has also been applied in metabolomic stud-
ies. Thus, the urinary metabolic fingerprint obtained by DMA–quadrupole time-of-flight
(QTOF) allowed Martinez-Lozano and coworkers to differentiate between prostate cancer
patients and healthy individuals [103].

3.4. Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) and Differential Mobility
Spectrometry (DMS)

Field asymmetric waveform ion mobility spectrometry (FAIMS), like DMA, is a space-
dispersive technique in which separation occurs on a spatial scale rather than in a temporal
one (Figure 2C). This technique is often equally named differential mobility spectrometry
(DMS); however, although the principle of operation is the same, some small differences
exist between both techniques due to the geometry of their electrodes. Devices with cylin-
drical electrodes are referred to as field asymmetric waveform ion mobility spectrometers,
whereas planar electrodes are used in DMS [104]. Here, we will use the term FAIMS when
describing the principles of operation. In FAIMS, a high asymmetric electric field is applied
between two electrodes. The motion of ions is then driven not only by the changing electric
field but also because of the carrier gas, which is injected in the same direction as the ions.
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Under these conditions, only those ions with the proper mobility will reach the detector.
However, a compensation voltage is superposed to the dispersion field, which corrects
the trajectory of the ions of interest. Again, those ions whose trajectory is not properly
corrected will migrate away. The compensation voltage (CV) can be scanned to generate
a CV spectrum. In FAIMS, the ions are separated based not directly on their mobility,
but on changes in mobility. This implies that the mechanism of separation in FAIMS is
more different from MS when compared to the mechanisms of the other ion mobility
techniques [70,104].

Among all the ion mobility techniques, DMS-MS is the most widely used in the bioana-
lytical field. DMS coupled with MS is mainly used as a filtering process both in combination
with liquid chromatography (LC) [105–109] or as a stand-alone separation [110,111]. The
filtering capacity of the technique provides clear benefits in terms of eliminating inter-
ferences and reducing background noise, which can entail an increase in sensitivity. In
Figure 4, the improvement in sensitivity obtained in the determination of eptifibatide in
rat plasma with LC-DMS–multiple ion monitoring (LC-DMS-MIM) with respect to LC-
MIM or LC–multiple reaction monitoring (LC-MRM) is shown. The results suggest that
LC-DMS-MIM can be considered as a proper bioanalytical alternative for compounds with
poor CID efficiency [108]. Kayleigh and coworkers reported also an increase in signal-
to-noise ratios by eliminating interferences for the determination of anabolic–androgenic
steroid metabolites in urine using LC-FAIMS-MS. Furthermore, the separation capacity of
FAIMS added to the LC separation allows a substantial reduction in chromatographic run
time [106]. Going further, LC can be totally avoided in some cases by using the separation
obtained by DMS. This is the case of the determination of cocaine and its metabolites in
human serum. The DMS-MS/MS method demonstrated the potential of the technique for
high-throughput analysis of these compounds [110]. The separation of isomers was also
achieved with DMS [112,113]. However, the scarce structural differences between isomers,
above all for small molecules, make the separation challenging. In these cases, but also
as a general strategy for improving the separation, gas modifiers can be added. Hence,
Ruskic and Hopfgartner studied the effect of using different modifiers on the separation
of several isomeric drugs in human plasma [112]. DMS has also been combined with gas
chromatography (GC), as proposed by Criado-García and coworkers, who developed a
rapid noninvasive method for the determination of toxic levels of alcohols in saliva [114].

Figure 4. Comparison of the performance of the LC-DMS-MIM assay for eptifibatide in rat plasma with that of similar
assays without DMS. Reproduced from [108] with permission.

As stated above, CCS values could not be determined by FAIMS; however, in some
cases, compensation voltage, which is characteristic of each analyte at given conditions,
could be used for application in metabolite identification [115]. Finally, it is worth pointing
out that, although FAIMS (or DMS) has normally been used for targeted analysis, several
applications can be found using this technique for metabolomic analysis. As an example,
an LC-FAIMS-MS method, which has been demonstrated to be able to resolve co-eluting
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isomeric species, was applied for the untargeted metabolomic analysis of human urine,
allowing the differentiation between fresh and aged urine [116]. Regarding DMS, a novel
untargeted metabolomics method, based solely on DMS, was applied in a clinically relevant
chronic kidney disease patient population [117].

3.5. Trapped Ion Mobility Spectrometry (TIMS)

Trapped ion mobility spectrometry (TIMS) is a relatively recent technique. Briefly,
ions are trapped into the drift cell by means of an electric field that keeps ions static against
a circulating gas. Under these conditions, following the same separation principles as those
in DTIMS (ions are pushed through a gas using an electric field), the ions are separated
based on their size-to-charge ratio. After the separation step, the electric field is decreased
gradually, allowing ions to be eluted from high to low size-to-charge ratios [69,70,118].
Few applications in the bioanalytical area have been found using TIMS; among them,
publications by Adams and coworkers can be highlighted [119,120]. Their works involving
LC-TIMS-MS include the determination of isomeric drugs of abuse and their metabolites
in human urine [119] or the targeted monitoring of polychlorinated biphenyl metabolites
in human plasma [120]. TIMS has also been used, combined with MALDI, for spatial
metabolomics [121,122].

4. Conclusions and Future Perspectives

The determination of endogenous and exogenous compounds in biological matrices
such as plasma and urine is essential in increasing the knowledge of the health status
of individuals. Sample analysis deals with the first step of sample treatment followed
by the analysis of extracts with the appropriate instrumental technique to determine,
qualitatively or quantitatively, the compounds of interest. Among the different approaches,
LC-MS stands out as the most extensively used technique in bioanalysis. However, the
consideration of alternative separation techniques has been shown to be important in
exploring different separation mechanisms and, thus, obtaining complementary selectivity.
Among these alternatives, a clear interest exists in exploiting the orthogonality of IMS, in
which the separation is driven by the mobility of ions in the gas phase. However, several
IMS modalities can be differentiated according to their specific separation mechanism.
Three categories can be highlighted: (i) time-dispersive, (ii) space-dispersive, and (iii)
ion trapping with selective release methods. Differences between these three modalities
have been introduced in this work, but for rapid understanding, one can compare the
mode of separation for each category with different analyzers in mass spectrometry. Thus,
time-dispersive methods can be compared to time-of-flight analyzers, space-dispersive
methods can be compared with quadrupole separations, and ion trapping can be compared
with ion trap instruments.

As has been pointed out, IMS has been shown to be a powerful approach not only as
a separation technique but also for identification purposes. By evaluating the published
bioanalytical applications, one can realize that FAIMS or DMS are the techniques of choice
when the separation of the compound of interest from other matrix components is the main
objective of the analysis, as they achieve a clear improvement in the sensitivity by reducing
background noise. The separation of closely related compounds such as isomers is also
the main focus of space-dispersive categories. On the contrary, time-dispersive methods,
which allow the determination of CCS, are more directed to those applications that look for
structural characterization of the molecules of interest. Finally, nowadays, TIMS has been
scarcely applied in the bioanalytical field.

Looking ahead, we think that future technical improvements will imply a substantial
increase in the application of IMS in the bioanalytical field. In fact, we have commented here
on only those modalities that are fully developed and commercially available. However,
new modalities are currently being developed that can also eventually be advantageous
for the analysis of complex matrices, such as biological matrices.
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