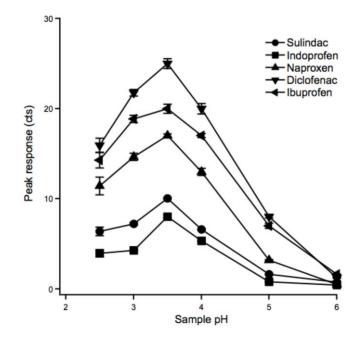
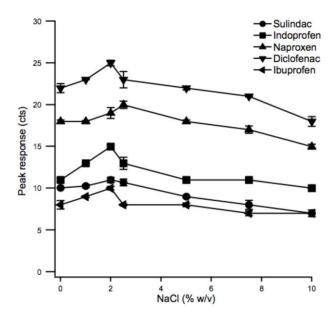
Supplementary Materials

Mixed Matrix Membrane Tip Extraction Coupled With UPLC-MS/MS for the Monitoring of Nonsteroidal Anti-Inflammatory Drugs in Water Samples


Thipashini Ganesan ^{1,2}, Nurul Hazirah Mukhtar ^{1,2}, Hong Ngee Lim ³ and Hong Heng See ^{1,2,*}

- ¹ Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
- ² Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
- ³ Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- * Correspondence: hhsee@utm.my


Contents:

- Figure S1. Effect of sample pH on peak responses using mixed matrix membrane tip microextraction. Extraction parameters: addition of salt, 2% (w/v); sample volume, 10 mL; desorption solvent volume, 40 μ L; analyte concentration, 100 ng L⁻¹ of spiked solution. (Error bars represent standard deviations of results, *n* = 3.).
- Figure S2. Effect of addition of salt on peak responses using mixed matrix membrane tip microextraction. Extraction parameters: sample pH 3.5; sample volume, 10 mL; desorption solvent volume, 40 μ L; analyte concentration, 100 ng L⁻¹ of spiked solution. (Error bars represent standard deviations of results, *n* = 3).

Table S1. Comparison of the current work with other previous methods for analysis of NSAIDs.

Figure S1. Effect of sample pH on peak responses using mixed matrix membrane tip microextraction. Extraction parameters: addition of salt, 2% (w/v); sample volume, 10 mL; desorption solvent volume, 40 μ L; analyte concentration, 100 ng L⁻¹ of spiked solution. (Error bars represent standard deviations of results, *n* = 3).

Figure S2. Effect of addition of salt on peak responses using mixed matrix membrane tip microextraction. Extraction parameters: sample pH 3.5; sample volume, 10 mL; desorption solvent volume, 40 μ L; analyte concentration, 100 ng L⁻¹ of spiked solution. (Error bars represent standard deviations of results, *n* = 3).

Table S1: Comparison of the current work with other previous methods for analysis of NSAIDs.

Materials	Analytical Method	Matrix	Target Analytes	Extraction Time	Desorption Volume (µL)	LODs (ng L ⁻¹)	EF	Ref.
C ₁₈	MPSBSEª-HPLC- UV	Wastewater	Ketoprofen and naproxen	60 min	150	7890 and 9520	32.0-49.1	[1]
Magnetic graphene/F e3O4	MSPE ^b - UHPLC- PDA	Human plasma and urine	Furprofen, diclofenac, ketoprofen, flurbiprofen, naproxen and fenbufen and ibuprofen	2 min	500	610 - 1200	-	[2]
MS- CNPrTEOS) ^c	D-µ-SPE ^d -HPLC- UV	Water samples	ketoprofen, ibuprofen, diclofenac and mefenamic acid	5 min	250	210 - 510	42–55	[3]
Sol-gel	FPSE-GC-MS ^e	Water Samples	Ibuprofen naproxen, ketoprofen and diclofenac	120 min	50	0.8 - 5	162–418	[4]
C18	MMM-HPLC-UV ^f	River water	Diclofenac, mefenamic acid and ibuprofen	20 min	100	160 – 220	79–83	Previous work [5]
C18	MMMTE ^b -UPLC- MS/ MS ^g	Sewage water	Indoprofen, sulindac, naproxen, diclofenac, and ibuprofen	10 min	40	0.08-0.40	201–249	Current work

^dMicro-solid phase extraction

^eFabric phase sorptive extraction

^fMMME – mixed matrix membrane extraction

^gMMMTE – mixed matrix membrane tip extraction

References:

- 1. Mao, X.; He, M.; Chen, B.; Hu, B. Membrane protected C₁₈ coated stir bar sorptive extraction combined with high performance liquid chromatography-ultraviolet detection for the determination of non-steroidal anti-inflammatory drugs in water samples. *J. Chromatogr. A*, **2016**, 1472, 27–34.
- 2. Ferrone, V.; Carlucci, M.; Ettorre, V.; Cotellese, R.; Palumbo, P.; Fontana, A.; Siani, G.; Carlucci, G. Dispersive magnetic solid phase extraction exploiting magnetic graphene nanocomposite coupled with UHPLC-PDA for simultaneous determination of NSAIDs in human plasma and urine. *J. Pharmaceut. Biomed. Anal.*, **2018**, *161*, 280–288.
- 3. Abd Wahib, S.M.; Wan Ibrahim, W.A.; Sanagi, M.M.; Kamboh, M.A.; Abdul Keyon, A.S. Magnetic sporopollenin-cyanopropyltriethoxysilane-dispersive micro-solid phase extraction coupled with high performance liquid chromatography for the determination of selected non-steroidal anti-inflammatory drugs in water samples. *J. Chromatogr. A*, **2018**, *1532*, 50–57.
- 4. Racamonde, I.; Rodil, R.; Quintana, J.B.; Sieira, B.J.; Kabir, A.; Furton, K.G.; Cela, R. Fabric phase sorptive extraction: A new sorptive microextraction technique for the determination of non-steroidal anti-inflammatory drugs from environmental water samples. *Anal. Chim. Acta*, **2015**, *865*, 22–30.
- 5. Kamaruzaman, S.; Hauser, P.C.; Sanagi, M.M.; Ibrahim, W.A.W.; Endud, S. and See, H.H. A simple microextraction and preconcentration approach based on a mixed matrix membrane. *Anal. Chim. Acta*, **2013**, *783*, 24–30.