Supplementary material

A Zwitterionic Hydrophilic Interaction Liquid Chromatographic Photo Diode Array Method as a Tool to Investigate Oxalic Acid in Bees: Comparison with Mass Spectrometric Methods

Konstantinos M. Kasiotis *, Electra Manea-Karga and Kyriaki Machera

Laboratory of Pesticides' Toxicology, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 St. Delta Street, Athens, 14561 Kifissia, Greece; e.manea-karga@bpi.gr (E.M.-K.); k.machera@bpi.gr (K.M.)

* Correspondence: K.Kasiotis@bpi.gr; Tel.: +30-2108180357

GC-MS system and operating conditions

The GC-MS analysis was performed on a Chromtech Evolution 3 MS/MS triple quadrupole mass spectrometer (Bad Camberg, Germany) built on an Agilent 5975 B inert XL EI/CI MSD system (Agilent Technologies, Santa Clara, CA, USA). Samples were injected with a Gerstel MPS-2 autosampler using a 10 µL syringe. Separations were performed on a HP-5ms UI, length 30m, ID 0.25mm, film thick. 0.25 µm (J&W Folsom, USA). Helium was used as the carrier gas at a flow rate of 1.4 mL min⁻¹. The column oven temperature program started from 45°C at which was held for 1 min, increased to 250°C at a rate 5°C min⁻¹, where it stayed for additional 5 min. The mass spectrometer was operated in EI mode using the full scan data acquisition mode. The transfer line, manifold and source of ionization temperatures were 300, 40 and 230°C. The total GC analysis time was 47 min.

Figure S1. HPLC-UV chromatogram of a blank honeybee sample extract

Figure S2. Magnified HILIC-UV chromatogram of a blank honeybee sample

Figure S3. HPLC-UV chromatogram of a standard solution of oxalic acid at 20 μ g/mL.

Figure S4. Peak purity curve obtained for a positive bee sample in OA

Figure S5. TIC, MRM chromatograms of a OA positive bee sample.

Figure S6. TIC, MRM chromatograms of a control bee sample.

Table S1. Chromatographic parameters and MRM transitions for oxalic acid

Compound	Retention time (min)	Precursor ion (m/z)	Product ions (m/z)	Dwell time	Fragmentor voltage	CE (eV)
Oxalic acid	8.2	89.1	61.2ª	15	34	10
			45.3 ^b	15	34	34

^aQuantitation ion, ^bConfirmation ion

Figure S7	. Full scan	GC-MS total	ion chromat	ogram of d	erivatized OA	A standard in
ACN at 1	μg/mL.					

Figure S8. HILIC-UV chromatogram of a standard mixture of OA and LA at 10 μ g/mL (using phosphate buffer).

Figure S9. HILIC-PDA chromatogram of LA and OA in standards solution mix (using ammonium acetate buffer)

Figure S10. HILIC-ESI/MS SIM chromatogram of LA and OA in standards solution mix (using ammonium acetate buffer)

