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Abstract: Thermal ionization mass spectrometry (TIMS) can provide highly accurate strontium (Sr),
neodymium (Nd), and lead (Pb) isotope measurements for geological and environmental samples.
Traces of these isotopes are useful for understanding crustal reworking and growth. In this study,
we conducted a sequential separation of Sr, Nd, and Pb and subsequently measured the 87Sr/86Sr,
143Nd/144Nd, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 13 widely used rock certified
reference materials (CRMs), namely BCR-2, BHVO-2, GSP-2, JG-1a, HISS-1, JLk-1, JSd-1, JSd-2, JSd-3,
LKSD-1, MAG-1, SGR-1, and 4353A, using TIMS. In particular, we reported the first isotopic ratios of
Sr, Nd, and Pb in 4353A, Sr and Nd in HISS-1 and SGR-1, and Sr in JLk-1, JSd-2, JSd-3, and LKSD-1.
The Sr–Nd–Pb isotopic compositions of most in-house CRMs were indistinguishable from previously
reported values, although the Sr and Pb isotopic ratios of GSP-2, JSd-2, JSd-3, and LKSD-1 obtained
in different aliquots and/or batches varied slightly. Hence, these rock reference materials can be used
for monitoring the sample accuracy and assessing the quality of Sr–Nd–Pb isotope analyses.

Keywords: separation chemistry; TIMS; Sr–Nd–Pb isotopes; rock reference material

1. Introduction

In geosciences, radiogenic isotopic ratios, combined with geochemical and stable
isotope data, are used to determine the ages of terrestrial and extraterrestrial rocks and to
understand geological processes and environments [1]. The daughter isotopes strontium
(Sr) and neodymium (Nd) are produced by the decay of rubidium (Rb) and samarium
(Sm), respectively. Radiometric Rb–Sr and Sm–Nd dating techniques are commonly used
for silicate rock analysis because of the relatively long half-lives of parent isotopes. Lead
(Pb) has four naturally occurring isotopes: 208Pb, 207Pb, 206Pb, and 204Pb. The former
three isotopes are produced by the decay of thorium (Th) and uranium (U). Pb isotope
systems are characterized by different decay chains, linked to the half-lives of parent
isotopes and relatively large U–Th–Pb fractionations during geological processes. As
members of radiogenic isotope systems, Sr, Nd, and Pb are abundant in the continental
crust [2]. Numerous studies have clearly demonstrated the potential of radiogenic isotopes
in terrestrial rocks to interpret the evolution of continental crust, the role of crustal and
mantle interactions, supercontinent and orogenic cycles, and magmatic flare-ups [3–9].
Thus, the precise determination of Sr–Nd–Pb isotopic ratios is essential to understanding
crustal reworking and growth. In addition, the importance of isotope analyses has been
noted in a wide range of fields, such as environmental science, biology, archaeology,
food traceability, and forensic investigations [10–16]. In particular, Pb isotopes, sometimes
combined with Sr and Nd isotopes, have been used to effectively trace environmental metal
pollution sources. Atmospheric Pb emissions are divided into trace amounts of natural
emissions due to rock and/or mineral weathering and volcanic activity and abundant
anthropogenic emissions due to large-scale fossil fuel combustion, mining, and smelting,
which cause serious environmental pollution. Because Pb emissions change natural Pb
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isotopic ratios, Pb isotope analysis is widely used to trace the origin and migration of
pollutants in various fields, such as sediment [17–21], peat bog [22–24], ice and snow [25,26],
soil [27,28], tree ring [29–31], and lichen [32–36].

In geochemical research, including age dating, crustal evolution, and tracing pollutant
origins, isotopic ratios are measured using high-precision analysis equipment, such as
thermal ionization mass spectrometry (TIMS) and multi-collector inductively coupled
plasma mass spectrometry (MC-ICP-MS) equipped with a laser ablation system. Although
advances in MC-ICP-MS have easily enabled measurements of Sr and Nd isotopic ratios,
TIMS is the preferred method. The advantage of TIMS is that it produces lower and more
consistent average instrumental mass fractionation (IMF), obtaining precise results using
small amounts of samples and manually optimized evaporation and ionization of the
elements of interest [37]. Isobaric (87Rb), monoatomic (86Kr+), polyatomic (48Ca40Ar+),
and molecular interferences in TIMS are relatively small and simple compared to with
MC-ICP-MS [38–40]. To achieve reproducible and reliable Sr–Nd–Pb isotope data using
TIMS, external reference materials (e.g., NIST SRM 987, JNdi-1, and NIST SRM 981) and
certified geological materials are used to correct IMF and monitor analytical conditions,
and chemical treatments and column chemistry are performed under clean conditions. For
accurate isotope measurement, the high-purity separation of each element of interest is
fundamental to prevent the interference from other elements. Therefore, it is important to
determine the optimal element separation conditions, such as eluent type and concentra-
tion, resin type and particle size, and to increase the recovery rate. Generally, rock powders
of certified reference materials (CRMs), distributed by the United States Geological Sur-
vey (USGS), the Geological Survey of Japan (GSJ), and the International Atomic Energy
Agency (IAEA), are widely used. However, differences in Sr isotopic compositions have
been found between new reference materials and their original counterparts [41]. This is
probably caused by sample heterogeneity and contamination during sample, chemical, and
analytical processing.

In this study, we conducted a sequential separation of Sr, Nd, and Pb, subsequently
measured several aliquots of rock reference materials, investigated the reproducibility of
this method in Sr–Nd–Pb isotope analyses, and determined the Sr–Nd–Pb isotopic ratios
of in-house CRMs using TIMS.

2. Materials and Methods

The whole-rock Sr–Nd–Pb isotopic compositions of 13 powdered rock CRMs were
measured. Basalts (BCR-2 and BHVO-2), granodiorite (GSP-2), marine mud (MAG-1), and
shale (SGR-1) were obtained from the USGS. Another granodiorite sample (JG-1a) was
obtained from the GSJ. Stream (JSd-1, JSd-2, and JSd-3), lake (JLk-1 and LKSD-1), and
marine (HISS-1) sediments were obtained from the GSJ, the Canadian Certified Reference
Material Programme, and the National Research Council. Lastly, rocky flats soil (4353A)
was obtained from the IAEA. The geochemical processing of the samples and the Sr–Nd–
Pb isotope analyses were carried out in the TIMS laboratory at the Korea Institute of
Geoscience and Mineral Resources (KIGAM) in Daejeon, South Korea. Sample digestion
and column chemistry were performed under conditions above the threshold of class
1000. The Sr–Nd–Pb isotopes were measured using TIMS (TRITON Plus, Thermo Fisher
Scientific, Waltham, MA, USA) at the KIGAM.

2.1. Reagents, Labware, and Chromatographic Materials

Ultra-pure Milli-Q water (Millipore, Molsheim, France) with a resistivity of 18.2 MΩ cm−1

was used in all experiments. All chemicals used in this study were commercial products
from Merck (Kenilworth, NJ, USA) and ODLAB (Gyeonggi, South Korea) without any
further purification. Ultra-pure acids, namely hydrochloric acid (HCl), nitric acid (HNO3),
and hydrofluoric acid (HF), were used for sample digestion and column chemistry. Supra-
pure HCl and perchloric acid (HClO4) were only used for washing vials and resins and
sample decomposition, respectively. Acid digestion was performed in pre-cleaned 60 mL
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Savillex® screw-top Teflon perfluoroalkoxy (PFA) vessels (Eden Prairie, MN, USA). The
element fractions were collected and dried in 7 and 15 mL PFA vials.

DOWEX® 50WX8 resin (hydrogen form, 100–200 mesh), manufactured by Merck,
was reacted with cations and used to separate Pb, Sr, and rare earth elements (REEs). Ln
resin, with a particle size of 100–150 µm and based on di-(2-ethylhexyl) orthophosphoric
acid (HDEHP) in a pre-filter material (Eichrom Industries, Lyle, IL, USA), is commercially
available and used for the purification of Nd. These resins must be pre-washed to remove
impurities and organic components. After being cleaned three times with 6 M HCl and
deionized water (DIW), the cationic and anionic exchange resins were poured into a self-
designed quartz-glass column, which was 270 mm long with an inner diameter of 5 mm and
a 30 mL reservoir (Figure 1). For the Pb purification, a 2 mL Poly-Prep® chromatography
column (0.8 cm × 4 cm, a 10 mL reservoir; Bio-Rad, Hercules, CA, USA) and Eichrom
extraction chromatographic Pb resin (100–150 µm) were used [42]. To remove impurities,
the Pb resin was rinsed with 6 M HCl, 7 M HNO3, and DIW.
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2.2. Sample Digestion

The modified HF–HNO3–HClO4–HCl digestion method from [43] was applied for
the decomposition of the rock samples. Approximately 100–200 mg of rock powder were
weighed into 60 mL PFA vessels, followed by the addition of concentrated HF and HNO3
(HF:HNO3 = 2:1). The samples containing the HF–HNO3 mixtures were sonicated in an
ultrasonic bath for at least 15 min and heated on a hot plate at 160 ◦C for 2–3 days. The
dissolved samples were dried overnight at 140 ◦C after the addition of 100–200 µL of
concentrated HClO4 to decompose the fluorides. Subsequently, 1 mL of concentrated HCl
was added. The samples were again heated overnight at 160 ◦C and then dried at 110 ◦C.
The samples were dissolved in 2–4 mL of 6 M HCl to check any remaining particles. Upon
complete dissolution, the rock samples were finally dissolved using 0.5 mL of 2.5 M HCl.

2.3. Sr–Nd–Pb Separation

Before TIMS analysis, samples must be purified through ion-exchange. Table 1 pre-
sented the modified separation conditions of Sr and Nd from [44,45]. Before loading the
sample solutions, the column and resin were pre-cleaned twice with 4 mL of 2.5 M HCl.
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The 0.5 mL HCl solution obtained from the acid digestion was centrifuged at 13,000 rpm
for 5 min and then transferred to a quartz-glass column packed with 4 mL of DOWEX®

50WX8 resin. The resin was subsequently washed with 0.5 mL of 2.5 M HCl, followed by
9.5 mL of 2.5 M HCl, to collect the Pb fraction. The resin was then rinsed with a further
13.5 mL of 2.5 M HCl to remove unnecessary matrix elements, particularly isobaric 87Rb.
The Sr fraction was eluted with 5.5 mL of 2.5 M HCl. The resin was then rinsed with 2 mL
of 2.5 M HCl, followed by 1 mL of 6 M HCl to elute REEs. Finally, the REEs fraction was
collected in 10 mL of 6 M HCl. To separate Nd using the Ln resin method [45], a sample
solution including REEs was prepared by keeping the samples in 0.2 mL of 0.25 M HCl.
A quartz-glass column was pre-cleaned with 4 mL 0.25 M HCl and packed with 2 mL of
Ln (HDEHP) resin, after which the sample solution was passed through the column. The
residues were rinsed with 7.3–7.5 mL 0.25 M HCl, depending on the Nd concentration.
Then, Nd was collected with 3.5–3.7 mL of 0.25 M HCl. Upon completing the exchange
chromatography, the cationic resin was cleaned successively with 6 M HCl, DIW, and 2.5 M
HCl, and the anionic exchange resin was cleaned successively with 6 M HCl and 0.25 M
HCl. The Sr and Nd fractions were further purified using concentrated HNO3.

Generally, two rounds of element separation using hydrogen bromide (HBr) are
required to perform TIMS Pb isotope analysis. However, despite high analytical repro-
ducibility and low analytical error of this separation method, the pre-treatment process
is time-consuming, and the required ultra-pure HBr is difficult to obtain commercially in
South Korea. To solve this problem, we attempted to establish a simple and efficient method
for separating Pb using HCl and Eichrom′s extraction chromatography Pb resin [42]. Be-
fore the Pb separation, 10.5 mL of the 2.5 M HCl solution collected from cation column
chemistry were dried, followed by the addition of 0.5 mL of 2 M HCl. The column and the
resin were pre-cleaned and conditioned using 6 M and 2 M HCl. The 0.5 mL HCl sample
solution was transferred to a Poly-Prep® chromatography column packed with 0.4 mL of
Pb resin. After washing with 4.5 mL of 2 M HCl, the Pb fraction was eluted with 2 mL of
8 M HCl. The column and resin were cleaned using 6 M HCl and DIW. The Pb sample was
further purified using concentrated HNO3 and 0.1 M phosphoric acid (H3PO4). Detailed
column conditions and procedures for Pb separation are described in [42].

Table 1. Sr–Nd purification procedures.

Step Eluting Reagent Eluting Volume (mL)

Sr, Pb, and rare earth elements (REEs) separation (4 mL of DOWEX 50WX8 resin)
Cleaning column 2.5 M HCl 4 × 2
Loading sample 1 2.5 M HCl 0.5
Rinsing 1 2.5 M HCl 0.5
Eluting Pb 2.5 M HCl 9.5
Rinsing 2.5 M HCl 13.5
Eluting Sr 2.5 M HCl 5.5
Rinsing 2.5 M HCl 2
Rinsing 6 M HCl 1
Eluting REEs 6 M HCl 10
Cleaning column 6 M HCl 30
Cleaning column DIW 30
Cleaning column 2.5 M HCl 8
Nd separation (2 mL of Ln resin)
Cleaning column 0.25 M HCl 2 × 2
Loading sample 0.25 M HCl 0.2
Rinsing 0.25 M HCl 0.2
Rinsing 0.25 M HCl 7.5–7.3
Eluting Nd 0.25 M HCl 3.5–3.7
Cleaning column 6 M HCl 30
Cleaning column 0.25 M HCl 30

1 The solution was collected for Pb separation.
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2.4. TIMS Sr–Nd–Pb Isotope Analyses

Sr–Nd–Pb isotope measurements were conducted using a TRITON Plus TIMS instru-
ment equipped with nine Faraday detectors and one ion counter. All Faraday cups with
a 1011-Ω resistor were sequentially connected to all amplifiers to cancel the gain factor
uncertainties by using amplifier rotation. Therefore, this technique can achieve low-ppm
external reproducibility. Pre-degassed filaments with welded tantalum (Ta) were used for
Sr isotope analysis, while rhenium (Re) ribbons (0.035 mm thick, 0.77 mm wide, and 99.98%
pure; H. Cross Company) were used for Nd and Pb analyses. Raw Sr and Nd data were
collected in multi-dynamic collection mode. The collector arrays are presented in Table 2.

Table 2. Cup configuration for Sr–Nd–Pb isotope analysis.

Element L4 L3 L2 L1 Ax H1 H2 H3 H4

Sr 84Sr 85Rb 86Sr 87Sr 88Sr
Nd 140Ce 142Nd 143Nd 144Nd 145Nd 146Nd 147Sm 148Nd 150Nd
Pb 204Pb 206Pb 207Pb 208Pb

During the Sr isotope analysis, the purified Sr sample, dissolved in 1 µL of DIW, was
transferred onto a single Ta filament with 1 M H3PO4 to stimulate strong emission. The
suitable ionization temperature for TIMS Sr measurements is 1350−1400 ◦C, depending on
the sample. When the 88Sr ion beam intensity reached approximately 1 V in the Faraday
cup, data acquisition was performed using the static multiple Faraday cup mode. Each
run consisted of 10 blocks of 20 cycles each. The 87Sr/86Sr ratio was corrected for IMF
and normalized by the 86Sr/88Sr ratio of 0.1194 using an exponential law. During the
analytical period, the replicate analyses of NIST SRM 987 yielded an average 87Sr/86Sr
ratio of 0.710268 ± 0.000003 (n = 10, 1 standard deviation (SD); Figure 2a and Table 3). This
result agreed with a previously reported value within the error range [46].

Table 3. TIMS results for NIST SRM 987 and JNdi-1.

Sample Number 87Sr/86Sr 2σ SE n 143Nd/144Nd 2σ SE n

NIST SRM 987 JNdi-1
190723 0.710266 0.000005 20 0.512100 0.000002 20
191111 0.710271 0.000003 20 0.512102 0.000003 20
191212 0.710271 0.000003 20 0.512102 0.000003 20
200520 0.710266 0.000003 20 0.512101 0.000001 20
200716 0.710264 0.000003 20 0.512100 0.000002 20
200806 0.710264 0.000003 20 0.512100 0.000003 20
210415 0.710270 0.000003 20 0.512103 0.000002 20
210512 0.710270 0.000003 20 0.512103 0.000002 20
210628 0.710266 0.000006 20 0.512101 0.000002 20
210911 0.710269 0.000003 20 0.512100 0.000002 20

During the Nd isotope analysis, the Nd fraction, dissolved in 1 µL of DIW, was
transferred onto double-Re filaments with 0.1 M H3PO4. An ionization temperature of
1650−1700 ◦C is desirable for TIMS Nd measurements. Data were acquired using the
static multiple Faraday cup mode with a mass 144Nd ion beam intensity of 1 V and a
run consisting of 18 blocks of 10 cycles each. The 143Nd/144Nd ratio was normalized
by a 146Nd/144Nd ratio of 0.7219 using an exponential law. The replicate analyses of
JNdi-1 gave an average 143Nd/144Nd ratio of 0.512101 ± 0.000001 (n = 10, 1 SD), which is
indistinguishable from previously reported values of 0.512070–0.512129 (Figure 2b and
Table 3).
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Figure 2. Replicate measurements of NIST SRM 987 for the Sr isotope (a) and JNdi-1 for Nd isotope
(b) with the average (solid line) and the range (dashed lines) of the literature data from the GeoReM
database (http://georem.mpch-mainz.gwdg.de/, accessed 1 October 2021). Plots of 207Pb/204Pb vs.
206Pb/204Pb ratios (c) and 208Pb/204Pb vs. 206Pb/204Pb ratios (d) showing the results obtained for
NIST SRM 981 in a previous study [42] and this study. The dashed areas represent the range of Pb
isotopic compositions of Group-A, obtained from [47].

During the Pb isotope analysis, the Pb sample, dissolved in 1 µL of DIW, was trans-
ferred onto a single-Re filament with a silica gel and 0.1 M H3PO4. Depending on the
silica gel, an ionization temperature of 1200−1250 ◦C is preferable for TIMS Pb measure-
ments. Data were acquired using the static multiple Faraday cup mode, with a 208Pb ion
beam intensity of approximately 3 V and a run consisting of 4 blocks of 10 cycles each.
Unfortunately, internal calibration was not available for Pb analysis because only 204Pb
was non-radiogenic among the four Pb isotopes. This can be corrected by using double
spikes, but it is not widely used because it is difficult to obtain commercially in South
Korea. Therefore, external calibration was applied to the mass fractionation generated
during analysis by measuring the Pb isotopic ratios of NIST SRM 981. Replicate analyses of
NIST SRM 981 yielded 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 16.894 ± 0.002,
15.434 ± 0.002, and 36.518 ± 0.008 (n = 5, 1 SD), respectively, which are consistent with
those reported in [47] (Figure 2c,d and Table 4). The total procedural blank levels of Sr, Nd,
and Pb were below ca. 300, 50, and 200 pg, respectively.

Table 4. TIMS results for NIST SRM 981.

Sample
Number

206Pb/204Pb 2σ SE 207Pb/204Pb 2σ SE 208Pb/204Pb 2σ SE n

200716 16.895 0.001 15.435 0.002 36.522 0.005 5
200806 16.895 0.004 15.435 0.005 36.521 0.017 5
210512 16.892 0.003 15.431 0.004 36.510 0.012 10
210628 16.892 0.002 15.431 0.003 36.510 0.008 10
210911 16.896 0.004 15.437 0.005 36.527 0.016 10

http://georem.mpch-mainz.gwdg.de/
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3. Results and Discussion

In contrast to the basalt samples, the granodiorite (GSP-2 and JG-1a) and sedimentary
(JLk-1, JSd-3, LKSD-1, MAG-1, SGR-1, and 4353A) samples had difficulties in completely
decomposing with an acid mixture of HF–HNO3–HClO4–HCl. In most cases, a small
amount of black particles remained. To compensate for the uncertainty in the geochemical
and isotope data, complete recovery and sample homogeneity are required. However, it
is difficult to completely recover trace elements in felsic and mafic rocks because of the
presence of hard-to-digest minerals and co-precipitated insoluble fluoride [43,48]. Rock
samples from outcrops are also easily contaminated and altered. Pretorius et al. [49] found
that some granitoid samples show the poorer reproducibility of elemental concentrations
because of the inhomogeneous distribution of elements. Fortunately, a Sr–Nd–Pb isotope
equilibrium between the sample solution and suspended particles was mostly attained.

During the separation protocol, there were elution overlaps between Sr and Rb and
between Nd and Ce (see Figure I–4 from [44] and Figure 4 from [45]), but no overlap was
found between Sr, Nd, and Pb. Because of the peak overlapping and tailing, the Sr and
Nd solutions had isobaric interferences such as 87Rb and 143(CeH)+ [38–40,50]. However,
these Rb and Ce interferences were not ionized under the TIMS Sr and Nd measurement
conditions. Therefore, this separation protocol is not suitable for the Sr–Nd isotope analysis
of geological and environmental samples with high Rb and Ce concentrations using MC-
ICP-MS. To determine whether the Pb separation method affects the isotopic ratio [42],
Pb isotopic ratios were measured by separating NIST SRM 981 in the same way as the
standard rock sample. The Pb isotopic ratios (206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb)
agreed with those without Pb separation within the error range. This means that the
conditions of the experimental environment, including DIW, reagents, containers, and
acid-resistant clean laboratory used for Pb separation experiments, are also suitable for Pb
isotope analysis.

The Sr and Nd isotopic compositions of the 13 rock CRMs are shown in Table 5.
To our knowledge, we have presented the first Sr isotope data for JSd-2, JSd-3, HISS-1,
JLk-1, LKSD-1 SGR-1, and 4353A and the first Nd isotope data for HISS-1, SGR-1, and
4353A. All errors are given as 2σ standard errors (SE). Typically, the internal precision
of every run of Sr and Nd isotope measurements was less than 20 ppm. The Sr and
Nd isotopic compositions of the two basalt samples strongly agreed with the literature
data given in the GeoReM database. The Sr and Nd isotopic ratios of BCR-2 measured
in this study were 0.705022 ± 0.000011 (n = 5, 1 SD) and 0.512628 ± 0.000003 (n = 5,
1 SD), respectively. The Sr and Nd isotope analyses of BHVO-2 yielded a 87Sr/86Sr ratio of
0.703487 ± 0.000003 (n = 4, 1 SD) and a 143Nd/144Nd ratio of 0.512974 ± 0.000006 (n = 4,
1 SD). The different sample aliquots of GSP-2 showed small variations in 87Sr/86Sr ratios,
ranging from 0.765019 to 0.765212 with an average of 0.765143 ± 0.00054 (n = 10, 1 SD).
It is possible that this was caused by sample heterogeneity and/or incomplete recovery.
By contrast, Nd isotopic compositions were considerably more homogeneous, with an
average of 0.511359 ± 0.000003 (n = 10, 1 SD). Four Sr–Nd isotope measurements for JG-1a
yielded the average 87Sr/86Sr and 143Nd/144Nd ratios of 0.710984 ± 0.000008 (1 SD) and
0.512372 ± 0.000004 (1 SD), respectively. The respective isotopic ratios of 87Sr/86Sr and
143Nd/144Nd obtained for HISS-1 were 0.712681 ± 0.000009 (2σ SE) and 0.511844 ± 0.000006
(2σ SE). Two Sr–Nd measurements of MAG-1 yielded an average 87Sr/86Sr ratio of
0.722747± 0.000023 (1 SD) and an average 143Nd/144Nd ratio of 0.512059± 0.000004 (1 SD),
which are in line with the previously reported TIMS ratios within the error range [51]. The
87Sr/86Sr and 143Nd/144Nd ratios of the three stream sediments (JSd-1, JSd-2, and JSd-3)
ranged from 0.705732 to 0.731407 and from 0.511970 to 0.512640, respectively. The respec-
tive Sr and Nd isotopic ratios of the two lake sediments (JLk-1 and LKSD-1) ranged from
0.709773 to 0.721863 and from 0.512134 to 0.512173. The results of the TIMS Nd measure-
ments in stream and lake sediments were within the range reported in previous studies [51,52].
The 87Sr/86Sr and 143Nd/144Nd isotopic ratios of SGR-1 were 0.712139 ± 0.000011 (2σ SE)
and 0.512003 ± 0.000005 (2σ SE), respectively. Lastly, seven Sr–Nd measurements for



Separations 2021, 8, 213 8 of 14

4353A yielded average 87Sr/86Sr and 143Nd/144Nd ratios of 0.730442 ± 0.000017 (1 SD)
and 0.511782 ± 0.000005 (1 SD), respectively. Although each sedimentary rock sample
had slightly heterogeneous Sr isotopic compositions, their Nd isotopic compositions were
relatively constant. The percent-relative SD of isotopic values measured across the various
rock CRMs was less than ± 0.005% for the Nd isotope and ± 0.01% for the Sr isotope,
although some Sr isotope results of GSP-2 and MAG-1 showed slightly higher SD (Figure 3).
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Figure 3. Comparison between the measured and certified ratios of 87Sr/86Sr (a) and 143Nd/144Nd
(b) of rock CRMs. To calculate the average, the Sr and Nd isotopic compositions of CRMs were taken
from the GeoReM database. Relative deviation (%) = (1—measured value/certified value) × 100%.

Table 5. Sr–Nd isotopic compositions of rock CRMs.

Sample Number 1 87Sr/86Sr 2σ SE 143Nd/144Nd 2σ SE

BCR-2 (xxx)
1911 0.705030 0.000011 0.512631 0.000005
2005 0.705037 0.000010 0.512631 0.000008
2007 0.705011 0.000011 0.512629 0.000006

2008-1 0.705015 0.000009 0.512624 0.000007
2008-2 0.705018 0.000009 0.512624 0.000008

BHVO-2 (xxx)
1411 2 0.703485 0.000014 0.512968 0.000012
1911 0.703490 0.000010 0.512974 0.000007
2008 0.703484 0.000010 0.512973 0.000007
2108 0.703488 0.000010 0.512982 0.000007



Separations 2021, 8, 213 9 of 14

Table 5. Cont.

Sample Number 1 87Sr/86Sr 2σ SE 143Nd/144Nd 2σ SE

GSP-2 (xxx)
1907 0.765141 0.000010 0.511360 0.000006
1911 0.765113 0.000010 0.511364 0.000006
1912 0.765177 0.000009 0.511363 0.000006
2005 0.765019 0.000009 0.511357 0.000006
2007 0.765109 0.000009 0.511362 0.000006
2008 0.765155 0.000011 0.511358 0.000008

GSP-2 (599)
2005 0.765173 0.000010 0.511360 0.000007
2007 0.765212 0.000011 0.511360 0.000006

GSP-2 (1273)
2005 0.765159 0.000009 0.511357 0.000006
2007 0.765174 0.000010 0.511354 0.000007

JG-1a (xxx)
1907 0.710982 0.000010 0.512375 0.000007
1911 0.710981 0.000010 0.512368 0.000007
2008 0.710978 0.000009 0.512376 0.000007

2103-1 0.710995 0.000009 0.512371 0.000006
HISS-1 (xxx)

2108 0.712681 0.000009 0.511844 0.000006
MAG-1 (16)

2106 0.722763 0.000008 0.512056 0.000006
2108 0.722730 0.000009 0.512061 0.000007

JSd-1 (xxx)
2106 0.705741 0.000009 0.512581 0.000005
2108 0.705732 0.000009 0.512578 0.000007

JSd-2 (xxx)
2106 0.706929 0.000010 0.512635 0.000007
2108 0.706926 0.000009 0.512640 0.000007

JSd-3 (xxx)
2106 0.731407 0.000009 0.511971 0.000007
2108 0.731228 0.000010 0.511970 0.000007
2109 0.731294 0.000018

JLk-1 (8)
2106 0.721840 0.000009 0.512135 0.000006
2108 0.721863 0.000009 0.512134 0.000006

LKSD-1 (1549)
2106 0.709773 0.000013 0.512173 0.000008
2108 0.709806 0.000009 0.512172 0.000007
2109 0.709780 0.000009

SGR-1 (10)
2106 0.712139 0.000011 0.512003 0.000005

4353A (xxx)
2106 0.730460 0.000008 0.511776 0.000006

2108-1 0.730415 0.000010 0.511793 0.000007
2108-2 0.730460 0.000010 0.511780 0.000007
2109-1 0.730451 0.000008 0.511783 0.000008
2109-2 0.730438 0.000010 0.511780 0.000007
2109-3 0.730432 0.000010 0.511778 0.000008
2109-4 0.730439 0.000010 0.511784 0.000008

1 Batch or split numbers are in parentheses. xxx represents the sample without a batch number. 2 Sr–Nd isotope
data are from [53].

Eight reference materials were selected to measure Pb isotopic compositions using
TIMS, the results of which are shown in Table 6. The Pb isotopic compositions of 4353A
are presented first. Six Pb analyses of GSP-2 yielded average 206Pb/204Pb, 207Pb/204Pb,
and 208Pb/204Pb ratios of 17.595 ± 0.032 (1 SD), 15.508 ± 0.017 (1 SD), and 51.261 ± 0.377
(1 SD), respectively. The Pb isotopic ratios of JG-1a were as follows: 206Pb/204Pb ratio,
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18.613 ± 0.008 (n = 2, 1 SD); 207Pb/204Pb ratio, 15.624 ± 0.001 (n = 2, 1 SD); and 208Pb/204Pb
ratio, 38.782 ± 0.041 (n = 2, 1 SD). The Pb isotopic compositions measured in the two
granodiorite samples agreed strongly with the published values given in the GeoReM
database. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of MAG-1 and JSd-1 are
as well in agreement with the previously reported values [51,52,54]. The averages of the
207Pb/204Pb and 208Pb/204Pb ratios obtained for JSd-2, JSd-3, and LKSD-1 in this study
were slightly higher than those obtained from the MC-ICP-MS analysis [52]. In contrast
to JSd-1 and JSd-2, JSd-3 and LKSD-1 were difficult to completely dissolve using the acid
digestion method. Révillon and Hureau-Mazaudier [55] recommended the Parr bombs
digestion method, using HClO4 and HF, for the complete decomposition of sediment
samples. However, the geochemical results from [52] suggested that the inhomogeneous
sample powder and a relatively large sample grain size could be attributed to the large
bias of elemental and isotopic compositions. In the case of JG-1a, which has a granodi-
orite composition, the Pb isotopic ratios exhibited a broader range than those of Sr and
Nd (Figures 3 and 4) [56–58]. Five Pb analyses of 4353A yielded average 206Pb/204Pb,
207Pb/204Pb, and 208Pb/204Pb ratios of 19.094 ± 0.015 (1 SD), 15.681 ± 0.014 (1 SD), and
39.722 ± 0.053 (1 SD), respectively. Excluding some data from GSP-2 and JSd-2, the relative
deviation of Pb isotopic ratios across all rock CRMs was less than ± 0.5% for 206Pb/204Pb
and 207Pb/204Pb ratios, and ± 1% for 208Pb/204Pb ratios (Figure 4). Overall, the Sr–Nd–Pb
isotopic compositions of rock CRMs obtained in this study using acid digestion, column
chemistry, and TIMS analyses agree strongly with the literature (see the GeoReM online
database, accessed 1 October 2021).

Table 6. Pb isotopic compositions of rock CRMs.

Sample Number 206Pb/204Pb 2σ SE 207Pb/204Pb 2σ SE 208Pb/204Pb 2σ SE

GSP-2 (xxx)
2005 17.576 0.001 15.507 0.001 50.837 0.002
2007 17.647 0.001 15.541 0.001 51.528 0.003

GSP-2 (599)
2005 17.558 0.001 15.503 0.001 50.870 0.002
2007 17.587 0.001 15.489 0.001 51.677 0.003

GSP-2 (1273)
2005 17.616 0.001 15.504 0.001 51.576 0.003
2007 17.584 0.001 15.506 0.001 51.078 0.003

JG-1a (xxx)
2103-1 18.619 0.001 15.625 0.001 38.753 0.002
2103-2 18.607 0.002 15.623 0.002 38.811 0.004

MAG-1 (16)
2106 18.871 0.002 15.668 0.002 38.867 0.007
2109 18.862 0.002 15.650 0.002 38.804 0.004

JSd-1 (xxx)
2106 18.480 0.003 15.614 0.002 38.597 0.006
2109 18.496 0.002 15.634 0.002 38.665 0.004

JSd-2 (xxx)
2106 18.162 0.003 15.681 0.003 38.447 0.007
2109 18.163 0.009 15.665 0.008 38.412 0.019

JSd-3 (xxx)
2106 18.418 0.003 15.697 0.003 39.054 0.007
2109 18.404 0.003 15.680 0.002 38.999 0.006

LKSD-1 (1549)
2106 18.326 0.001 15.640 0.001 38.102 0.004
2109 18.361 0.011 15.647 0.010 38.220 0.023

4353A (xxx)
2106 19.089 0.001 15.681 0.001 39.721 0.003

2109-1 19.070 0.002 15.658 0.001 39.638 0.003
2109-2 19.105 0.003 15.693 0.002 39.768 0.006
2109-3 19.106 0.002 15.694 0.002 39.764 0.005
2109-4 19.100 0.002 15.679 0.002 39.717 0.004
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4. Conclusions

In this study, Sr–Nd–Pb isotopic compositions were measured in 13 geological refer-
ence materials, such as basalt, granodiorite, shale, and sediments (marine mud and soil)
using TIMS at the KIGAM. Although some Sr and Pb isotopic compositions of CRMs
(GSP-2, JSd-2, JSd-3, and LKSD-1) varied slightly, the Sr–Nd–Pb isotopic compositions
of most reference materials corresponded well with previously reported values within
the error range. Furthermore, we presented the first Sr–Nd–Pb isotopic ratios of several
reference materials (JSd-2, JSd-3, HISS-1, JLk-1, LKSD-1, SGR-1, and 4353A). Therefore,
these can be used as in-house reference materials to verify the performance of instruments
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and validate Sr, Nd, and Pb isotopes in unknown geological and environmental samples.
The combination of sample treatments, separation methods, and TIMS measurements used
in this study also achieved high internal precisions of less than 20 ppm for 87Sr/86Sr ratios
and less than 10 ppm for 143Nd/144Nd ratios.
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