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Abstract: In this work, two online comprehensive two-dimensional liquid chromatography platforms,
namely Hydrophilic interaction liquid chromatography × Reversed phase (HILIC × RP) and Reversed
phase × Reversed Phase (RP × RP) coupled to mass spectrometry, were compared for the analysis
of complex peptide samples. In the first dimension, a HILIC Amide and C18 Bioshell peptide
(150 × 2.1 mm, 1.7 and 2.0 µm) columns were selected, while, in the second dimension, a short C18
(50 × 3.0 mm, 2.7 µm) Bioshell peptide column was used. Two C18 trapping columns (10 × 3.0 mm,
1.9 µm), characterized by high retention and surface area, were employed as modulation interface in
both HILIC × RP and RP × RP methods. The LC × LC platforms were coupled to UV and tandem
mass spectrometry detection and tested for the separation and identification of two gastro-intestinal
digests of commercial microalgae formulations (Spirulina Platensis and Klamath). Their performances
were evaluated in terms of peak capacity, maximum number and properties of identified phycocyanin
peptides. Our results showed that the HILIC × RP approach provided the highest peak capacity
values (nc HILIC × RP: 932 vs. nc RP × RP: 701) with an analysis time of 60 min, while the RP × RP
approach was able to identify a slight higher number of phycocyanin derived peptides (HILIC × RP:
88 vs. RP × RP: 103). These results point out the flexibility and potential of HILIC × RP and RP × RP
based on trapping modulation for peptide mapping approaches.

Keywords: comprehensive two-dimensional liquid chromatography; HILIC; mass spectrometry;
peptides

1. Introduction

Liquid chromatography coupled to mass spectrometry (LC-MS) represents the gold standard for
the analysis of complex samples, such as in omics studies. These samples can contain hundreds or
thousands of analytes with different chemical properties and their characterization is a challenging task.
One-dimensional liquid chromatography coupled to mass spectrometry (1D-LC-MS) is not capable
of providing an adequate resolving power [1] and, despite the advances of mass spectrometry, high
resolution front-end separation techniques are still essential. Comprehensive two-dimensional liquid
chromatography (LC × LC), in which the entire sample is subjected to two separation with different
selectivity, has emerged as one of the best strategies for the analysis of very complex samples [2].
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In particular, LC × LC has showed its potential in the field of peptidomics, where the complexity
derives from the enormous number of peptides arising from enzymatic digestion. Among the different
stationary phase combinations, Reversed phase × Reversed Phase (RP × RP) with different pH in the
two dimensions is one of the most employed [3–5]. While RP × RP has shown impressive results in
terms of peak capacity values and robustness, its orthogonality is only given from the mobile phase pH,
and thus partially limited. Hydrophilic interaction chromatography (HILIC) is a powerful alternative
to RP [6] and their combination has been reported to provide the highest degree of orthogonality in
LC × LC [7]. The main obstacle to the HILIC× RP coupling is represented by the incompatibility of mobile
phase strength in the two dimensions. In fact, the transfer of the highly organic HILIC mobile phase
onto the second RP dimension leads to heavy negative effects on peak shape (peak distortion or sample
breakthrough) and a dramatic loss of sensitivity. To circumvent these drawbacks, several strategies
have been adopted in HILIC × RP, in particular, the employment of active solvent modulation, with and
without trapping column-based modulators, in the analysis of partially digested monoclonal antibodies
and histones [8,9]. Recently, also “total breakthrough” conditions were used in HILIC × RP approach
and compared to RP× RP approach, with a loop-based modulator, in terms of peak capacity [10]. In this
regard, we have recently demonstrated that the employment in the modulation interface of trapping
columns, packed with highly retentive and efficient C18 sub-2 µm particles, with large surface area,
delivered a sensible sensitivity increase with respect to conventional C18 trapping columns, showing a
high potential in LC × LC-high resolution mass spectrometry (HRMS) for peptidomics [11]. Microalgae
are gaining popularity as novel functional foods and nutraceuticals, given the high protein content
and their related healthy properties. Despite this, there are still scarce data about the peptides that
arise from the gastro-intestinal digestion of these matrices. In this regard, for the reason stated above,
cutting edge analytical methods able to elucidate in detail their peptidomic profile are mandatory.
The objective of the current work is to compare HILIC × RP and RP × RP platforms, with the same
trapping columns modulation approach, coupled to high resolution mass spectrometry. In particular,
emphasis has been given to the maximum number of identified peptides between the two combinations,
which is the main objective of high resolution separations platforms in peptide mapping studies,
as well as other system performance parameters, such as peak capacity and orthogonality. For practical
application, two approaches have been employed for peptide mapping of the complex gastro-intestinal
digests of two commercial microalgae dietary formulations namely Aphanizomenon flos-aquae (Klamath)
and Arthrospira Platensis (Spirulina), which are among the top-sold products in the nutraceutical field.
The obtained results, in particular the high peak capacity values in short time as well as the significant
coverage of the proteins of interest (phycocyanins), raise the potential of LC × LC with trapping
columns modulation for peptidomics applications as an interesting strategy in comparison to loop
approaches, which are usually affected by sensitivity and solvent limitations.

2. Materials and Methods

2.1. Chemicals

Ultra-pure water (H2O) was obtained by a Direct-8 Milli-Q system (Millipore, Milan, Italy), LC–MS
grade acetonitrile (MeCN) and additives formic acid (HCOOH), ammonium formate (HCOONH4)
phosphoric acid (H3PO4) and Trifluoroacetic acid (TFA) were all purchased by VWR (Milan, Italy).
Enzymes Pepsin, Chymotrypsin, Pancreatin, bile salts, all purchased by Sigma Aldrich (Milan,
Italy). Klamath and Spirulina nutraceutical formulations (powders) were obtained by Farmalabor
(Assago, Milan, Italy).

2.2. Sample Preparation

Protein extraction and gastro-intestinal (G.I) digestion were performed as previously developed [12–14].
In particular microalgae powders (15 g) were extract with 240 mL of 0.1 M sodium phosphate buffer
(ratio w/v of 1:16), with 3 freeze-thaw cycles of 4 h (from −20 ◦C to 37 ◦C), finally the suspension was
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centrifuged and the supernatant recovered. For G.I, the sample in a concentration of 10 mg/mL was
kept under stirring at 37 ◦C, the pH was adjusted to 2 with HCl 0.1 N and pepsin (enzyme/protein
ratio 1:100 w/w) was added. The reaction was blocked after 2 h increasing the temperature to 90 ◦C for
10 min. The solvent was thus removed under reduced pressure, and 10 mL of a 10 mM HCOONH4

solution (pH adjusted to 7.5 with NH4OH), chymotrypsin, pancreatin bile salts were then added
(same enzyme/protein ratio). The reaction, under stirring, was terminated after 2 h, by lowering
the pH to 2 with TFA. Peptide digest was solubilized in 0.1% (v/v) aqueous TFA (final concentration
10 mg/mL), and loaded on a Strata® X Polymeric 100 mg/mL RP cartridge (Phenomenex® Castel
Maggiore, Bologna, Italy), previously equilibrated in 0.1% TFA. After loading, the sample was eluted
with MeCN:H2O:TFA (70:30:0.1 v/v/v).

2.3. Columns

In HILIC × RP analyses, an Acquity UPLCTM BEH Amide 150 mm × 2.1 mm, 1.7 µm (130 Å)
(Waters, Millford, MA, USA) was used in first dimension (1D). For comparison purpose a Kinetex®

HILIC 150 mm × 2.1 mm, 2.6 µm (100 Å) and a LunaTM HILIC 150 mm × 2.0 mm, 3.0 µm (200 Å)
(Phenomenex®, Bologna, Italy) were also tested. In RP × RP analyses, a BIOshellTM Peptide ES C18
150 mm × 2.1 mm, 2.0 µm (160 Å) (Supelco) was used in 1D, which was also compared to a Discovery®

BIO WidePore C18 150 mm × 1 mm, 5 µm (300 Å) (Supelco). In the second dimension (2D) a BIOshellTM

Peptide ES C18 50 mm × 3.0 mm, 2.7 µm (160 Å) from Supelco (Bellefonte, PA, USA) was used for
both platforms. In the modulation interface, two custom-made trapping columns 10 × 3.0 mm, which
were house packed with TitanTM C18 1.9 µm (80 Å) monodisperse fully porous silica particles, kindly
donated by Supelco to Professor Francesco Gasparrini, were used.

2.4. Instrumentation

(1D-LC) and LC × LC analyses were performed on a Shimadzu Nexera UHPLC (Shimadzu,
Milan, Italy), consisting of a CBM-20A controller, four LC-30AD dual-plunger parallel-flow pumps,
a DGU-20A5 degasser, an SPD-M20A PDA detector with a 2.5 µL flow cell, a CTO-20AC column oven,
a SIL-30AC autosampler, an external oven (ThermaSphere TMTS-130 HPLC Column) was used for the
1D column. An additional LC-20AT (Shimadzu) pump was used to deliver the post 1D dilution flow
by means of a stainless steel Tee union, 1/16 in. 0.15 mm bore (Vici-Valco® Houston, TX 77255, USA).
The two dimensions were connected through an ultra high pressure 10 port-two position switching
valve with micro-electric actuator (model FCV-12 AH, 1.034 bar, Shimadzu, Kyoto, Japan), placed
inside the column oven. The trapping columns were connected to the valve by Viper capillaries
of 100 × 0.130 mm I.D (Thermo Fisher Scientific, Milan, Italy). All connections were 0.130 mm I.D.
and kept of the shortest length possible. Both dimensions and the valve switching were controlled
by the LCMS solution® software (Version 5.54, Shimadzu). The LC × LC was coupled online to
an LTQ-Orbitrap XL (Thermo Scientific, Bremen, Germany) equipped with an electrospray source
operated in positive mode. The LC × LC data were visualized into two and three dimensions using
Chromsquare® ver. 1.5.01 software (Chromaleont, Messina, Italy). LC × LC-MS/MS data were aligned
by the open source MZmine2.

2.5. LC and HRMS Parameters

The two dimensions were optimized in previous experiments, detailed parameters are reported
in supporting material. For LC × LC analyses the LC parameters were:

1D HILIC analyses were carried out with the following parameters: mobile phase was (A): 5 mM
HCOONH4 in H2O (pH 6.02), (B): MeCN. 1D gradient: 0–15 min, 95–80% B, 15–60 min, 80–72% B,
60–62 min, 72–60% B, returning to initial conditions in 0.1 min. Flow rate was set at 0.1 mL/min, column
oven was set at 40 ◦C. 4 µL were injected (70/30 MeCN/0.1% TFA in H2O).

1D RP analyses were carried out as follows: mobile phase was (A): 10 mM HCOONH4 in H2O
(pH 9 adjusted with NH4OH), (B): MeCN. 1D gradient: 0–60 min, 2–30% B, returning to initial
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conditions in 0.1 min. Flow rate was set at 0.1 mL/min, column oven was set at 40 ◦C. 4 µL were
injected (0.1% TFA in H2O).

2D RP mobile phase was (A) 0.1% H3PO4 (PDA detection) or HCOOH (MS detection) in H2O
v/v, (B) MeCN. In 2D the gradient was operated in multi-segment shifting mode (see supporting
material for detailed description). Flow rate was 2.2 mL/min. Column oven was set at 55 ◦C. PDA
detection parameters were: sampling grate: 100 Hz, time constant 0.025 s, wavelength 220–214 nm.
The modulation time was 45 s.

The flow from the 2D was split by a Tee union prior the electrospray (ESI) source (approximately
0.4 mL/min to MS). Detection was performed positive mode as follows: spray voltage was set at
+4.5 kV, sheath gas arbitrary units 40, auxiliary gas arbitrary units 12, and capillary temperature
250 ◦C. MS/MS spectra were collected in data-dependent mode (DDA), over the m/z range of 300–2000,
at 15,000 resolution. All MS/MS spectra were collected using a normalized collision energy of 35% and
an isolation window of 2 m/z, minimum signal threshold 100, and monoisotopic precursor enabled.
Ion trap and Orbitrap maximum ion injection times were set to 50 and 100 ms, respectively. Automatic
gain control was set to 2× 105 for full Fourier transform mass spectrometry (FTMS) scan and 3× 104 ions
for IT. Dynamic exclusion was enabled with a repeat count of 1 and a repeat duration of 30 s. Preview
mode for FTMS master scan was enabled. Thermo RAW datafiles were converted in mzXML format by
ProteoWizard open source software and elaborated with a free trial of Peaks 8.5 (Bioinformatic Solution,
Waterloo, Canada) by using the (database: Aphanizomenon flos-aquae and Arthrospira Platensis, release
UniProt 2017) mass accuracy tolerance set at 15 ppm for MS and 0.5 Da for MS/MS. The oxidation of
methionine was selected as variable modification.

3. Results and Discussion

In peptide mapping approaches, the sample is usually subjected to trypsin enzymatic proteloysis
to generate multiple peptides per protein, and for a complex sample, this results in hundreds or
thousands of peptides. When multiple enzymes are used, such as during the gastro-intestinal digestion,
this situation is further complicated by subsequent cleavages, and the exact number of derived peptides
cannot be calculated. 1D-LC-MS is unable to provide adequate peak capacity values and, as result the
MS is overwhelmed by coeluting peptides entering into the MS at the same time. LC × LC is one of the
best strategies to simplify the sample prior to MS analysis, expanding the potential of the MS itself in
terms of sensibility and identification capability [15].

3.1. Evaluation of Chromatographic Conditions in 1D (HILIC and RP) and 2D (RP)

The selection of stationary phase, as well as the chromatographic method development is an
essential aspect in LC × LC. In this study five columns were investigated as 1D (three HILIC and
two RP). All the HILIC columns were characterized by same geometry (Length and internal diameter)
but different chemistry (amide, bare silica, and diol) and particle size (fully or superficially porous
particles). Contrariwise, RP columns were also different in geometry (2.1 mm vs. 1.0 mm I.D). Flow rate,
buffer selection, column temperature, gradient, and injection volume were based on previously
optimized conditions [11]. It can be observed from Figure 1, that reports the separation of the entire
gastro-intestinal digest of Klamath formulation, how Amide stationary phase showed higher resolution
and peak capacity (nc amide: 209, nc bare silica: 180, nc diol: 150), together with an increased retention,
and a different selectivity over the elution window.

Differently from HILIC, in RP, we compared both a microbore and narrowbore column, in this
case only basic pH was investigated, since selectivity can only be achieved by changes in charge on
peptide functional groups [4]. While microbore columns are largely used in LC × LC to reduce the
volume injected onto the 2D [2], they can be easily overloaded, furthermore, without a micro LC
pump, the very low flow rate needed requires an additional flow splitter after the 1D mixer, which
adds extra-column volume and gradient delay. As a result, the 2.1 mm I.D column outperformed the
1.0 mm I.D and was selected as candidate (Supplementary Figure S1a,b). Clearly in LC × LC some
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compromises should be made, such as adapt the flow rate and gradient to facilitate the sampling of
peaks, thus HILIC and RP were further adapted lowering the flow rate and adjusting the gradient,
the final results are depicted in Figure 2.Separations 2020, 7, x FOR PEER REVIEW 5 of 13 
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Figure 1. Comparison of separation on three different HILIC columns: columns: Acquity® BEH Amide
150 mm × 2.1 mm, 1.7 µm (130 Å) (blue); LunaTM HILIC 150 × 2.1 mm, 3.0 µm (200 Å) (pink); KinetexTM

HILIC 150 mm × 2.1 mm, 2.6 µm (100 Å) (red). Flow rate: 0.3 mL/min; mobile phase: Pump A: 5 mM
HCOONH4 in H2O (pH 6.02), Pump B: MeCN; gradient: 0–2 min, isocratic at 98% B, 2–50 min, 98–60%
B, 50–52 min, 60–30% B, 30% B held for 1.30 min, returning to initial conditions in 0.1 min. Column
temperature: 40 ◦C, injection volume 2 µL. Detection: UV λ: 220 nm. Sample: Klamath G.I digest.
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Figure 2. Comparison of separation on Acquity® BEH Amide 150 mm × 2.1 mm, 1.7 µm (130 Å) (blue)
and BIOshellTM Peptide ES C18 150 mm × 2.1 mm, 2.0 µm (160 Å) (red). 1D HILIC analyses conditions:
mobile phase, Pump (A): 5 mM HCOONH4 in H2O (pH 6.02), Pump (B): MeCN; gradient, 0–15 min,
95–80% B, 15–60 min, 80–72% B, 60–62 min, 72–60% B, returning to initial conditions in 0.1 min; Flow
rate, 0.1 mL/min; column, 40 ◦C; injection volume, 4 µL. 1D RP analyses conditions: mobile phase,
Pump (A): 10 mM HCOONH4 in H2O (pH 9 adjusted with NH4OH), Pump (B): MeCN; gradient,
0–60 min, 2–30% B, returning to initial conditions in 0.1 min. Flow rate, 0.1 mL/min, column oven,
40 ◦C; injection volume, 4 µL. Enlargement of chromatograms in which the sample complexity can be
better appreciated are reported in Figure S3.

The 2D RP separation was optimized with a mixture of five standard peptides ranging from a
dipeptide to an octapeptide (Supplementary Figure S2). For UV analysis the acidic modifier was
0.1% phosphoric acid on the other hand 0.1% formic acid was employed only for MS detection.
The employment of a core shell particle column especially designed for fast and efficient separation
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of peptide was adapted from a previous work [11], together with flow rate, column temperature,
and modulation time, that have been kept fixed between HILIC × RP and RP × RP.

3.2. HILIC × RP and RP × RP with Trapping Modulation: System Performance Evaluation

In HILIC× RP, the transfer of the acetonitrile rich mobile phase is the main drawback and, as stated
before, different approaches can be used to overcome this challenge. While the amount of organic
solvent transferred in RP × RP is lower, at least at the beginning of 1D gradient, poor peak focusing
can still occur resulting in reduced sensibility and peak distortion. Among the possible approaches,
active solvent modulation has been recently proposed also for peptide mapping [16]. In this regard,
based on our previously developed HILIC × RP system we demonstrated that the employment in
the modulation interface of highly efficient and retentive trapping columns is highly beneficial [11].
With the aim to compare both techniques for peptide mapping, we used the same trapping modulation
interface also in a RP × RP approach. The dilution flow ratio prior the trapping was 1:10 for HILIC × RP
and was adapted to the different percentage of acetonitrile among the two set-ups, with a final ratio of
1:2 for RP × RP (data not shown). Trapping columns were operated in forward flush mode, to extend
system lifetime, given the high backpressure generated by the 1.9 µm particles. The 2D and 3D-UV
and MS plot relative to the separation obtained with the HILIC × RP and RP × RP approaches are
depicted in Figure 3a–d respectively.Separations 2020, 7, x FOR PEER REVIEW 7 of 13 
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Sharp and symmetrical peaks were obtained with both approaches, the difference in peak
distribution across the 2D separation space is clearly related to the different orthogonality of the
methods. In RP × RP, peaks tend to be more concentrated along a diagonal line, even if the shifted
gradient help to maximize the 2D space occupation [17], on the contrary in HILIC × RP there is a
better, and partially random, occupation of 2D separation area. The performance of the two LC × LC
platforms are summarized in Table 1. The peak capacity were calculated taking into account both
undersampling and orthogonality. For both 1D HILIC and RP, peak capacity has been calculated with
Equation (1).

1nc =

(
tr,l − tr, f

)
1wavg

(1)

where tr,l and tr,f are the retention times of the last and first eluting peaks in the 2D maps, and 1wavg is
the average 4σ peak width (1D) of five peaks across the 2D space, and covering the whole separation
window. The 2D RP peak capacity was calculated according to Equation (2):

2nc =

(
tr,l − tr, f

)
1wavg

(2)

where 2tg is the 2D gradient time, without the re-equilibration time and 2wavg is the average 2D 4σ
peak width, relative to the same five peaks considered for the 1D calculation. The theoretical peak
capacity of the two LC × LC systems was calculated as follows:

nc2D = nc1 × nc2 (3)

and subsequently corrected for the undersampling effect [18] with the Equation (4).

n′c, 2D =

(
1nc ×

2nc

)〈
β
〉 (4)

in which the term β is the correction factor described in the Equation (5):

β =

√
1 + 3.35

( 2tc
1w

)2

(5)

where 2tc is second dimension cycle time, and w the average 1D peak width. This value must be
corrected taking into account the correlations between the two dimensions. The asterisk method [19]
has been employed for the estimation of the orthogonality (A0). The maximum value of A0 = 0.70 was
obtained with the HILIC × RP system, which is as expected higher than the RP × RP (0.59), where
the selectivity is only given from the different mobile phase pH, and thus limited. Interestingly, these
values are very similar to the model of Gilar [7]. Finally, the values of 932 and 701 were obtained for
HILIC × RP and RP × RP. It should be noted that we fixed the total analysis time to 60 min, and the
employment of longer gradients in 1D, which is very common in peptide mapping, can lead to higher
peak capacity values.
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Table 1. Performances of HILIC × RP and RP × RP approaches. Peak capacities values are corrected
taking into account undersampling and orthogonality.

Parameters HILIC × RP-UHPLC RP × RP-UHPLC

1D column geometry
Acquity UPLCTM BEH Amide Bioshell® Peptide ES C18

150 mm × 2.1 mm, 1.7 µm (130 Å) 150 × 2.1 mm, 2.0 µm (160 Å)
1D flow rate 0.1 mL/min

1D column temperature 40 ◦C

2D column geometry
BIOshellTM Peptide ES C18

50 mm × 3.0 mm, 2.7 µm (160 Å)
2D Flow rate 2.2 mL/min

2D column temperature 50 ◦C.
2D gradient multi-segment shifting mode

Analysis time 60 min 60 min

Modulation time 45 s

Post 1D Dilution flow 1 mL/min 0.2 mL/min

Theoretical 2Dnc 1951 1613

Undersampling 1.43 1.36

Theoretical 2Dnc/undersampling 1369 1190

Ortogonality A0 0.70 0.59

Practical 2Dnc 932 701

3.3. Comparison of HILIC × RP and RP × RP Coupled to Tandem Mass Spectrometry for Peptide Mapping

While a huge number of peptides belonging to different phycobiliproteins have been detected by
both approaches, in this study we focused only on phycocyanins, since these proteins are the most
interesting for human health [14], representative spectra are reported in Figure S4.

One of the main challenges in the coupling of LC × LC to MS is the narrow peak widths, and the
acquisition speed of the Orbitrap is not suited for this task, thus the resolution should be drastically
reduced for data dependent acquisition. Despite this mass accuracy was well below 5 ppm (average
−2.76 ppm, see supporting material). Figure 4 reports the origin of peptides detected with the two
approaches, and, as can be observed in both approaches the half of identified peptides (HILIC×RP: 46%,
RP × RP: 44%) came from C-phycocyanin alpha chain, a similar value was obtained for C-phycocyanin
beta chain (HILIC×RP: 27%, RP×RP: 30%) while opposite values were obtained from Allophycocyanin
peptides (alpha: HILIC × RP: 10%, RP × RP: 18% and beta: HILIC × RP: 17%, RP × RP: 8%).
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The highest number of peptides, without considering de novo sequencing peptides, was detected
obtained with the RP × RP approach (103 vs. 88), the detailed list of peptides identified is reported in
Supplementary Table S1. The difference among the two approaches can be related to the chemical
nature of some peptides that, because of the effect of highly eluotropic 1D mobile phase, cannot be
efficiently retained even with the high retentive trapping columns, and thus are lost as breakthrough
effect in the HILIC × RP approach

The largest part of peptides were comprised between penta and octapeptides (Figure 5) and their
molecular weight ranged between 417 and 1678 Da (Figure 6), as can be appreciated very similar
results were obtained with the two approaches. In fact, for both Spirulina and Klamath peptides,
a high degree of overlap between the identifications with the two separation approaches was obtained,
with ≥ 60% in common between the two techniques (Figure 7).
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Figure 7. Venn diagram showing the overlap between the peptides identified in microalgae G.I digests
with HILIC × RP and RP × RP approaches. Color legend: red, HILIC × RP applied to Klamath G.I
digest; blue, HILIC × RP applied to Spirulina G.I digest; yellow, RP × RP applied to Klamath G.I digest;
green, RP × RP applied to Spirulina G.I digest.

The suitability of HILIC in online 2D-LC coupling has been demonstrated in several papers.
In particular, with respect to the employment of strong cation exchange (SCX) as 1D for neuropeptides [20]
as well as for phosphopeptides [21]. In this work, we carried out a direct comparison between HILIC × RP
and RP × RP with a trapping columns modulation interface, even though for a limited number of
proteins. These data evidence that both strategies are highly suitable and flexible for peptide mapping.
Modifications such as the scale down to capillary or nano-LC conditions could further boost the
sensitivity, while the employment of faster MS devices could result in higher identification capability.
The comparison of a non-trapping (loop) modulation interface with the current strategy will be
presented in a subsequent paper.

4. Conclusions

Microalgae represent a growing market in the nutraceutical field, especially for the high protein
content, and the bioactivity which is related to the peptides derived from their hydrolysis. While the
healthy properties are constantly being reported in literature, there is a lack of knowledge about the
nature of G.I derived peptides, thus peptidomic approaches are necessary. Comprehensive LC × LC
has a great potential in peptide mapping, but can suffer from sensitivity and solvent incompatibility
problems related to the modulation process. In this work we focused on this aspect, and by means
of a recently developed trapping columns modulation interface we described a comparison between
HILIC × RP and RP × RP for the peptide mapping of microalgae formulations. Both methods showed
that the employment of two highly retentive trapping columns as modulation interface deliver high
peak focusing and boost sensitivity and efficiency. The results showed similar performances between
the two strategies, with slightly better identification capability for the RP × RP setup. It is noteworthy
that both setups provided high peak capacity in relative short time for bottom-up approaches and a good
coverage of phycocyanins, which were the main target of this study. These data highlight the potential of
trapping column modulation with both stationary phase combinations and further enforce the flexibility
and potential of LC × LC for complex sample analysis such as peptide gastro-intestinal digests.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2297-8739/7/2/25/s1,
Figure S1: Comparison of separation on two different RP columns: columns: (a): BIOshellTM Peptide ES C18
150 mm × 2.1 mm, 2.0 µm. Flow rate: 0.1 mL/min; gradient: 0–50 min, 5–50% B, 50–60 min, 50–99% B, 99% B
held for 1 min, returning to initial conditions in 0.1 min. (b) Discovery® BIO WidePore C18 150 mm × 1 mm,
5 µm (300 Å). Flow rate: 0.06 mL/min; gradient: 0–60 min, 2–30% B, 60–65 min, 30–99% B, 99% B held for 1 min,
returning to initial conditions in 0.1 min. Mobile phase: 10 mM HCOONH4 in H2O (pH 8.07 adjusted with
NH4OH), (B): MeCN, column temperature: 30 ◦C, injection volume 2 µL. Detection: UV λ 220–214 nm. Sample:
Klamath G.I digest. Figure S2: 2D RP of a mixture of five standard peptides. Column: BIOshellTM Peptide ES
C18 50 mm × 3.0 mm, 2.7 µm (160 Å). Flow rate: 2.2 mL/min. Mobile phase: 0.1% H3PO4 (B): MeCN, column
temperature: 50 ◦C, injection volume 2 µL. Detection: UV λ 220–214 nm. Sample: (1) Gly-Tyr (2) Val-Tyr-Val
(3) Met-Enkephaline (4) Leu-Enkephaline (5) Angiotensin II. Figure S3. Enlargement of 1D HILIC (blu) and 1D RP
(red) chromatograms in which complexity of Klamath G.I digest can be better appreciated. 1D HILIC analyses
conditions: column, Acquity® BEH Amide 150 mm × 2.1 mm, 1.7 µm (130 Å); mobile phase, Pump (A): 5 mM
HCOONH4 in H2O (pH 6.02), (B): MeCN; gradient, 0–15 min, 95–80% B, 15–60 min, 80–72% B, 60–62 min, 72–60%
B, returning to initial conditions in 0.1 min; Flow rate, 0.1 mL/min; column, 40 ◦C; injection volume, 4 µL. 1D
RP analyses conditions: column, BIOshellTM Peptide ES C18 150 mm × 2.1 mm, 2.0 µm (160 Å); mobile phase,
(A): 10 mM HCOONH4 in H2O (pH 9 adjusted with NH4OH), Pump (B): MeCN; gradient, 0–60 min, 2–30% B,
returning to initial conditions in 0.1 min. Flow rate, 0.1 mL/min, column oven, 40 ◦C; injection volume, 4 µL.
Figure S4: (a–f). MS/MS spectra revealing identification of peptides from Spirulina (a–c) and Klamath (d–f) G.I
digest; Table S1: Complete list of peptide identified in the different samples with HILIC × RP and RP × RP
approaches with Database search.
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