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Abstract: Metal–organic frameworks (MOFs) have attracted recently considerable attention in
analytical sample preparation, particularly when used as novel sorbent materials in solid-phase
microextraction (SPME). MOFs are highly ordered porous crystalline structures, full of cavities.
They are formed by inorganic centers (metal ion atoms or metal clusters) and organic linkers
connected by covalent coordination bonds. Depending on the ratio of such precursors and the
synthetic conditions, the characteristics of the resulting MOF vary significantly, thus drifting into a
countless number of interesting materials with unique properties. Among astonishing features of
MOFs, their high chemical and thermal stability, easy tuneability, simple synthesis, and impressive
surface area (which is the highest known), are the most attractive characteristics that makes them
outstanding materials in SPME. This review offers an overview on the current state of the use of
MOFs in different SPME configurations, in all cases covering extraction devices coated with (or
incorporating) MOFs, with particular emphases in their preparation.

Keywords: solid-phase microextraction; metal–organic framework; crystalline nanostructures;
nanomaterials; analytical chemistry; coatings; microextraction devices; sample preparation

1. Overview on Metal–Organic Framework

Metal–organic frameworks (MOFs) are solids constituted of inorganic metal ions (or metallic
clusters) and organic linkers connected by coordination bonds. The metal ions act as nodes or
centers and the organic linkers act as a bridge between them, forming a complex bi-dimensional or
three-dimensional net. Nodes and ligands are termed secondary building units (SBUs). Depending
on the coordination sphere of the inorganic SBU, the organic SBU used, and their connectivity, the
topology, geometry, and properties of the resultant material will vary significantly [1–4]. Metal–organic
frameworks are a subclass of the more general coordination polymers, because they include only those
materials with permanent porosity.

The design and synthesis of MOFs rely on reticular chemistry. This approach allows the design of
specific structures by the selection of the inorganic and organic SBUs identifying how the nodes and
the linkers interact to form the network [4,5]. While the inorganic SBU dictates the node connectivity
(usually as a polyhedron where the vertices are the connectivity points), the organic linker indicates the
number of nodes that will be interconnected, being necessary, at least, the use of a ditopic linker (linear
connector). Figure 1 shows several representative examples of MOFs structures and their respective
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SBUs. One of the most representative examples is the family of isoreticular metal–organic frameworks
(IRMOFs). This group of MOFs present the same topology and skeleton but different functionalization
and pore dimensions due to changes introduced in the organic linker, such as increasing its length or
by the incorporation of different functional groups [6].

The design of a MOF implies smart selection of the SBUs. Clearly, the number of possible
metal-linker combinations are countless. In fact, the Cambridge Crystallographic Data Center contains
more than 75,000 different registered MOF structures [7]. There is still a variety of abbreviations to refer
to different classes of MOF, without any kind of unified nomenclature: MILs—Materials of Institute
of Lavoisier [8], HKUST—Hong Kong University of Science and Technology [9], UiO—University
of Oslo [10], CIM—Canary Islands Material [11], or DUT—Dresden University of Technology [12].
Other nomenclatures relate with the structure and organic linker nature used, such as ZIFs—Zeolitic
Imidazolate Frameworks [13] or PCN—Porous Coordination Network [14]. Given this nomenclature
gap, several MOFs have more than one name, i.e., HKUST-1 = MOF-199. Taking into account
the increasing number of applications of these materials, we believe that a common and unified
nomenclature will arise necessarily.

The characteristics of MOFs mainly depend on the nature of the selected inorganic and organic
SBUs and their connectivity. These three factors will define the geometrical disposition of the network,
the pore size, the morphology of the cavities, and the channels distribution. Nevertheless, other
parameters related to the synthetic conditions such as the amount of each precursor, ratios, solvents,
modulators, and the synthetic method followed also exert a noticeable influence on the network [1].

The preparation of MOFs follows common strategies to obtain crystalline structures such as slow
diffusion or solvent evaporation [1,3]. In the generic procedure, a solution containing the precursors
(organic and inorganic SBUs) gets under favorable conditions to ensure the integrity of the SBUs and
their assembly to form a network. Specifically, the slow diffusion synthesis consists on the preparation
of two solutions containing each one of the MOF precursors (the metal and the linker). The two
solutions get in contact and slowly diffuse forming the crystals at the interface. The evaporation strategy
utilizes a saturated solution of the SBUs mixture, followed by heating to remove the solvent slowly,
thus forcing the formation of the crystals. Although both methods are easy to perform, sometimes,
MOF preparation requires an energy input to form the product. Therefore, the solvo(hydro)thermal
synthesis emerged as a common method to obtain MOFs [1]. This procedure utilizes a solution of
inorganic and organic SBUs in a Teflon-lined stainless steel autoclave, followed by heating at the
adequate temperature. The reached temperature while maintaining a constant volume in the reactor
generates an autogenous pressure that facilitates the formation of the crystals [3]. This method is the
most common strategy to prepare MOFs. However, it is an energy intensive procedure if the MOF
requires high temperature, and most of the solutions are prepared with high polar toxic solvents to
ensure the solubility of the precursors such as N,N-dimethylformamide, N,N-dimethylacetamide,
N,N-diethylformamide, etc. Nowadays, other procedures such as electrochemical, microwave-assisted,
mechanochemical-assisted, and sonochemistry synthesis have emerged as environmentally friendly
alternatives to prepare MOFs, while increasing the final amount obtained [15].

MOFs have become a trendy material due to their excellent properties. Most of these compounds
possess a high thermal, chemical, and mechanical stability. Several MOFs present a flexible behavior,
being able to expand or contract their structures as a response to an external stimulus: electromagnetic
radiation, temperature, or mechanical stress. Most of these interactions relate with a host–guest
phenomenon, depending if the initial synthetic solvent fills the pore (expanded) or if the pores are
empty (contracted) [2].

Their current success in analytical chemistry directly links to their impressive surface areas.
MOFs have the highest surface area known, with values ranging from ~150 up to ~7,000 m2

·g−1 [16].
Nowadays, the MOF DUT-60 holds the world record regarding the highest surface area and pore
volume. This MOF has a surface area of 7,800 m2

·g−1 and a pore volume of 5.02 cm3
·g−1 [17]. It is formed

by Zn4O6+ clusters and an expanded tritopic ligand 1,3,5-tris(4′-carboxy[1,1′-biphenyl]-4-yl)benzene in



Separations 2019, 6, 47 3 of 29

combination with a ditopic linker 1,4-bis-p-carboxyphenylbuta-1,3-diene. In general, MOFs with surface
areas over 6,000 m2

·g−1 are termed ultrahigh porosity crystalline frameworks. Their applicability is
still challenging despite this property because their activation is quite complex [16]. The activation
of a MOF refers to any procedure shifted to clean the non-reacted chemicals while evacuating the
remaining synthetic solvent from the pores of the material. The purpose is to obtain vacant space in
the crystal. This procedure can be accomplished by different strategies such us heating, application of
vacuum, or even using a solvent exchange [18]. In the case of ultrahigh porosity MOFs, this evacuation
can render the structure useless due to the collapse of the structure after the removal of the solvent
molecules. The linkers used in these materials as organic SBUs are extended-ligands (to ensure the
obtaining of larger porous), which cannot hold on the complex node-linker network once they get
empty. In fact, once the cavities and pores are empty, there is more free space than material [16].
For this reason, conventional MOFs (which also have high surface areas but not comparable to those
termed ultrahigh porous MOFs) have been more widely used in the majority of applications, such as
gas storage [19], heterogeneous catalysis [20], sensors [21], drug delivery systems [22], energy storage
devices [23], and in analytical chemistry applications [24–27].
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2. Metal–Organic Frameworks in Analytical Separations

Regarding their use in analytical chemistry separations, MOFs have been employed as stationary
phases in chromatography and as sorbent materials in analytical sample preparation methods, taking
advantage of their surface area, stability, and tuneability [24,28]. Figure 2 summarizes the evolution
of the use of MOFs in analytical chemistry separations, focusing the attention in analytical sample
preparation approaches.

The advantages offered by MOFs as stationary phases in chromatography include the pore size
selectivity, the possible use of functional organic ligands as linkers that increase the specificity of
the material (favoring interactions with analytes), and the separation of species due to metal affinity
events. Furthermore, it is possible to achieve chiral chromatographic separations by using chiral
MOFs [28]. However, their non-spherical morphology, nanoscale particle size, and (for several MOFs) a
limited working pH range stability are issues requiring polishing to expand the application of MOFs as
chromatographic stationary phases. Recent developments in the field focus the efforts on the synthesis
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of silica-based core–shell MOFs to increase the particle size while improving the homogeneity of the
chromatographic stationary phase [28,29].
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The use of MOFs as novel sorbent materials in a variety of analytical sample preparation methods
somehow directly relates within the trends of green analytical chemistry [24]. Conventional extraction
methods are time consuming and require the use of large volumes of toxic organic solvents and
sample volumes. As improvements, there has been a high applicability of miniaturized analytical
sample preparation methods. These novel miniaturized approaches require outstanding materials to
perform with the same analytical performance as conventional materials in non-miniaturized methods.
Among miniaturized sorbent-based microextraction strategies incorporating MOFs it is possible to
cite: miniaturized solid-phase extraction (µ-SPE) [30], dispersive solid-phase microextraction (µ-dSPE)
and its magnetic-assisted version (m-µ-dSPE) [25,31], and solid-phase microextraction (SPME) [24,32],
each of which are also susceptible to be performed under different operational strategies, as shown in
Figure 2.

In all cases, MOFs are utilized as porous materials to somehow ensure trapping those target
molecules able to get inside their pores while interacting with the metal nodes [27,33]. Once trapped
by the material, proper desorption (thermally induced or aided by desorption solvents) is performed
to accomplish the analytical determination.

Another recent trend of incorporating MOFs in analytical sample miniaturized methods pursue
the use of low cytotoxic MOFs, prepared following the criteria of green synthesis [34].

Initial studies of MOFs as sorbent materials were in on-line and off-line µ-SPE methods. Thus,
Zhou et al. prepared a copper (II) isonicotinate MOF powder packed precolumn (1.5 cm × 4 mm) to
perform an on-line extraction of polycyclic aromatic hydrocarbons (PAHs) in environmental waters [35].
Yang et al. also used a similar strategy packing ZIF-8(Zn) into a stainless-steel column for the on-line
µ-SPE determination of tetracyclines in water and milk samples [36]. Regarding off-line µ-SPE, the first
application reported a µ-SPE column prepared by packing MOF-5(Zn) in a polypropylene cartridge,
which was used for the extraction of PAHs [37]. In a different approach, the device consisted on a
polypropylene membrane bag filled with ZIF-8(Zn) powder (similar to a tea bag) instead of the most
conventional cartridge. One of the most attractive characteristics of this device is the possibility of
performing a vortex-assisted extraction without requiring any centrifugation step [38]. Since then,
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MOFs have been packed as powder into disks, cartridges, and micro-columns for their use in different
analytical sample preparation applications of µ-SPE [27,39].

The success of MOFs as sorbent materials in the microextraction variant that disperses the material
(without utilizing any device) in the sample, µ-dSPE, lies in the simplicity of the approach. MOFs as
net crystals experience dispersion (by agitation) into the sample containing the analytes. Once the
MOF traps the target analytes, they are desorbed and analytically determined [25]. In addition to
simplicity, the resulting method presents high extraction efficiency (given the strength of the interaction
analyte-MOF during MOF dispersion), adequate preconcentration, reproducibility, and accuracy.
This leads not only to the expansion of the use of neat MOFs in µ-dSPE but also to the development of
novel MOF-hybrid materials and composites [25]. However, considering the use of net crystals not
confined in any device of easy manipulation, in all cases a final step of centrifugation, decantation, or
magnetic separation with an external magnet is required, in turn requiring more steps than expected
for a truly miniaturized approach.

Pawliszyn et al. developed the first SPME device in the early 1990s. The first SPME device utilized
a silica wire of 1 cm coated by polyimide as sorbent material [40]. Although the extraction of the analytes
was successful, the device suffered a lack of strength and robustness. Out of this first design, different
SPME configurations have been developed progressively to improve this technique [41]. This includes
mainly the following SPME modes: on-fiber solid-phase microextraction (f-SPME) [42], arrow fiber
solid-phase microextraction (af-SPME) [43], in-tube solid-phase microextraction (it-SPME) [44], thin-film
solid-phase microextraction (tf-SPME) [45], and stir-based solid-phase microextraction, including
stir-bar (sb-SPME) [46] and stir-cake solid-phase microextraction (sc-SPME). The introduction of MOFs
as sorbent materials in the different SPME devices and configurations has been gradual. Thus, Figure 3
shows a timeline of the introduction of MOFs in the main different SPME configurations developed up
to date [47–52].
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permission from American Chemical Society, 2016. (D) Adapted from [50], with permission from
Elsevier, 2018. (E) Adapted from [51], with permission from Elsevier, 2017. (F) Adapted from [52], with
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This review includes a general overview on the state of the art of the use of MOFs as sorbent
materials in different SPME devices (Figure 3), paying particular attention to their preparation for the
different configurations.

3. MOFs in On-Fiber Solid-Phase Microextraction (f-SPME)

3.1. Overwiev on Commercial f-SPME Devices

In its more common configuration, the SPME device involves a fiber-shaped support coated
with the extracting phase leading to the on-fiber SPME (f-SPME), as shown in Figure 4A. This SPME
configuration normally performs in two main extraction modes: headspace (HS) SPME, in which the
fiber exposes to the headspace over the sample, and direct immersion mode (DI-SPME), where the
fiber immerses completely in the aqueous sample. The final desorption step can be accomplished
either by placing the fiber in the inlet of a gas chromatography (GC) system (the coating resists high
temperatures and the analytes volatilize and get into the GC) or by exposing the fiber to a small amount
(<1 mL) of organic solvent (solubilizing analytes while preserving the coating). The thermal desorption
approach is the most desirable since it leads to a solvent-free extraction method.

Currently, several brands, including Supelco (Merck) [53] and PAL from CTC Analytics
(Restek) [54], supply SPME fibers coated with stationary phases of different polarities and
thicknesses. All commercial stationary phases for f-SPME contain a liquid polymer, which is the
main component of the coating in the case of absorbent-type fibers (polydimethylsiloxane (PDMS),
polyacrylate, and polyethyleneglycol), or is the liquid bulk material in which the solid sorbent is
suspended in the case of adsorbent-type stationary fibers (carboxen/PDMS, PDMS/divinylbenzene,
and divinylbenzene/carboxen/PDMS).

For the preparation of commercial f-SPME devices, fused silica fibers and metal wires act as the
core to support the coating material, with diameters of 100 and 128 µm, respectively [55]. Despite the
fragility of fused silica, it is the preferred core for most f-SPME devices since the diameter can be highly
controlled and long fibers can be coated precisely with absorbent materials during the manufacturing.
Stableflex cores, consisting of fused fibers coated with a thin layer of an inert polymer, and metallic wires,
composed of a flexible and thermally stable non-ferrous metal alloy, were introduced to overcome
this stability issue [55]. The use of these novel substrates as cores improves the bonding of the
adsorbent-type materials during the coating process, which also helps in improving the robustness
and reproducibility between batches of the resulting device.

Regarding the size of the f-SPME devices, commercial fibers consists of coated cores of 1 cm.
The thicknesses of the coating are up to 100 µm depending on the composition of the sorbent
material [53,54]. Despite thicker coatings possibly leading to an improvement on the extraction
capability of the SPME fiber, they may also require long extraction times to reach equilibrium when
operating [41]. These coated cores assemble in a device that resembles a syringe to facilitate its
manipulation and the automation of the methodology. It allows exposing the extracting phase to the
sample by pushing the plunger forward, while the fiber experience retraction and protection by pulling
the plunger back.

The f-SPME mode is the most widely-exploited approach within all the SPME configurations
reported up to date (Figure 2). This success relates to its huge trade expansion in the analysis
field [56–58], the existence of standard methods proposing this technique [59,60], together with the
simplicity of its operation and the easiness in the preparation of these fibers in comparison with other
SPME devices.

Despite the commercially available coatings allow the application of this technique for extracting
a broad range of compounds, they still lack selectivity and present relatively low thermal stability [41].
In this sense, considering the interesting properties of MOFs, they have been explored as sorbent
coatings for f-SPME [32].
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3.2. Preparation of MOF-Based f-SPME Devices

Table ?? includes several representative examples of the reported MOF-based coatings for this
SPME geometry together with other configurations [48–51,61–76]. The vast majority of reported
MOF-based f-SPME devices uses the most common MOFs, such as: HKUST-1—composed of copper
nodes and 1,3,5-benzenetricarboxylate struts [61,65,77–79]; UiO-66—formed by the combination of
Zr clusters and 1,4-benzenedicarboxylate ligands [62,67,80,81]; MIL-type MOFs, synthesized using
1,4-benzenedicarboxylate ligands and different metal ions, including Cr [68,69,82,83], Fe [84–87], and
Al [66,88]; and MOFs composed of Zn metal centers, including MOF-5 with 1,4-benzenedicarboxylate
as ligand [64,89–92], and the family of ZIF MOFs containing imidazolate-based ligands [63,70,93–96].
The selection of these MOFs over others (particularly considering the vast list of possible MOFs) lies on
their easy preparation and inter-batch reproducibility of their preparation, together with the fact that
their characterization is thorough. To sum up, MOFs containing Zn, Zr, and trivalent metals in their
structures normally present higher water and thermal stability [97,98], which makes them adequate
candidates for SPME stationary phases.
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Figure 4. (A) Scheme of a generic f-SPME device and image of a MOF-based f-SPME. Adapted from [78],
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Given the solid nature of MOFs, different strategies arise for their immobilization on the f-SPME
device. The most common approach is the in-situ growth of the MOF on the surface of the substrate
used as core [61–63,79,84,94,99–104]. In this method, the support is immersed in a solution containing
the reagents required to synthesize the MOF by the solvothermal method. The surface of the support
offers nucleation sites in which the MOF starts growing to form the coating. Among the studies using
this coating method, it is worth mentioning the f-SPME based on HKUST-1(Cu) prepared by Sun et
al. [79]. In this case, the reaction solution contains the organic ligand and an oxidizing agent since
the copper wire used as f-SPME core acts as source of copper ions itself to synthesize the MOF. In
other cases, once the MOF attaches to the support (by the in-situ growth), there is an incorporation of
additional materials to improve the efficiency of the final coating. Thus, it is interesting to mention
the layer-by-layer deposition method of an ionic liquid (IL) and coating with PDMS after the in-situ
growth of the MOF IRMOF-3(Zn) reported by Zheng et al. [100]. The PDMS layer helps to protect
the coating, while the IL plays an important role on the extraction efficiency of the resulting f-SPME
device. The in-situ growth approach has also been reported for the preparation of f-SPME devices
coated with composites containing MOFs and carbon-based materials [92,105]. In these cases, the
carbon-based material requires dispersion in the reaction solution together with the starting materials
for the synthesis of the MOF. In the study reported by Wu et al. [92], an IL is also included in the
resulting coating by the functionalization of graphene prior to its addition to the reaction solution.
The incorporation of the IL leads to a better bonding between the graphene and the MOF-5(Zn) used
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for the preparation of the extracting phase, which also improves the uniformity and stability of the
f-SPME device.

Other supporting methods base on the electrodeposition of the MOF [64,91]. In this strategy,
the working electrode is also the core of the f-SPME device, and cyclic voltammetry ensures that
the MOF coats its surface. In the examples reported, the electrodeposition step ensures that
triethylamine-modified MOF-5 coats the stainless-steel rod by including triethylamine hydrochloride
in the electrolyte solution together with the metal salt and the organic acid used as ligand.

A simpler coating method involves the immersion of the support in a dispersion of the MOF
or directly in the MOF powder [93,106], using always the as-synthetized MOF by any of the usual
routes (usually the solvothermal method). This procedure needs repetition several times with heating
steps between the dipping cycles until reaching the desired thickness. Despite its simplicity, it is
hardly used to include neat MOFs in the fibers but to prepare f-SPME devices with hybrid phases
composed of MOFs together with carbonaceous materials [65,77,87,90]. For their preparation, the
initial powder contains a mixture of the MOF with the carbon-based additive at a specific proportion
and the fiber dips in the suspension or powder. MOF-based sorbents benefit from the incorporation
of graphene derivatives and carbon nanotubes to improve the extraction performance of the device
towards aromatic compounds.

Taking into account that all MOFs (including the abovementioned composites) appear as solid
particles in contrast to the high viscous liquid-like polymers used in the preparation of commercial
f-SPME devices, the fiber core for MOFs (and MOFs composites) must comply several requirements to
avoid detachment of the solid coating from the support [32]. Thus, most reported MOF-based SPME
fibers use stainless steel wires as core, with the same diameter as commercial fibers [61,63,64,84,87,90–
93,99,100,102–104,106]. To increase the contact area between the core and the solid during the coating
process there is a cleaning step of the metallic rod with different solvents and/or treating steps with
acid solutions to obtain a rough surface. With the aim of amending the link of the stationary phase to
the core while using a robust metallic support, the functionalization of the stainless-steel wires with
silanization agents results are also quite interesting [63,87,90]. In this case, a microstructured silver
layer on the surface of the wire solves the non-reactive character of the stainless steel.

Fused silica and quartz have also been used for the development of MOF-based coatings for
this SPME configuration [62,65,77,94,101,105]. Despite the fragility exhibited by these supports, their
composition allows an easy functionalization of the surface with amino or carboxylic groups by dipping
the fibers in a solution containing the silanization agent, after pretreating them with acids and bases
to expose the silanol groups. This step may ensure a chemical link between the support and the
MOF-based extracting phase, and consequently upgrade the stability of the coating, since these groups
can react with the organic ligands used for the synthesis of the MOF [32].
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Table 1. Representative examples of MOF-based coatings prepared within all the different SPME configurations.

MOF Support Additive* Size
(Length/Diameter/Thickness) Preparation Method Sample/Analyte* (Number) Analytical

Method*
Extraction

Time (min)
RSDmax/RSDbatch

a Ref.

On-fiber solid-phase microextraction (f-SPME)

HKUST-1(Cu) stainless steel
wire – –/–/40 µm in-situ growth indoor air/benzene

derivatives (7)
HS mode and

GC-FID 20 7.7/9.4 [61]

UiO-66(Zr) fused silica
fiber – –/–/25 µm in-situ growth water and soil/PAHs (10) DI mode and

GC-MS 20 8.2/8.9 [62]

ZIF-90(Zn) stainless steel
wire – –/–/30.5 µm in-situ growth water, soil, and

vegetables/PCBs (6)
DI mode and

GC-MS 40 5.5/9.1 [63]

E-MOF-5(Zn) stainless steel
wire – –/–/12.5 µm electro-deposition milk/hormones (4) DI mode and

LC-DAD 30 9.4/6.1 [64]

HKUST-1(Cu) fused silica
fiber graphite oxide –/–/40 µm immersion in the

composite water and soil/OCPs (8) HS mode and
GC-ECD 40 8.8/12.8 [65]

MIL-53(Al) stainless steel
wire

epoxy glue as
adhesive –/–/50 µm attachment with

adhesive water/PAHs (16) HS mode and
GC-MS/MS 50 12.5/13.9 [66]

UiO-66(Zr) stainless steel
wire

epoxy glue as
adhesive –/–/150 µm attachment with

adhesive water/phenols (6) HS mode and
GC-FID 50 6.2/10.1 [67]

MIL-101-NH2(Cr) quartz PAN as
adhesive –/–/120 µm attachment with

adhesive fish/antibiotics (6) In-vivo and
LC-MS/MS 10 6.8/9.5 [68]

MIL-101(Cr) stainless steel
wire PDMS –/–/70 µm sol–gel water/PAHs (5) HS mode and

GC-MS 20 9.3/13.8 [69]

ZIF-8(Zn)
fiber bundle

with 4
monoliths

graphene
oxide and MIP 3 cm/0.35 cm/– mold polymerization food/hormones (5) DI mode and

LC-MS 30 4.1/5.2 [70]

On-arrow-fiber solid-phase microextraction (af-SPME)

ZIF-8(Zn) arrow steel
rod

PVC as
adhesive 2 cm/–/70 µm attachment with

adhesive
wastewater, fish and

mushroom/amines (2)
HS mode and

GC-MS 5 10.3/15.6 [51]

Fe-BDC(Fe) arrow steel
rod - 2 cm/–/2 µm

atomic layer
deposition and

conversion

wastewater/chloro-phenols
(8)

HS mode and
GC-MS 30 23.1/– [71]
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MOF Support Additive* Size
(Length/Diameter/Thickness) Preparation Method Sample/Analyte* (Number) Analytical

Method*
Extraction

Time (min)
RSDmax/RSDbatch

a Ref.

In-tube solid-phase microextraction (it-SPME)

MIL-101(Cr) capillary tube
BMA-EDMA

and IL
[C6mim][BF4]

10 cm/0.8 mm/– microwave assisted
polymerization water/drugs (6) CEC-UV-Vis 34 5.2/– [72]

MIL-53(Al) capillary tube
BMA-EDMA

and IL
[C6mim][BF4]

10 cm/0.8 mm/– microwave assisted
polymerization water/sulfonamides (7) CE-UV-Vis 36 6.4/5.3 [49]

MOF Support Additive* Size
(Length/Diameter/Thickness) Preparation Method Sample/Analyte* (Number) Analytical

Method*
Extraction
Time (min) RSDmax/RSDbatch

a Ref.

Thin film solid-phase microextraction (tf-SPME)

MIL-53(Al) – PVDF 2 cm/–/– spreading urine/estrogens (4) LC-FD 45 11.4/– [50]

Stir-bar solid-phase microextraction (sb-SPME)

IRMOF-3(Zn) capillary glass
bar PDMS 2 cm/–/100 µm sol–gel water/estrogens (7) LC-UV 55 10.2/16.1 [73]

MIL-53-NH2(Al) capillary glass
bar PDMS 2 cm/–/125 µm sol–gel water/PAHs (15) LC-FD 30 11.7/16.9 [74]

MOF-5(Fe) Nd-Fe-B rod MNP
Fe3O4@NH2

1 cm/–/– magnetic interaction fish/PCBs (6) GC-MS 33 4.3/– [75]

MIL-101-NH2(Cr)capillary glass
bar PDMS 2 cm/–/100 µm sol–gel water/OPPs (6) GC-FPD 35 10.7/9.2 [48]

UiO-66-NH2(Zr) – Nd-Fe-B
powder, 4-VP 2 cm/30 mm/– thermal

polymerization soil and water/herbicides (5) LC-UV 60 13.8/9.5 [76]

a RSDmax for maximum intra-fiber relative standard deviation; RSDbatch for inter-fiber relative standard deviation. * for the definition of the abbreviations, refer to the list of abbreviations
at the end of the article.
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As mentioned in Section 3.1, commercial f-SPME devices with solid materials require a liquid
polymer to attach the stationary phase to the core. This justifies the use of glues to attach the MOF
coatings to the stainless-steel wires in a high number of studies [47,66,67,81,82,85,86,88,89,107–113],
or even to fused silica [68]. The sealant is used in an amount that it does not block the pores of the
solid sorbent and it does not participate in the extraction process [32,55]. In general, the support is
first dipped in the sealant and then in the MOF powder to obtain the coating. The immersion of the
fiber in the glue has also been accomplished as the final step of the coating procedure [82], with the
glue acting as a protective layer; or even the glue is previously added to the MOF powder and the
fiber is immersed in the mixture to obtain the f-SPME device [109,112]. In some cases, the procedure
requires repetitions to control the thickness and obtain thicker coatings. Silicone and epoxy sealants
are commonly used, but other adhesives consisting of different polymers have also been proposed,
such as polyimide [47,109], polydopamine [86], polyethersulfone [112], and polyacrylonitrile [68].

More sophisticated methods have been described for the preparation of polymeric coatings
containing MOFs, such as the sol–gel approach [69,78,83,95,96,114,115]. In these studies, the MOF
particles need dispersion in the sol–gel solution, where the stainless-steel support is dipped to obtain
the coating after letting it dry at room or high temperatures. This preparation method provides
stationary phases that easily bond to the core, also ensuring a homogenous distribution of the MOF
through the coating. In the study reported by Bagheri et al. [116], a MOF-polyaniline composite is
electro-polymerized on the fiber core by applying a constant potential to the monomer solution, which
contains the MOF particles dispersed.

Despite the widely use of f-SPME configurations, the enhancement of the extraction rate to reduce
the time to reach the equilibrium in f-SPME applications can be accomplished by using a SPME device
composed of multiple fibers, as recently proposed. These fibers have low diameters and are spaced in
a way that the gap between the fibers is bigger than the boundary layer formed around the coatings, as
shown in Figure 4B [41,117]. Mirzajani et al. reported MOFs in this approach [70]. The SPME device
involves a fiber bundle prepared by combining four polymeric monoliths with a diameter of 0.35 cm.
The composite consists of a molecularly imprinted polymer doped with graphene oxide and the MOF
ZIF-8(Zn), which helps generating a highly selective material due to its pore topology. The use of
monoliths yields a highly stable and flexible device that can be easily prepared using molds, which
also provide high inter-batch reproducibility.

3.3. Analytical Performance of MOF-Based f-SPME Devices

Most of the MOF-based coatings reported have lengths of 1 cm, while their thicknesses, estimated
by obtaining scanning electron microscopy micrographs of the resulting f-SPME device, ranged
from 2 µm to 150 µm regardless of the composition of the stationary phase and the coating
method. The as-prepared MOFs coatings in f-SPME are commonly incorporated into a 5 µL
GC syringe [47,61,62,65–67,69,70,77,81,83–85,87,88,90,93–96,101–104,106,108,114,115], are mounted in
a commercial f-SPME assembly [82,89,100,109,112], or into a lab-made device [68,78,116]. The average
lifetime of the MOF f-SPME devices is around 100–120 extractions, with the exception of the fiber
prepared with the MOF MAF-66 (Zn as metal center and 3-amino-1,2,4-triazole as organic ligand)
for which the extraction performance was still the same after 270 extractions [106]. Regarding the
inter-fiber precision, which provides information of the reproducibility of the preparation method
despite evaluating the fibers for a specific application, it was always lower than 14%, being even lower
than 5.2% for the multiple fiber device [70].

As expected, taking into account the characteristics of the SPME technique and the high thermal
stability of MOFs, practically all the f-SPME devices combine with GC analysis. The desorption
temperatures used are in general close to the maximum temperature at which MOFs keep their
crystallinity, thus being always higher than 200 ◦C, with an average value of 250 ◦C. The highest
desorption temperature reported was 300 ◦C for the f-SPME coatings prepared with MIL-88B(Fe) [84],
MOF-5(Zn) [92], UiO-66(Zr) [81], and HKUST-1(Cu) [79].
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MOFs fibers have been evaluated in HS mode in combination with GC for the extraction of
an enormous variety of compounds: from PAHs [66,69,79,82,100,102,103,106,108,111], and benzene
derivatives [47,82,99,101,110,114,116], to phenols [67,89,92,94]. Water is the most common matrix
analyzed, but for example amines have been extracted from urine samples [115] and latex gloves [80],
thus proving the validity of MOF f-SPME fibers when dealing with complex samples. MOF f-SPME
devices are also useful for the determination of benzene homologues in indoor air [61] and aldehydes
in exhaled breath [95].

The DI-SPME-GC methods with these fibers has been used for the analysis of water samples coming
from different sources [62,81,85,88,96,104,105,107,109,113], aqueous extracts of foods [85,87,90], and
aqueous extracts of soils [62,104,105]. PAHs [62,81,85,96,104,105,107,109] and pesticides [90,107,113]
have been the most common analytes determined with the developed methods using the DI mode.

Only four studies reported liquid chromatography (LC) applications with MOFs fibers in the DI
mode [68,70,78,107], and using a small amount of an organic solvent in the desorption step [64,68,78],
or an aqueous solution at a fixed pH value in the case of the multiple fiber device [70]. It is
important to highlight the stability of the triethylamine-modified MOF-5(Zn) coating prepared by
electrodeposition [64,91], since it is stable in polar, non-polar, and even halogenated organic solvents, in
contrast to commercial coatings, which tend to swell in organic solvents. These DI-SPME-LC methods
were intended to the determination of hormones [64,70], and drugs [68,78], in biological and food
samples, respectively. It is important to highlight the application of the MIL-101-NH2 f-SPME device
(Cr as metal center and 2-amino-1,4-benzenedicarboxylate as ligand, prepared using polyacrylonitrile
as adhesive) for in-vivo analysis, exhibiting better results than commercial fibers for the extraction of
antibiotics from living fishes [68].

4. MOFs in On-Arrow-Fiber Solid-Phase Microextraction (af-SPME)

SPME arrow fibers (af-SPME) appears as a variation of the f-SPME device to improve the robustness
of the design [43]. In this geometry, a large volume of the sorbent (compared to conventional f-SPME
devices) coats the sharp closed tip of a steel rod, as shown in Figure 5A. As the amount of extracting
phase is quite big in this configuration, higher sensitivity is possible in certain applications, while
protecting perfectly the coating from matrix components thanks to its design.Separations 2019, 6, x FOR PEER REVIEW 13 of 29 
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These af-SPME devices are already commercially available, manufactured by CTC Analytics [118].
The available stationary phases are the same as those for f-SPME: polymer-based coatings with different
polarities depending on their composition. The length of the coating is 2 cm, the rods have outer
diameters of 1.1 or 1.5 mm, and the thicknesses range from 100 µm to 250 µm for the PDMS phase.
Despite the novelty of this configuration, MOFs have also been explored as potential sorbent materials
for the development of af-SPME devices, which were used in combination with GC analysis [51,119].
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The MOFs ZIF-8(Zn) [51] and UiO-66(Zr) [119] in af-SPME have been attached to stainless steel
rods using adhesives. In the case of ZIF-8 af-SPME [51], a suspension containing the previously
synthesized MOF and polyvinylchloride is prepared, and the fiber support (2 cm) is dipped several
times in the mixture and subjected to high temperatures to obtain a thickness of 70 µm. These fibers
were tested in the HS extraction of alkylamines from wastewater samples and from aqueous extracts of
fish and mushrooms. For the UiO-66-based device [119], the coating method consisted of dipping the
arrow fiber first in diluted silicone sealant and then in the suspension of the solid material several times
to obtain a thickness of 25 µm. In order to increase the extraction capability of the sorbent towards
PAHs, there is a combination of UiO-66 MOF with molybdenum disulfide. The device was evaluated
in HS mode and in combination with GC for the analysis of aqueous extracts of fish samples.

Lan et al. [71] proposed a new coating strategy based on atomic layer deposition (ALD) and
conversion methods. The entire approach permits the preparation of more selective af-SPME
devices coated with different MOFs: the MOF Fe-BDC (composed of Fe metal centers and
1,4-benzenedicarboxylate ligands) was the best for the extraction of benzene-containing polar
compounds, while the UiO-66(Zr) coating exhibited better results for polar and aromatic analytes.
Figure 5B includes a scheme of the experimental procedure followed in this coating method. In the
case of Fe-BDC MOF, ALD permitted the support of Fe2O3 films on the surface of the steel rod.
This oxide layer acted then as a source of Fe ions for the synthesis of the MOF. In the conversion
step, the af-SPME assembly was immersed in a solution containing the organic ligand to perform a
simple vapor–solid reaction, thus obtaining the MOF structure. This method was also used for the
preparation of Al-containing MOFs and using similar organic ligands, but the analytical characteristics
of the coating were not satisfactory. For the UiO-66 af-SPME, a thin film of the MOF precursor (Zr-BDC)
was supported directly on the steel wire instead of an oxide layer. This layer then easily transforms
into UiO-66 using the modulator vapor. Despite the small thicknesses obtained for these coatings (~2
and 7.5 µm), comparative and even better results were achieved when extracting polar compounds
from wastewaters compared with polymeric commercial coatings.

5. MOFs in In-Tube Solid-Phase Microextraction (it-SPME)

The in-tube solid-phase microextraction configuration (it-SPME) was developed practically after
the development of the conventional f-SPME, mainly to improve the drawbacks related with the
coupling of the technique with LC. Although the high success of f-SPME devices in many analytical
applications, the extraction of non-volatile, semi-volatile, and/or thermo-labile compounds (not
adequate for GC) was a significant hurdle to overcome.

The introduction of it-SPME devices facilitates the online and direct injection in a LC system, and
even more important, its automation [120]. The first it-SPME devices consisted on 60 cm sections of a
GC capillary column, with an internal diameter of 0.25 mm and an internal thin film of the stationary
phase coating the capillary. Depending on the nature of the stationary phase, the film thickness varies,
exhibiting slightly different internal volumes among the devices. Nevertheless, the nature of the film is
the main factor responsible of the difference in the behavior [120]. Nowadays, most developed it-SPME
devices use open tubular fused-silica capillaries, with a thin film of the extractant material on the
inner walls. The development of other capillary modes shifts to the incorporation of novel materials
and the improvement of the technique. Other capillary modes include sorbent-packed, fiber-packed,
and monolithic phases [44,121,122]. Figure 6A compiles a representation of the main four it-SPME
capillary configurations.
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(C) Image of a MOF-based monolithic it-SPME device. Adapted from [123], with permission from
Elsevier, 2016.

There are several operational modes for it-SPME depending on the number of pumps and valves.
Nevertheless, they can be divided mainly into two configurations attending to the introduction of
the sample: the flow-through system and the draw/eject system. In the first one, the injection of the
sample can be performed manually or automated, and the sample is continuously injected into the
device following a unique direction way. In the draw/eject mode, it requires an automatic sample
introduction system (programmable). The sample is injected, flows through the device, and goes back
to the sample vial through the device again completing a cycle. In this modality, it is important not only
to optimize the sample flow, but also the number of required cycles to obtain the maximum extraction
efficiency [44,122]. Figure 6B shows a schematic representation of both configurations.

Up to date, the use of MOFs as sorbent material in it-SPME is not extended, and only few studies
have been reported so far using MIL-101(Cr) [72], MIL-53(Al) [49,123], and ZIF-8(Zn) [124], in all cases
for the determination of environmental pollutants in water.

In the cases of MIL-101(Cr) and MIL-53(Al), the devices consist of a glass capillary filled with a
monolith composed of a polymer and the MOF. Thus, the glass capillary was cut in sections of 4–10
cm length, followed by washing with concentrated NaOH to activate the silanol groups. Then, the
inner walls of the capillary were vinylated to guarantee the attachment of the monolith. [49,72,123].
Afterwards, the mixture suspension containing the necessary amount of MOF (as prepared and
already activated), butyl methacrylate as monomer, ethylene dimethacrylate as cross-linker agent,
azo-bis-isobutyronitrile as radical initiator, and a porogenic solvent fills the capillary. Once the sides of
the capillary are sealed, a microwave-assisted polymerization takes place. It is important to ensure the
correct dispersion and homogenization of the mixture suspension before filling the capillary to get a
homogenous it-SPME device. Finally, there is a clean-up step to remove the unreacted chemicals from
the device [49,72,123]. Figure 6C shows an electronic scanning microscopy image of the MIL-53(Al)
monolith-based capillary it-SPME device [123]. One of the most important factors to optimize in this
kind of devices is the amount of MOF in the monolith. If large amounts of MOF are used, the monolith
structure would be more compact, thus making the diffusion of the sample and solvents difficult (and
in turns resulting in a decreasing of the extraction efficiency of the final device) [123].
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Regarding the ZIF-8-based it-SPME device proposed by Ling and Chen [124], it consisted of a
fiber-packed capillary. In this case, the incorporation of the MOF requires an electrodeposition step
followed by an in-situ crystal growth. The general procedure starts by using a strong acid and a base
in order to activate the surface of carbon fibers (bundle of 13 cm). Then, the electrodeposition of ZnO
takes places by immersing the carbon fibers (as the working electrode on a three-electrodes system) in
a solution of zinc nitrate. The deposition of the oxide takes places by cyclic voltammetry. Once the
ZnO is formed all over the surface of the fibers, the cyclic voltammetry is stopped, and the fibers
bundle is washed and heated at 100 ◦C to ensure the immobilization of the oxide. This strategy renders
supported ZnO crystals of 30–80 nm. Consecutively, the solvothermal synthesis ensures the growth of
the MOF ZIF-8 by immersing the ZnO-based carbon fibers bundle into a solution of the organic linker
under adequate growing conditions, followed by packing it in a polyetheretherketone (PEEK) tube.
The analytical applications involved the determination of Sudan dyes in environmental waters [124].

6. MOFs in Thin-Film Solid-Phase Microextraction (tf-SPME)

While it is clear that the enlargement of the thickness of the sorbent material in f-SPME devices
implies an increase on the amount of extracted analyte, it also comes with long extraction times
to reach the equilibrium due to the radial diffusion of the analytes [41]. Thin film solid-phase
microextraction (tf-SPME) appears as a solution to increase the sensitivity (using larger sorbent
amounts) without increasing the extraction time. Wilcockson and Gobas were the first to propose the
tf-SPME configuration [125]. This first device consisted of a glass coverslip coated with a 0.33 µm thin
film of ethylene vinyl acetate (acting as sorbent coating). The device was tested in the analysis of toxic
organic chemicals in aqueous extracts of fish samples.

In tf-SPME, the sorbent material covers the surface of a flat material or forms a free membrane
with a reduced thickness, with the increasing amount of sorbent being related to the extension of the
surface, thus maintaining a high surface area to volume ratio. In this mode, higher sensitivities can be
reached given the increased amount of sorbent but requiring shorter times (similar to those of f-SPME)
because there are no extra difficulties in diffusion (same as those in f-SPME) [126,127].

The main challenge for the different sampling formats of tf-SPME is to avoid film folding.
Among formats, it is possible to cite free-membrane, stainless steel rods, cotter pin, and mess holder
configurations. Furthermore, it is possible to automate this extraction technique using 96-blades,
which is a variety of the commercial 96-well plates system [128]. Figure 7A shows the main tf-SPME
devices configurations.
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It is possible to distinguish two different kind of tf-SPME devices attending to their thermal
stability: thermostable and non-thermostable films. Thermostable films can be coupled to a temperature
desorption unit and directly injected in the GC. As disadvantage, there is a limited number of
thermostable films reported in the literature and most of them are the same as the polymeric
coatings used in conventional f-SPME. Regarding thermo-labile films, they are used in solvent-assisted
desorption applications (implying longer sample preparation times due to the slower diffusion of the
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analytes in the liquid phase). In addition, the increased size of the device requires the use of higher
amounts of eluent solvent (in turn requiring a final step of solvent removal and reconstitution) [45].

The tf-SPME modality recently benefited from the introduction of MOFs. The preparation of
MOF-based tf-SPME is easier than other SPME configurations because the increased surface facilitates
the MOF growing.

MOFs reported in tf-SPME devices include MIL-53(Al) [50] and ZIF-67(Co) [129]. Other MOFs
studied as sorbent material in tf-SPME are UiO-66(Zr), MIL-53(Fe), MIL-100(Fe), MIL-101(Cr), and
ZIF-8(Zn) but presented worse analytical performance when compared with the abovementioned
MOFs [50]. There are other thin films incorporating MOFs reported in the literature, but they are used
as sorbent material in µ-SPE applications instead of tf-SPME strictly [130–133]. Figure 7B shows an
example of a MOF-based tf-SPME device.

In the case of MIL-53(Al), it is incorporated in the thin-films by embedding the MOF (previously
synthetized) in a polymer. This method involves the dispersion of the MOF in a volatile solvent
(i.e., acetone), and addition of such suspension to a polyvinylidene difluoride (PVDF) solution in
dimethylformamide under sonication to ensure homogeneity. Then, the volatile solvent is evaporated,
and a dense ink is obtained [50]. The bar coating technique forms the thin film by spreading the ink
over a surface. It requires an applicator with an adjustable gap to control the thickness of the film [45],
followed by the aging of the film and solvent removal to ensure solidification of the film. The final
shape of the tf-SPME device can be easily modulated by proper cutting of the solid membrane obtained.
These composites combine the flexibility of the polymers and the high porosity offered by MOFs.
The amount of MOF powder cannot be extremely high into the film because it becomes more fragile
and flakier. The highest charge reported for a MOF into a membrane for tf-SPME application is 67%
(w/w) [50].

Recently, Mohammadi et al. have proposed a method that combines electrospinning and the in-situ
solvothermal growth to prepare a ZIF-67(Co)-based tf-SPME device [129]. The electrospinning implies
forming a composite of polyacrylonitrile and Co3O4 nanofibers. By heating, the polyacrylonitrile
suffers calcination and the polymer is removed from the film structure. Afterwards, this film gets in
contact with the organic linker required for the preparation of the ZIF-67(Co) (2-methylimidazole) at
adequate conditions to ensure formation of the nanofibers. The main advantage of this method is that
the MOF is self-supported without the use of a mesh or a polymer, but still being a flexible membrane.

Regarding the applicability of the MOF-based tf-SPME devices, just the self-supported ZIF-67(Co)
film permitted a thermal desorption. In this last case, the application was the determination of
pesticides [129]. In terms of analytical performance, they present adequate intra- and inter-device
precision, with reported relative standard deviation values lower than 11.4%. Samples analyzed include
water [129] and biological fluids [50], for the determination of estrogens [50] and pesticides [129].
Table ?? recaps a representative study of tf-SPME using MOFs as sorbents.

7. MOFs in Stir-Bar (sb-SPME) and Stir-Cake Solid-Phase Microextraction (sc-SPME)

Baltussen et al. introduced the stir-bar solid-phase microextraction (sb-SPME) configuration as
an alternative to conventional f-SPME, particularly useful for compounds with low octanol/water
partitioning coefficient (non-polar compounds) [134]. The device consisted of a magnetic stir bar
coated with PDMS. The sample is stirred with the bar at an adequate agitation rate. The bar is
removed after proper extraction time, and a direct thermal desorption step takes place in a specific GC
injection port called thermal desorption unit. In this configuration, part of the sorbent is in contact
with the bottom of the sample container thus blocking possible interactions between the analytes and
a portion of the extractant material. Stir-cake solid-phase microextraction (sc-SPME) emerged as a
solution to this problem. The sorbent (in general a monolith) is located in a cylindrical device avoiding
the contact between the sorbent and the bottom of the vessels thus improving the entire extraction
efficiency [135,136].
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Both configurations follow the same extraction fundamentals as conventional SPME. However,
the amount of the sorbent material in both modes sb-SPME and sc-SPME are ~50–200 times bigger than
the amount used in conventional f-SPME, thus permitting increasing the extraction capacity towards
target analytes [137], but also increasing the extraction time.

Currently, there are only two commercially available sb-SPME devices distributed by Gerstel:
one coated with PDMS and the other with a PDMS/ethylene glycol copolymer [138]. Although
these coatings possess many merits such as high sensitivity and good reproducibility, they also have
low selectivity and require long extraction times to reach the equilibrium conditions. In addition,
recoveries for polar compounds are poor due to the non-polar nature of the sorbent, being necessary
a derivatization step for their extraction. Given these drawbacks, recent developments of sb-SPME
devices focus on the development of more selective coatings with faster extraction kinetics, with MOFs
not being an exception [46].

MOFs used as sorbents in sb-SPME include IRMOF-3(Zn) [73], MIL-53(Al)-NH2 [74],
MOF-5(Zn and Fe) [75,139], ZIF-8 [140], MIL-101(Cr) and its amino functionalized version [48,141],
MIL-68(Al) [142], ZIF-67(Co) [143], and UiO-66-NH2 [76].

The main procedure followed to incorporate MOFs in sb-SPME devices is the sol–gel approach.
The devices prepared by this procedure have three components: an iron wire or metallic rod of ~1–3
cm length, a glass jacket, and the sorbent. The iron wire or metallic rod is the responsible of the
agitation under the magnetic field while the glass jacket isolates the metallic wire form the water
sample, avoiding its corrosion. The glass jacket also offers a homogeneous tunable surface for the
immobilization of the coating when immersing the bar into the sol–gel solution containing the MOF
dispersed into a polymeric solution. Then, the device is removed from the sol–gel solution and the
self-assembly of the coating finishes by heating [48,73,74].

An alternative to sol–gel is the synthesis of monoliths by polymerization. The general procedure
implies filling a template with a pre-polymeric solution (containing the MOF powder dispersed or its
precursors), polymerization, removal of the template, and a final wash to clean the monolith [76,140,141].
Thus, the shape and dimension of the devices depends on the template and not on the support.
Even the use a support is not required if magnetic nanoparticles are dispersed in the pre-polymeric
suspension [76]. Recently, Du et al. took advantage of this strategy for the preparation of the first
MOF-based sc-SPME device by dispersing Fe3O4@HKUST-1 core–shell particles in a pre-polymeric
solution of 2-ethylhexylacrylate/divinylbenzene/methyl methacrylate [52]. Although the MOF
composite monolith does not utilize a classical sc-SPME support, its visual geometry and shape
resembles that of the classical sc-SPME device.

Another option is the in-situ solvothermal growth of the crystals onto other type of supports.
Hu et al. used this strategy with a porous copper foam as support. The foam immersed in the solution
containing the precursors of MOF-5(Zn) and, after impregnation, the support and the solution are
set on the Teflon-lined autoclave, which is heated to form the MOF [139]. In this case, the sb-SPME
device is used in the HS mode and using a lab-made rotor to stir the device. As the direct growth of
crystals over the support surface is not easy in terms of ensuring homogeneity, a similar approach to
ALD strategy has been used, promoting the crystal growth out of the metal nanoparticles previously
electrodeposited all over the surface of the support [143]. The main disadvantage of these devices is
the weak union MOF-support. The friction between the stir bar and the sample container causes a
progressive loose of the MOFs, thus reducing the lifetime of the device. Wang et al. developed the use
of a dumbbell-shaped PEEK jacket to improve the mechanical strength. However, PEEK material is
a highly inert material, requiring several aggressive pretreatment steps to obtain an activate surface
before the in-situ growth [142].

Paradoxically, although the main attractive property of MOFs in this configuration is their thermal
stability to perform direct thermal desorption, most of the studies published used a solvent desorption
followed by LC [73,74,76,141–143].
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8. Comparison with Other MOF-Based Extraction Methods

The number of studies that report the use of MOFs as extraction sorbents in µ-dSPE, m-µ-dSPE,
and SPME (in all their variations), is similar. The reason behind the selection of any of these solid-phase
strategies over others relies on the specific requirements for a certain application. Therefore, it is
difficult to compare the analytical performance and features of the different solid-based extraction
methods using MOFs from a generic point of view.

Trying to establish certain parallelism, specific analytical applications have been targeted with the
intended comparison purpose. Thus, Table 2 includes some operational characteristics and analytical
parameters of different solid-based extraction methods using MOFs for two representative applications:
the determination of pesticides (including organochlorine and organophosphorus pesticides) and
drugs (covering antibiotics and anti-inflammatory drugs) in waters [48,65,72,78,129,141,144–147].
These specific applications were selected for being those most commonly reported in the literature
using the different SPME devices discussed in the present review article. It is important to highlight
that the MOF used in each study is different (with MIL-101(Cr) and HKUST-1 the most used) and,
therefore, the comparison of analytical performance must be taken into account only in a qualitative
manner. In the same manner, the limit of detection (LOD) is not a reliable parameter to compare the
proposed methods due to the variety of detection systems used in the selected applications, which
present different selectivity and sensitivity towards the target analytes (not the same MS versus UV in
terms of LOD). To sum up, LODs are not always calculated in the same manner by the different authors.

In any case, an important (if not main) advantage of the SPME approach over the remaining
solid-based extraction methods lies in the extremely low amount of MOF used for the preparation
of the SPME devices, which also provides impressive enrichment factors. MOFs amounts between
0.5 [145] and 40 mg [144,146] have been reported for µ-SPE, µ-dSPE, and m-µ-dSPE methods, while
in the case of SPME, depending on the size of the device (length and thickness of the coatings), the
maximum volume of sorbent used is around 2 µL. As for the volume of sample required, small volumes
(10 mL as average) are required in all cases except for µ-SPE, for which a volume of 60 mL of water
sample is needed to reach low LODs for the determination of drugs in waters, and this is despite the
use of LC-MS/MS [146].

Regarding the operational features of each extraction method, it is worth mentioning the simplicity
of the SPME approaches. The extraction procedure in these cases is accomplished in two steps: the
extraction and the desorption. µ-SPE, µ-dSPE, and m-µ-dSPE strategies require more tedious and
laborious steps during the process, such as washings, decantation, or centrifugation and filtration.
Moreover, practically in all of the studies using non-SPME strategies, the desorption of the analytes
from the MOF is accomplished using a solvent, which is then evaporated followed by reconstitution
to ensure preconcentration and compatibility with the analytical system. The increasing number of
steps is a potential source of errors, and the use of organic solvents is still required in the analysis,
leading to environmental issues. SPME devices easily couple to GC systems (thermal desorption), thus
permitting the development of greener methods [65,129].

As it can be also observed in Table 2, the extraction methods dealing with SPME devices require
longer extraction times to reach similar results than those obtained with the other approaches. However,
as it was mentioned before, the SPME extraction process involves only two steps, which is still simpler
than µ-SPE or µ-dSPE methods despite their possibly being faster. Given this simplicity, the automation
of SPME regardless of the configuration of the device has been already reported for many applications.
In any case, the greatest appeal of SPME is the reusability of the extraction device, which is never
recommended for µ-SPE [146] and has been barely proven for µ-dSPE applications [144]. All these
facts contribute to reduce the costs of the analysis per sample in the case of SPME.
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Table 2. Analytical performance of MOF-based SPME devices compared with other MOF-based solid-phase extraction methods for two representative applications.

Extraction
Method* MOF Amount of

Sorbent a
Volume of

Sample Desorption Additional
Steps

Extraction
Time

Reuse of the
Sorbent/Device

Analytical
Technique*

LOD
(ng·L−1)

Ref.

Analytical application 1: determination of pesticides in waters

µ-dSPE UiO-66(Zr) 40 mg 5 mL liquid (1 mL acetone)
centrifugation,

evaporation and
reconstitution

~20 min 10 times LC-MS/MS 20–400 [144]

m-µ-dSPE ZIF-8(Zn) 0.5 mg 10 mL liquid (1 mL methanol) evaporation and
reconstitution ~45 min No LC-MS/MS 0.19–1.20 [145]

f-SPME
(HS mode) HKUST-1(Cu) – × 40 µm 25 mL thermal (280 ◦C) – ~45 min 140 times GC-ECD 2.8–6.9 [65]

tf-SPME ZIF-67(Zn) 1 cm × 80 µm 15 mL thermal (220 ◦C) – ~22 min No SESI/MS 100 [129]

sb-SPME MIL-101-NH2(Cr) 2 cm × 100 µm 10 mL liquid (50 µL acetone) – ~35 min 50 times GC-FPD 43–85 [48]

Analytical application 2: determination of drugs in waters

µ-SPE MIL-101(Cr) 40 mg 60 mL liquid (4 mL methanol) evaporation and
reconstitution ~60 min No LC-MS/MS 30–80 [146]

m-µ-dSPE MIL-101(Cr) 30 mg 50 mL liquid (200 µL
acetonitrile)

evaporation and
reconstitution ~30 min No LC-MS/MS 3–60 [147]

f-SPME
(HS mode) HKUST-1(Cu) 1 cm × 30 µm 5 mL liquid (2 mL

acetonitrile:H2O 1:1)
evaporation and

reconstitution ~60 min 110 times LC-UV-Vis 30–50 [78]

it-SPME MIL-101(Cr) 3 cm × – 2 mL liquid (200 µL
methanol) – ~35 min 45 times CEC-UV-Vis 1200–4500 [72]

sb-SPME MIL-101(Cr) 1 cm × – 10 mL liquid (1 mL
acetonitrile)

evaporation and
reconstitution ~80 min 4 times LC-MS/MS 11–35 [141]

a amount of MOF in mg in the case of miniaturized solid-based extraction methods, and size of the device in the case of SPME methods. * for the definition of the abbreviations, refer to the
list of abbreviations at the end of the article.
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In summary, SPME (in all configurations) with MOF-based coatings is a promising alternative
among reported solid-based extraction methods for routine analysis given the following advantages:
high enrichment factors, the possibility of tuning the MOF for a certain application, the reduced
number of steps in the process, and the possibility of reusing the device (up to more than 100 times in
some cases) together with the ease of automation for the entire procedure (from the introduction of the
device in the sample to the desorption or injection in the analytical system).

9. Concluding Remarks

The success of SPME methods within analytical laboratories is evident nowadays, given advantages
such as the simplicity of its operation and the high sensitivity and preconcentration achieved due to
the design of the different SPME devices. Considering the outstanding properties of MOFs—such as
synthetic tunability, versatility, high chemical and thermal stability of MOFs, and impressive surface
area—together with the advances on the different synthetic and deposition routes to prepare MOFs
and MOF-coated surfaces, the increasing number of applications of MOFs in the SPME field is not
surprising. Indeed, we foresee a rise in their applicability in a variety of SPME devices in the years
to come. In any case, more efforts are still required within the MOFs-analytical community to have
MOFs as any common extraction sorbent in analytical chemistry laboratories. Among them: scalable
processes to ensure the production of high amounts of MOFs, the need of increasing research on
green MOFs and greener ways to prepare MOFs, together with increasing studies with comparison of
performance with other sorbents and with conventional (micro) extraction methods.
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Abbreviations

af-SPME arrow fiber solid-phase microextraction
ALD atomic layer deposition
BMA-EDMA butyl methacrylate-ethylene dimethacrylate
CE capillary electrophoresis
CEC capillary electrochromatography
d-µ-SPE dispersive solid-phase microextraction
DAD diode array detection
DI direct immersion
ECD electron capture detection
f-SPME on-fiber solid-phase microextraction
FID flame ionization detection
GC gas chromatography
FPD flame photometric detection
HS headspace
IL ionic liquid
IRMOF isoreticular metal–organic framework
it-SPME in-tube solid-phase microextraction
LC liquid chromatography
LOD limit of detection
m-d-µ-SPE magnetic-assisted miniaturized solid-phase extraction
MIP molecularly imprinted polymer
MNP magnetic nanoparticle
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MOF metal–organic framework
MS mass spectrometry
MS/MS tandem mass spectrometry
OCP organochlorine pesticide
OPP organophosphorus pesticide
PAH polycyclic aromatic hydrocarbon
PAN polyacrylonitrile
PCB polychlorinated biphenyl
PDMS polydimethylsiloxane
PEEK polyetheretherketone
PS polystyrene
PVC polyvinylchloride
PVDF polyvinylidene difluoride
sb-SPME stir-bar solid-phase microextraction
SBU secondary building unit
sc-SPME stir-cake solid-phase microextraction
SESI secondary electrospray ionization
SPME solid-phase microextraction
tf-SPME thin-film solid-phase microextraction
µ-SPE miniaturized solid-phase extraction
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