Supplementary Material

Exploring the efficiency of UHPLC-Orbitrap MS for the determination of 20 pharmaceuticals and acesulfame K in hospital and urban wastewaters with the aid of FPSE

Maria Kalaboka, Christoforos Chrimatopoulos, Cristina Jiménez-Holgado, Vasiliki Boti, Vasilios Sakkas^{, *} and Triantafyllos Albanis

University of Ioannina, Chemistry Department, 45110 Ioannina, Greece; <u>kalaboka.me@gmail.com</u>, <u>xrimatopoulosxris@gmail.com</u>, <u>crijimhol@gmail.com</u>, <u>v.boti@uoi.gr</u>, <u>talbanis@uoi.gr</u>, <u>vsakkas@uoi.gr</u>

* Correspondence: <u>vsakkas@uoi.gr</u>; Tel.: +30-2651008303

Compound	Chemical Structure	Molecular Formula	pKa	[Ref.]	logP	Therapeutic class
Acesulfame		C4H5NO4S	2.0	[1]	0.552	Artificial Sweetener
Amitriptiline		C20H23N	9.4	[2]	4.81	tricyclic antidepressant s
Carbamazepine	H N O	C15H12N2O	7.0/13.9	[3]	2.766	Psychiatric Antiepileptic Drugs
Clomipramine		C19H23ClN2	8.98	[4]	4.883	Psychiatric Antidepressant Drugs
Cyclobenzaprine		C20H21N	8.47	[5]	4.613	Psychiatric Antidepressant Drugs
Diclofenac		C14H11Cl2NO2	4.2	[3]	4.259	Non-steroidal anti- inflammatory drug (NSAID)

Table S1: Physicochemical properties and chemical structures of target analytes

Erythromycin		C37H66NO12	8.9	[3]	2.596	Macrolide Antibiotic
Fluoxetine	F F F	C17H18F3NO	10.1	[6]	4.173	Antidepressant Drugs
Indomethacin		C19H16CINO4	4.27	[3]	3.53	Analgesic-anti- inflammatory drug
Mefenamic Acid	O,H H,N	C15H15NO2	4.2	[7]	5.398	Nonsteroidal anti- inflammatory drugs (NSAID)
Paroxetine		C19H20O3NF	9.6	[6]	3.148	Psychiatric Antidepressant Drugs

Salicylic acid	H ^O H ^O	C7H6O3	2.3/3.5	[6]	1.977	Non-steroidal anti- inflammatory drug (NSAID)
Sulfacetamide	H-N 0=S=0 H-N-H	C8H10N2O3S	5.4	[8]	-0.3	Sulfonamide Antibiotic
Sulfamethazine	$ \begin{array}{c} $	C12H14N4O2S	7.6/2.65	[9]	0.65	Sulfonamide Antibiotic

Sulfamethoxazole	$ \begin{array}{c} H, N \\ O = S = O \\ H, N \\ H, N \\ H \end{array} $	C10H11N3O3S	5.7/1.6	[9]	0.791	Sulfonamide Antibiotic
------------------	---	-------------	---------	-----	-------	---------------------------

Sulfamethoxy- pyridazine	$ \begin{array}{c} $	C11H12N4O3S	6.7	[9]	0.466	Sulfonamide Antibiotic
Sulfapyridine		C11H11N3O2S	6.24/2. 63	[9]	1.009	Sulfonamide Antibiotic
Sulfaquinoxaline	H N N N N N N N N N N N N N N N N N N N	C14H12N4O2S	6.79/2. 16	[9]	1.552	Sulfonamide Antibiotic
Tolfenamic Acid	O,H H,N	C14H12CINO2	4.3	[3]	5.488	Lipid regulator

Triclosan	C12H7Cl3O2	4.5/8.1	[3]	4.982	Disinfectant
Trimethoprim	C14H18N4O3	6.6/7.2	[3]	1.284	Sulfanilamide Antibiotic

Data concerning chemical structures, obtained from international database <u>https://pubchem.ncbi.nlm.nih.gov/</u>

S2. Materials and Methods

S2.1. Standard Solutions and reagents

Sulfacetamide, sulfapyridine, sulfamethazine, trimethoprim, sulfamethoxy-pyridazine, sulfamethoxazole, sulfaquinoxaline, Acesulfame-K, erythromycin, diclofenac, indomethacin, triclosan, mefenamic acid, tolfenamic acid were purchased from Sigma-Aldrich (Athens, Greece), salicylic acid was obtained from Merck KGaA (Darmstadt, Germany), paroxetine, cyclobenzaprine, carbamazepine, amitriptyline, fluoxetine, clomipramine was obtained from TCI Tokyo Chemical Industry (Zwijndrecht, Belgium)

Individual stock solutions of each compound, were prepared on a weight basis solution in methanol, (at a concentration of 1000 mg L⁻¹) with exception of sulfaquinoxaline that was prepared in acetonitrile since this compound is slightly soluble in pure methanol and freely soluble in acetonitrile. In addition, since erythromycin is easily degraded in the aquatic environment and converted into anhydroerythromycin (ERY-H2O) is always detected as this metabolite [10][11], therefore, preparation of ERY-H2O standard solution was performed according to procedure described elsewhere [10].

All stock standard solutions were stored at $-20 \circ C$ and refreshed every three months apart from antibiotics that were prepared monthly because of their limited stability. The mix of working solution containing all target compounds was prepared in methanol: ultrapure water (10:90, v/v) with 0.1% f. a v/v by diluting appropriate volume of stock solution. Working solutions were prepared before each analytical run.

Methanol, acetonitrile, formic acid (all MS grade), were purchased from Fisher Scientific (Leicester, UK). Ultrapure water (resistivity of 18.2 MΩ-cm) was obtained by using an Evoqua purification system (Evoqua, Pittsburg, USA). Ethylenediaminetetraacetic acid disodium salt 2-hydrate (Na₂EDTA) (assay 99.9–101.0%) was obtained from Panreac (Barcelona, Spain), sodium chloride (NaCl), and ammonium hydroxide (NH₄OH) from Riedel de Haën (Hannover, Germany). The starting material used to be coated as FPSE media were Whatman microfiber glass filters 110 mm (Boston, Massachusetts, USA). Organic polymer polyethylene glycol (PEG 300) was purchased from Sigma-Aldrich (Athens, Greece). Trimethoxymethylsilane (MTMS), trifluoroacetic acid (TFA) and sodium hydroxide and hydrochloric acid were supplied from Merck (Darmstadt, Germany).

S2.2. UHPLC–LTQ Orbitrap MS analysis

For the instrument method concerning positive ionization mode the gradient program started at 95% mobile phase A and was maintained for 1 min; the next minute the amount of mobile phase B increased to 70% followed by an increase to 100 % within 3 min, where it stayed stable for additional 2 min. Afterwards, the mobile phase was restored to the initial conditions of 95% A and maintained over 3 min for reequilibration of the column. The total running time was 10 min with a flow rate of 250μ L min-1 and injection volume set at 10μ L. A gradient program with slight modifications was used for the separation of compounds ionized in negative mode: 90% of mobile phase (A) was used from 0- 0.5min, followed by consecutive linear declines to 30%A from 0.5 to 2.0 min, to 10% A from 2.0 to 3.0 and 5%A from 3.0-3.9. In the 4.5 min of total run the percentage of methanol (B) increased to 100% and this composition was maintained for half a minute. Finally, the column was re-equilibrated with 90%A from 5.1 to 8.0minutes. The mobile phase was delivered at the flow rate of 200µL min-1 in a 35oC of thermostatted column. 20μ L aliquot of sample was injected. Water-Methanol (30:70, v/v) mixture was employed as the solvent system for washing the sample loop and injector's needle. **Table S2:** Parameters for full MS/dd-MS2 analysis in positive ionization mode.Rt ª: Retention time, NCE b Normalized Collision Energy

COMPOUND	Rtª (min)	Elemental formula	Theoretical mass (m/z)	sEmpirical mass (m/z)	Mass Error	Fragm. Elemental Ion Formula	NCE ^b	
	(1111)				(ppm)		,,,	
						108.0448C6H6NO+		
Sulfacetamide	3.25	C8H11N2O3S+	215.0485	215.0486	0.514	92.0500 C6H6N+	30	
						156.0112C6H6NO2S+		
						156.0112C6HNO2S+		
Sulfapyridine	3.71	C11H12N3O2S+	250.0645	250.0645	0.105	108.0440C6H6NO+	30	
						184.0867C11H10N3+		
Trimethoprim	3 75	$C_{14}H_{19}N_4O_{3+}$	291 1452	291 1453	0 457	230.1161C12H14N4O+	30	
111111ctilop1111	0.70		27111102	271.1100	0.107	261.0980C12H13N4O3+	00	
Sulfamethazine	3.90	$C_{12}H_{15}N_4O_2S$ +	279.0910	279.0909	-0.441	123.0662C6H9N3+	30	
						156.0113C6H6NO2S+		
Sulfamethoxy- pyridazine	3.92	C11H13N4O3S+	281.0703	281.0703	0.045	108.0430C6H6NO+	20	
17						92.0486 C6H6N+		
						188.0818C10H10N3O+		
Sulfamethoxazole	4.01	C10H12N3O3S+	254.0594	254.0592	-0.742	156.0113C6H6NO2S+	20	
						147.0789C8H9N3+		
C-161	4 29	CUNOS	201.0754	201.0754	0.090	156.0113C6HNO2S+	20	
Sullaquinoxaline	4.28	C14H13IN4O25+	301.0754	301.0754		108.0440C6H6NO+	30	
Demonstere	4 40		220 1500	220 1502	0 (11	192.1180C12H15NF+	25	
Paroxetine	4.49	C19H21O3INF+	330.1500	330.1502	0.611	151.0387C8H7O3+	35	
	4 50	C II N		000 10 40	0.010	58.0659 C ₃ H ₈ N+	20	
Cyclobenzaprine	4.52	C20H22IN+	276.1747	276.1749	0.810	84.0814 C5H10N+	30	
			F 1 (4500		1 (01	158.1175C8H16O2N+	10	
Erythromycin-H ₂ O	4.57	C37H66NO12	716.4580	716.4591	1.601	558.3635C26H54O12	40	
						233.1322C8H17+		
						191.0854C15H11+	•	
Amitriptiline	4.62	C20H24N+	278.1903	278.1905	0.624	155.0854C12H11+	30	
						117.0695C9H9+		
						148.1119C10H14N+		
Fluoxetine	4.67	C17H19F3NO+	310.1413	310.1415	0.563	247.0918C4H18FN3+	15	
Carbamazepine	4.73	C15H13N2O	237.1022	237.1024	0.677	194.0964C14H12N+	35	

						220.0756C15H10NO+	
						192.0808C14H10N+	
Claminsomina	4 70	C. H. CIN	215 1622	215 1607	1 /10	86.0940 C5H12N+	20
Clomipramine	4.79 C19H24CIIN2+	315.1623	313.1627	1.418	58.059 C ₃ H ₈ N+	30	

Table S3: Parameters for full MS/dd-MS2 analysis in negative ionization mode.

COMPOUND	Rt	Elemental	Theoretical	Empiric	Mass	Fragm.	Elemental	NCE
	(min)	formula	mass	al mass	Error	Ion	Formula	% b
			(m/z)	(m/z)	(ppm)			
Accoultance	2.44	C.H.NO.S-	161 0967	161 0060	0.016	77.9642	NO ₂ S-	20
Acesultame	2.44	C4H4INO45	101.9007	101.9000	0.910	82.0285	C4H4NO-	30
Caliarlia and	E 04	C-H-O	127 0244	127 0250	4 252	93.00334	C ₆ H ₅ O-	20
Sancyne acid	5.04	C7H5O3	137.0244	157.0250	4.232	65.0384	C5H5-	30
Indomethacin	5.97	C19H15ClNO4 ⁻	356.0676	356.0675	-2.281	312.0796	C18H15NO2Cl-	30
Diclofenac	6.04	$C_{14}H_{10}Cl_2NO_2^{-1}$	294.0094	294.0089	-1.725	250.0193	C13H10CL2N-	35
Mefenamic	6 51	CHUNO	240 102	240 1026	1 674	196.1133	$C_{14}H_{14}N$ -	20
Acid	6.31	C15H141NO2	240.103	240.1026	-1.074	240.1029	C15H14NO2-	20
Triclosan	6.54	$C_{12}H_6Cl_3O_2$	286.9439	286.9433	-2.042	161.2632	C6H3CL2O-	25
Tolfenamic	6.76	C14H11CINO2	260.0484	260.0480	-1.460	216.0580	C14H11ClNO2-	20
Acid								

Rt ^a: Retention time, NCE ^b Normalized Collision Energy

Figure.S1 Chromatograms of selected pharmaceuticals of standard solution at concentration of 5 µg/L. A) Hypersil Gold C18 (100mmx2.1, 1.9µm), B) Speedcore- Diphenyl (50mmx2.1, 2.6µm).

B) Speedcore- Diphenyl (50mmx2.1, 2.6µm)

A) Hypersil Gold C18 (100mmx2.1, 1.9µm)

B) Speedcore- Diphenyl (50mmx2.1, 2.6µm)

Figure S2: Response variance with different voltage of Tube Lens a) Positive Ionization, b) Negative Ionization.

(a)

Figure S3: Effect of AGC target values on the response of studied analytes a) positive and b) negative ionization mode.

Figure S4: Optimization of FPSE extraction: (a) sample pH, (b) extraction time, (c) ionic strength

(b)

Compound	RR%	RSD _r %	RSD _R %	RR%	RSD _r %	RSD _R %	R%	RSD _r %	RSD _R %	
Compound	n=3	n=5	n=15	n=3	n=5	n=15	n=3	n=5	n=15	
		LOQ			10 xLOQ	2		100 xLOQ		
Acesulfame	83.2	1.7	5.8	92.0	1.9	2.7	93.0	3.1	4.0	
Amitriptyline	81.1	6.1	7.9	86.8	4.7	5.2	82.5	3.9	4.2	
Carbamazepine	96.3	5.4	8.2	98.6	2.3	3.3	97.1	1.9	3.3	
Clomipramine	90.7	2.4	5.0	94.3	2.0	2.5	91.9	1.8	2.5	
Cyclobenzaprine	99.2	4.9	6.9	100.1	3.7	4.0	98.7	2.8	3.2	
Diclofenac	90.5	7.9	10.2	99.4	7.8	8.3	97.7	6.9	9.5	
Erythromycin-H2o	90.1	2.1	4.0	95.6	2.5	2.8	94.1	1.7	2.5	
Fluoxetine	96.8	2.8	4.2	99.1	1.8	2.8	97.8	2.2	2.9	
Indomethacin	120.1	6.5	8.5	114.0	5.8	6.9	101.3	5.4	6.2	
Mefenamic acid	102.3	7.2	118.0	98.5	7.2	10.7	97.9	7.7	11.0	
Paroxetine	105.9	3.8	6.2	85.3	2.1	3.1	84.6	3.1	3.9	
Salicylic acid	84.9	7.7	13.3	95.3	7.4	11.0	92.1	7.9	10.9	
Sulfacetamide	101.3	1.2	5.0	111.1	1.3	1.8	105.3	1.8	2.5	
Sulfamethazine	79.5	1.3	7.1	83.7	1.1	2.1	81.2	1.2	2.0	
Sulfamethoxazole	80.1	0.9	3.6	88.6	0.7	1.8	87.5	1.0	1.4	
Sulfamethoxy-pyrid	79.3	1.0	5.2	90.2	0.9	2.4	90.3	0.8	1.3	
Sulfapyridine	95.6	0.8	4.6	99.8	0.1	1.9	95.6	0.7	1.9	
Sulfaquinoxaline	101.2	0.7	3.9	100.2	1.2	2.0	112.3	2.0	2.8	
Tolfenamic acid	79.1	8.0	13.5	85.3	7.2	11.0	88.1	7.2	10.8	
Triclosan	97.7	8.0	12.0	104.0	7.1	10.9	99.7	6.1	10.4.	
Trimethoprim	82.1	1.8	7.3	85.6	1.7	3.1	84.7	1.4	2.0	

 $\textbf{Table S4:} Recoveries and precision results expressed as RSD_r and RSD_R: within each spiking level$

Figure S5. Matrix effects for the target analytes in the effluent water

References

- 1. Kokotou, M.G.; Thomaidis, N.S. Determination of eight artificial sweeteners in wastewater by hydrophilic interaction liquid chromatography-tandem mass spectrometry. *Anal. Methods* **2013**, *5*, 3825–3833, doi:10.1039/c3ay40599k.
- Manzo, R.H.; Olivera, M.E.; Amidon, G.L.; Shah, V.P.; Dressman, J.B.; Barends, D.M. Biowaiver Monographs for Immediate Release Solid Oral Dosage Forms: Amitriptyline Hydrochloride**This paper reflects the scientific opinion of the authors and not the policies of regulating agencies. *J. Pharm. Sci.* 2006, 95, 966–973, doi:10.1002/jps.20615.
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. *Sci. Total Environ.* 2016, 543, 547–569, doi:10.1016/j.scitotenv.2015.11.047.
- 4. Lioupi, A.; Kabir, A.; Furton, K.G.; Samanidou, V. Fabric phase sorptive extraction for the isolation of five common antidepressants from human urine prior to HPLC-DAD analysis. *J. Chromatogr. B Anal. Technol. Biomed. Life Sci.* **2019**, *1118–1119*, 171–179, doi:10.1016/j.jchromb.2019.04.045.
- 5. Russo, G.; Grumetto, L.; Szucs, R.; Barbato, F.; Lynen, F. Screening therapeutics according to their uptake across the blood-brain barrier: A high throughput method based on immobilized artificial membrane liquid chromatography-diode-array-detection coupled to electrospray-time-of-flight mass spectrometry. *Eur. J. Pharm. Biopharm.* **2018**, *127*, 72–84, doi:10.1016/j.ejpb.2018.02.004.
- 6. Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. *Chem. Rev.* **2019**, *119*, 3510–3673, doi:10.1021/acs.chemrev.8b00299.
- Gros, M.; Petrović, M.; Barceló, D. Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. *Talanta* 2006, *70*, 678–690, doi:10.1016/j.talanta.2006.05.024.
- 8. Ahmad, I.; Ahmad, T.; Usmanghani, K. Sulfacetamide. *Anal. Profiles Drug Subst. Excipients* **1994**, *23*, 471–509, doi:10.1016/S0099-5428(08)60610-3.
- Chatzimitakos, T.G.; Stalikas, C.D. Melamine sponge decorated with copper sheets as a material with outstanding properties for microextraction of sulfonamides prior to their determination by high-performance liquid chromatography. *J. Chromatogr. A* 2018, 1554, 28–36, doi:10.1016/J.CHROMA.2018.04.015.
- 10. McArdell, C.S.; Molnar, E.; Suter, M.J.F.; Giger, W. Occurrence and Fate of Macrolide Antibiotics in Wastewater Treatment Plants and in the Glatt Valley Watershed,

Switzerland. Environ. Sci. Technol. 2003, 37, 5479–5486, doi:10.1021/es034368i.

11. Fohner, A.E.; Sparreboom, A.; Altman, R.B.; Klein, T.E. PharmGKB summary. *Pharmacogenet. Genomics* **2017**, *27*, 164–167, doi:10.1097/FPC.00000000000270.