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Abstract: A novel magnetic solid phase extraction based on mercaptophenylboronic acid (MPBA)-
functionalized Fe3O4-NH2@Au nanomaterial (Fe3O4-NH2@Au-MPBA) was developed for selective
separation and enrichment of catecholamines (including dopamine, norepinephrine and adrenaline).
Fe3O4-NH2@Au-MPBA nanoparticles were achieved by self-assembly-anchoring MPBA molecules
on the surface of Fe3O4-NH2@Au nanocomposites, which were synthesized via a facial ultrasonic
auxiliary in situ reduction process. The interaction between cis-diol from catecholamines and boronic
acid was reversible and could be flexibly controlled by adjusting pH value. The catecholamines
could be quickly adsorbed by Fe3O4-NH2@Au-MPBA in weak alkaline solution (pH 8.0–9.0) and
subsequently released in acid solution (pH 1.0–2.0). The process of adsorption and dissociation
was very fast. Furthermore, the three catecholamines could be detected in urine from children by
high performance liquid chromatography (HPLC) with electrochemical detector. Under optimal
conditions, norepinephrine (NE), epinephrine (EP) and dopamine (DA) were separated very well
from internal standard and exhibited a good linearity in the range of 2.5–500.0 ng mL−1, with
correlation coefficients of r2 > 0.9907. Limits of detection (LOD) (signal to noise = 3) were 0.39, 0.27
and 0.60 ng mL−1 for NE, EP and DA, respectively. Recoveries for the spiked catecholamines were in
the range of 85.4–105.2% with the relative standard deviation (RSD) < 11.5%.

Keywords: Fe3O4-NH2@Au; magnetic solid phase extraction; catecholamines; HPLC; electrochemical
detection; urine

1. Introduction

Catecholamines (CAs), which include norepinephrine (NE), epinephrine (EP) and
dopamine (DA), are important neurotransmitters and hormones released by the adrenal
glands and sympathetic nervous system [1]. Currently, it is known that catecholamines are
involved in some of the most prevalent human pathologies, such as neurological disorders
such as Parkinson’s [2], pheochromocytoma [3] and schizophrenia [4]. Hence, monitoring
the concentration of catecholamines in biological fluids including blood, urine and specific
tissue has attracted considerable interest in diagnostic analysis and biological systems [5,6].

In spite of the great diversity of analytical approaches that have been developed in
recent years, the detection of catecholamines in biological samples remains a hot spot in
analytical fields [7,8]. High-performance liquid chromatography (HPLC) is an analytical
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method routinely used for the separation and quantification of catecholamines in clinical
laboratories [9,10], usually coupled with electrochemical [11], fluorescence [12] or mass
spectrometry detection [13]. Among the detectors, electrochemical detectors [14,15] attract
more preference due to good selectivity, highly sensitive characteristics, a lack of need for
derivatization and low detection cost. However, matrix effects, extremely low concentra-
tions and chemical instability of catecholamines in biological samples are major difficulties
encountered in their analysis.

To solve these problems, optimization of the sample pretreatment process plays
an important role in the enrichment and separation of targets. The common sample prepa-
ration methods for extracting catecholamines in chromatographic analysis involves liquid–
liquid extraction (LLE) [16] and solid phase extraction (SPE) [17,18]. Nevertheless, LLE
is labor-intensive and time-consuming [19] and encounters low selectivity and extraction
yields. SPE is widely adopted for the extraction and concentration of catecholamines,
possibly due to the high extraction recoveries and selectivity [20].

Magnetic solid phase extraction (MSPE) is a flexible solid phase extraction technology.
The magnetic adsorbents can be recycled and reused easily, which is cost-effective and
environmentally friendly. Fe3O4 magnetic nanoparticles (NPs), commonly used magnetic
cores, are easily oxidized in air and have a tendency to aggregate [21,22]. To overcome
these problems, different materials such as metals [23], metal oxides [24], mesoporous [25],
polymers [26], graphene [27] and dendrimers [28] have been developed to hybridize with
Fe3O4 NPs. In recent years, gold-coated Fe3O4 (Fe3O4@Au) magnetic NPs have drawn
intense scientific and technological interest for potential applications in disease diagnosis
and therapy [29], biological detection [30], catalytic application and separation science [31].

In recent years, phenylboronic acid (PBA) and its derivatives containing boronic
acid functional groups have been employed for selective capture and enrichment of cis-
diol molecules (carbohydrates [32], mucin [33], nucleosides and glycoconjugates) from
biological samples. Owing to the ability to form a five- or six-membered boronate ester [34]
via reversible covalent interactions with the position at cis-1, 2- or 1, 3-diol, they exhibit
a high selectivity for targets. The formation and dissociation of boronic esters are controlled
by appropriately adjusting the pH value. 4-mercaptophenylboronic acid (4-MPBA) is
a thiol-containing boronic acid compound which has been used to modify gold NPs for
the selective interactions with cis-diol structure on sugars [35], sialic acid, protein kinase
and alpha-fetoprotein [36–39]. However, to the best of our knowledge, we have not seen
this idea used for the selective separation of catecholamines.

In this report, a novel magnetic nanocomposite, 4-MPBA-functionalized Fe3O4-NH2@Au
(Fe3O4-NH2@Au-MPBA), was prepared and used for the pretreatment of catecholamines
in urine and followed by HPLC-electrochemical detection. The cis-diol structures of
catecholamines were able to form ring boronate ester structures with boronic acid groups
of Fe3O4-NH2@Au-MPBA nanocomposite by covalent bond interaction. The morphologies
and magnetization saturation values of the prepared magnetic material were explored
by scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The
analytical performances of the method were evaluated before determining catecholamines
in urine samples.

2. Materials and Methods
2.1. Reagents and Chemicals

Dopamine (DA) and norepinephrine (NE) were purchased from Yuanye biotechnology
Co., Ltd. (Shanghai, China). Epinephrine (EP) was bought from Chromadex (Irvine, CA,
USA). 3,4-dihydroxybenzylamine hydrobromide (DHBA) acting as internal standard (IS)
was purchased from Aladdin Reagent (Shanghai, China). 4-mercaptophenylboronic acid
(MPBA) was bought from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Molecular structures of these compounds are shown in Figure 1.
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Figure 1. Molecular structures of these compounds.

Stock solutions (1 mg mL−1) of NE, DA and IS were prepared by dissolving 5 mg of
standard substance in 5 mL of deionized water. Stock solution (1 mg mL−1) of EP was
prepared by dissolving 5 mg of standard substance in 100 µL 0.01 mol L−1 HCl solution
before diluting to 5 mL by deionized water. All solutions were stored at −20 ◦C until use.

The artificial urine reported in the reference [40] was used in recovery tests. The
artificial urine consisted of 19.4 mg mL−1 of urea, 8.0 mg mL−1 of NaCl, 1.1 mg mL−1 of
magnesium sulfate and 0.6 mg mL−1 of CaCl2, and the solution was adjusted to pH 8.0
with 1 mol L−1 NaOH. Spiked artificial urine solution was prepared containing CAs (NE,
EP and DA) in the concentrations of 10, 50 and 200 ng mL−1, and then 2 mL of the spiked
solution was mixed with 100 µL of IS (1000 ng mL−1).

2.2. Instruments

A pH meter (Shanghai, China) with a composite electrode was used for the pH
values. Special indicator papers indicating pH 6.9–8.4 were bought from SSS Reagent
Company (Shanghai, China). An analytical balance (Shanghai, China) was used for weight
measurement. A Hitachi S-3400N scanning electron microscope (SEM, Hitachi, Tokyo,
Japan) was used at an acceleration voltage of 20.0 kV. Magnetic measurement was carried
out using a 7407 vibrating sample magnetometer (Lakeshore, Columbus, OH, USA) at
room temperature.

2.3. Chromatography Conditions

A Thermo Scientific UltiMate 3000 ECD UHPLC system based on a glass carbon elec-
trode detector (Thermo Fisher Scientific, Waltham, MA, USA) equipped with a Kromasil
C18 column (5 µm, 250 mm × 4.6 mm) was used. The mobile phase was isocratic elution
and consisted of acetonitrile and 0.7% NaH2PO4 in water (5.5:94.5, v/v) with addition of
citric acid (35 mmol L−1), EDTA (0.25 mmol L−1) and 1-heptane sulfonic acid sodium salt
(2 mmol L−1). The pH of the mobile phase was adjusted to pH 4.0 by adding saturated
NaOH solution. The run was performed at 1.0 mL min−1 with the column oven tempera-
ture at 30 ◦C. The injection volume was 20 µL and the working potential was 700 mV.

2.4. Preparation of Phenylboronic Acid-Functionalized Fe3O4-NH2@Au (Fe3O4-NH2@Au-MPBA)

The Fe3O4 NPs were prepared through reducing the solution of Fe (II) and Fe (III)
chlorides of the molar ratio 1:2 with 30% ammonia solution. Appropriate Fe3O4 NPs
were modified by APTES through stirring in 10% (v/v) APTES solution in absolute ethyl
alcohol for 12 h. The obtained Fe3O4 NPs modified by -NH2 groups (Fe3O4-NH2) were
magnetically separated, washed with ethanol and dispersed in ethanol.

Next, 500 mg Fe3O4-NH2 NPs, 50 mL of 2% HAuCl4 and 300 mL distilled water
were mixed for over 10 min by sonication, and then 50 mmol L−1 KBH4 solution was
dropped into the above mixture under ultrasound until the color changed to purple.
Another 5 min of sonication was performed. The Fe3O4-NH2@Au NPs were obtained by
magnetic separation.

An amount of 500 mg Fe3O4-NH2@Au NPs was added to 100 mL 1 mg mL−1 of
MPBA solution under stirring to complete the covalent binding between the Au shell and
sulfydryl (-SH). Fe3O4-NH2@Au-MPBA composites were obtained, then separated and
washed with distilled water based on external magnetic field. After that, the magnetic
nanocomposites were dried in a vacuum oven at 40 ◦C for 24 h.
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2.5. Sample Collection

To investigate the suitability of the proposed method, a pilot study was conducted
by analyzing urinary samples from healthy volunteers. The urine samples from 6 healthy
children aged 4–6 years (3 boys and 3 girls). Their morning urine samples were collected
into sterile urine cups. They were then immediately transferred to polypropylene tubes
and stored in a –20 ◦C refrigerator.

The study was carried out according to the principles of the Declaration of Helsinki
(World Medical Association 2008). Written informed consent was obtained from the legal
guardians of the volunteers. This study was approved by the Ethics Committee of Zhongda
Hospital Affiliated to Southeast University.

2.6. Sample Pretreatment

When analyzing samples, the stored 2.5 mL urine samples were thawed by incubation
at 37 ◦C for 5 min and centrifuged for 5 min at 10,000 rpm. Then, 2 mL of supernatant,
100 µL of 1 µg mL−1 DHBA and 5 mg Fe3O4-NH2@Au-MPBA NPs were added into a glass
spawn bottle, and the pH was adjusted to 8.0 by adding moderate amounts of 0.01 mol L−1

NaOH. After that, the mixture was stirred for about 10 min at room temperature, and
the supernatant was removed by external magnetic field. An amount of 200 µL of 0.5%
H3PO4 solution (pH = 2.0) was added for desorbing the analytes. 20 µL of eluent was
injected into HPLC for analysis. The process schematic for the preparation of the magnetic
Fe3O4-NH2@Au-MPBA NPs and the pretreatment of samples are shown in Figure 2.
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Figure 2. Schematic representation for the preparation of Fe3O4-NH2@Au-MPBA NPs and the
extraction of CAs.

3. Results and Discussion
3.1. Characterization

The morphologies of Fe3O4-NH2@Au NPs were examined by SEM at 20.0 kV (8.2 mm,
40.0k SE) (Figure 3A). The size distribution of Fe3O4-NH2@Au NPs is shown in Figure 3B,
where we can see that the size of Fe3O4-NH2@Au NPs was uniform, and the average
particle size was about 150 nm. The energy-dispersive spectroscopy (EDS) results showed
the existence of Fe, C, Si and O elements in Fe3O4-NH2 samples (Figure 3C). Moreover, the
Au elements could be found in Fe3O4-NH2@Au material (Figure 3D), which indicated that
Fe3O4-NH2@Au NPs were successfully prepared.
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The profile of magnetization loops in Figure 4 revealed that the Fe3O4-NH2 and
Fe3O4-NH2@Au NPs are superparamagnetic [29]. The magnetization saturation (Ms)
values of Fe3O4-NH2 and Fe3O4-NH2@Au NPs were determined as 32.1 and 22.0 emu/g,
respectively. The Fe3O4-NH2@Au NPs showed slightly lower Ms values than that of
Fe3O4-NH2 due to the surface conjugation of Au NPs on Fe3O4-NH2.
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Fe3O4-NH2@Au NPs samples.

In the inset, the two bottles are both Fe3O4-NH2@Au NPs suspension solution. The
composite NPs were able to be magnetically separated by an external magnetic field, which
indicated that the enrichment and separation of Fe3O4-NH2@Au NPs during the extraction
process can be regulated by an external magnetic field.
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3.2. Optimization of the Extraction Condition

3.2.1. Optimizing the Mass Ratio of Au3+ and Fe3O4-NH2

The effect of the mass ratios of Fe3O4-NH2 and Au3+ on magnetic separation time
was studied. As shown in Figure 5A, when the mass ratio of Fe3O4-NH2 and Au3+ was
3:1, the magnetic separation time was less than 2 minutes; however, too little Au3+ may
reduce the functionalized molecule numbers of MPBA, which would reduce the sites
of interaction for targets. With the increase in Au3+, the magnetic separation time was
gradually prolonged. However, when the mass ratio was 1:2, the gold nanoparticles were
not completely wrapped on the surface of Fe3O4-NH2 NPs, which was very wasteful for
Au3+. When the mass ratio was 1:1.5, the magnetic separation time was 15 minutes, which
was too long for rapid pretreatment for samples. Therefore, the mass ratio of 1:1 between
Fe3O4-NH2 NPs and Au3+ was chosen.
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and elution time (E).

3.2.2. Optimizing the pH Value of the Adsorption Solution

The pH value of adsorption solution was a critical factor for boronate affinity. Most
boronic acids are generally weak acids, having a pKa values of 8.0–9.0. With pH less
than the pKa value, most of them still exist in trigonal form [-B(OH)2], which cannot
react with cis-diol groups [41]. For phenylboronic acids, when the pH is greater than the
pKa value of the phenylboronic acid ligand, the phenylboronic acid group is transformed
to tetrahedral anionic form [-B(OH)4

−] under alkaline conditions [35]. Subsequently,
[-B(OH)4

−] bonds with cis-1,2-diol units to form a stable 5-membered cyclic ester. This is in
good agreement with the results obtained from MPBA functionalized Fe3O4-NH2@Au. In
this work, we studied the effect of adsorption pH value (5.0–9.0) on adsorption performance,
and the results are shown in Figure 5B. As described above, the phenylboronic acids were
the sole functional group on Fe3O4-NH2@Au nanoparticles, and thus the adsorption
rates of adsorbents for the three catecholamines were pH-dependent. The adsorption
rates improved when the pH value increased from 5.0 to 8.0 and then remained almost
unchanged. Thus, pH 8.0 was selected for adsorption.
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3.2.3. Optimizing Reaction Time of MPBA and Fe3O4-NH2@Au

The interaction time between MPBA and Fe3O4-NH2@Au NPs is very important,
as it could impact the adsorption performance of the magnetic NPs for catecholamines.
The relationships between reaction time (2–7 h) and extraction efficiency were explored.
As shown in Figure 5C, when reaction time was more than 3h, the extraction efficiency
remained nearly unchanged. Thus, 3 h was chosen as the reaction time of MPBA and
Fe3O4-NH2@Au NPs.

3.2.4. The pH Value of Desorption Solvent

The pH value of the eluent has an important effect on the formation of boronate ester,
because the reversible covalent interactions could be adjusted by pH between the positions
of the cis-diol moieties of the targets and the hydroxyl groups of the boronic acid ligand.
Acidic environments can break the ester bond and make the target dissociate from Fe3O4-
NH2@Au-MPBA NPs. The pH value (1.0–7.0) was investigated for the eluent. With the
decrease in pH value of the eluent, the extraction recovery of the targets increased gradually.
When the pH value was 2.0, the extraction recovery of the CAs reached the maximum. As
the pH value continued to decrease, the recoveries almost remained unchanged. Therefore,
pH 2.0 was chosen as the acidity value for the eluent (Figure 5D).

3.2.5. Exploring the Elution Time

In order to obtain the best extraction performance, different elution time from 2 to
30 min was optimized. Figure 5E demonstrated the relationship between the elution time
and the recoveries. When elution time was shorter than 10 min, the extraction recovery
increased with the extraction time increasing. When elution time was longer than 10 min,
the recovery of CAs was almost no longer changed. Therefore, 10 min was chosen as the
final elution time.

3.3. Method Evaluation

To test the linearity, we analyzed the mixed solutions of NE, EP and DA at the
concentrations of 2.5, 5.0, 10.0, 20.0, 100.0 and 500.0 ng/mL for each target, which were
prepared using artificial urine. Quantification was worked out using internal standard (IS)
method. The calibration equation was calculated by the HPLC-ECD peak areas ratio and
the concentration ratios of analytes and IS. The analysis performances of the established
method for the detection of catecholamines are summarized in Table 1.

Table 1. Parameters for methodological validation for catecholamines in artificial urine.

Catecholamines Linear Range
(ng mL−1) r2 Spiked Concentration

(ng mL−1)
Recovery

(%)
LOD

(ng mL−1)
LOQ

(ng mL−1)
Intraday
(RSD, %)

Interday
(RSD, %)

2.5–500.0 0.9907
10.0 85.4

0.60 2.0
8.2 9.3

DA 50.0 93.2 7.7 8.8
200.0 95.7 6.1 7.4

2.5–500.0 0.9911
10.0 88.1

0.39 1.3
7.9 11.5

NE 50.0 96.3 8.4 8.1
200.0 97.1 6.6 9.0

2.5–500.0 0.9935
10.0 89.6

0.27 0.9
10.7 8.6

EP 50.0 98.3 8.3 7.9
200.0 105.2 8.9 8.1

The intra-day and inter-day precision and accuracy were evaluated for artificial urine
samples spiked with catecholamines at the concentrations of 10, 50 and 200 ng mL−1 based
on the above pretreatment method. The limits of detection (LOD), defined as the signal-to-
noise ratio of 3:1, and limits of quantification (LOQ), defined as a signal-to-noise ratio of
10:1, were calculated; the results are listed in Table 1. Results showed that good linearity of
the targets was achieved in the range of 2.5–500.0 ng mL−1 with the correlation coefficients
(r2) of 0.9911, 0.9935 and 0.9907 for NE, EP and DA, respectively. The LOQ were 1.3, 0.9
and 2.0 ng mL−1 (S/N = 10), and LOD (S/N = 3) were 0.39, 0.27 and 0.60 ng mL−1 for NE,
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EP and DA, respectively. The RSDs (relative standard deviations) for the catecholamines
were from 6.1% to 10.7% for intra-day determination (n = 5) and from 7.4% to 11.5% for
inter-day determination (n = 5).

The comparison of recoveries obtained by the present method and a reference method [42]
has been added in Table S1 in the Supplementary. The results showed that the prepared
method has good extraction recoveries for catecholamines.

3.4. Reproducibility and Stability

The relative standard deviation (RSD, %) of adsorption quantities was 8.1% for six
batches of Fe3O4-NH2@Au-MPBA NPs, and 7.3% for one batch used 10 times. The ad-
sorption capacities of Fe3O4-NH2@Au-MPBA NPs for catecholamines decreased by ap-
proximately 7.5% after one month. The data above showed that the prepared magnetic
composite nanoparticles were a reliable and stable adsorbent for catecholamines.

3.5. Application of the Method to Real Samples

To evaluate the application of the prepared magnetic Fe3O4-NH2@Au-MPBA NPs,
urine samples were analyzed using internal standard method. As shown in Figure 6, A was
the liquid chromatogram of CAs at 20 ng mL−1 in artificial urine with the extraction by
magnetic NPs. The liquid chromatogram of a real urine sample (Figure 6B) without the
pretreatment by Fe3O4-NH2@Au-MPBA NPs exhibited many impurity peaks. Figure 6C
was the liquid chromatogram of a real urine sample with the pretreatment by Fe3O4-
NH2@Au-MPBA NPs, where we can find fewer impurity peaks compared with Figure 6B.
The results showed that Fe3O4-NH2@Au-MPBA NPs have a highly selective adsorption
for catecholamines.
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20 ng mL−1 with the extraction by magnetic NPs (A), (B) urine sample without extraction by mag-
netic NPs, (C) real urine sample with extraction by magnetic NPs.

First morning urinations, free of interference of medications and foods, were collected.
Free catecholamines were measured in the morning urine samples from six healthy children
using our developed method. The concentrations of CAs (NE, EP and DA) of the samples
detected by the prepared method are shown in Table 2. The results showed that Fe3O4-
NH2@Au-MPBA NPs coupled with HPLC-ECD could be successfully used for the detection
of CAs.
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Table 2. The concentration of CAs (NE, EP, DA) in real urine samples (M ± SD, n = 3).

Samples Level of Catecholamines (M + SD, ng/mL) (n = 3)

NE EP DA

1 13.2 ± 0.7 10.8 ± 0.3 81.1 ± 9.9
2 26.3 ± 1.1 25.3 ± 1.5 99.1 ± 10.1
3 65.8 ± 5.4 21.1 ± 1.7 279.3 ± 21.6
4 52.6 ± 4.1 43.2 ± 3.5 135.1 ± 14.7
5 65.8 ± 6.7 22.6 ± 1.9 9.0 ± 0.8
6 11.2 ± 0.8 2.7 ± 0.1 15.1 ± 1.3

4. Conclusions

Fe3O4-NH2@Au-MPBA magnetic nanocomposites were synthesized in a simple
method first and employed as adsorbents for the selective extraction of NE, EP and DA
based on external magnetic field. 4-MPBA was modified on the surface of Fe3O4-NH2@Au
NPs through Au–S bond. The interaction between catecholamines and Fe3O4-NH2@Au-
MPBA magnetic NPs is based on the covalent bond of borate ester. The adsorption and
desorption of catecholamines could be easily achieved through flexibly adjusting the
pH value of solution. The SPE based on magnetic nanocomposite coupled with HPLC-
electrochemical detection for the separation and analysis of catecholamines in human urine
exhibited good sensitivity and selectivity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/separations8110196/s1, Figure S1: The SEM graph of PS-PCE, Table S1: The comparison of the
extraction recoveries for the mixed catecholamines standard in artificial urine at the concentration of
100 ng/mL extracted by the present method and a reference method.
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