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Abstract: The development of a stationary phase material for high-performance liquid chromatography
based on a surface of silica hydride as opposed to silanols on ordinary silica is discussed including
synthetic approaches, characterization, and applications. There are several synthetic approaches
available to create a silica hydride surface. Modification of the Si–H moiety on the silica surface can
be accomplished through the use of a hydrosilation reaction. Both the intermediate silica hydride
and the material modified with an organic moiety can be characterized by a number of spectroscopic
as well as a variety of other methods. Further insights into the retention mechanism are provided
through chromatographic measurements. The ultimate utility of any chromatographic stationary
phase material is determined by its success in solving challenging analytical problems. A broad
range of applications is reviewed to illustrate the versatility and usefulness of silica hydride-based
stationary phases.
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1. Introduction

The fundamental properties of silica as a support material for high performance liquid
chromatography were described by Unger [1] quite some time ago. The information provided
with respect to silica in this monograph is essentially unchanged after several decades. Among these
properties, two of the most significant are the presence of silanols on the surface and the ability to
modify these entities with a number of known chemical reactions. The former defines the surface as
a strongly polar medium, while the latter provides a means of modifying this polarity with suitable
organic moieties in order to produce a stationary phase of the desired chemical properties. The most
common type of chemical modification that is used for virtually all commercially available products for
HPLC (High Performance Liquid Chromatography) based on silica, is organosilanization. There are
two possible approaches for this reaction scheme as shown below:

MONOMERIC BONDING
Si–OH + X–Si R’2 R —-> Si–O–Si R’2 R + HX
X-halide and R-alkyl
POLYMERIC BONDING
Si–OH + X3-Si-R —-> Si–O–Si–R + 3HX

In the case of monomeric bonding, an organosilane compound with one reactive group reacts with
the silanol on the silica surface to produce a single point of attachment via silicon-oxygen-silicon-carbon
bonds. For polymeric bonding, an organosilane compound with three reactive groups forms a bond to
the surface but also crosslinks with adjacent organosilane reagents to form a polymeric network on the
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surface. While the latter usually leads to higher carbon loads, i.e., more organic moieties bonded to the
surface, the reaction is difficult to control and often results in considerable variation in the stationary
phase from batch to batch. More reproducible materials are made from the monomeric bonding process,
and thus it is the approach used for a significant number of commercial HPLC stationary phases based
on silica.

A drawback of the organosilanization approach is the Si–O–Si–C linkage at the surface between
the silica support material and the bonded organic moiety. While stable in a variety of oregano-aqueous
mobile phases it has limitations based on pH stability. At low pH, the O–Si–C point of attachment is
subject to hydrolysis while at higher pH the support silica is prone to a dissolution process. Thus a goal
for improvement of stationary phase stability is to fundamentally alter this bonding reaction and to
produce a direct silicon-carbon bond at the surface. An early approach to achieve this goal was the use
of a two-step process involving a chlorination reaction followed by either Grignard or organolithium
attachment to the surface [2] as shown below:

Si–OH + SOCl2 —-> Si–Cl + SO2 + HCl
Si–Cl + BrMgR —-> Si–R + MgClBr
Or
Si–Cl + Li–R —-> Si–R + Li–Cl

While this reaction scheme achieves the desired result of having a direct silicon-carbon bond
between the silica surface and the attached organic moiety, it has some significant drawbacks.
The reaction with thionyl chloride produces a material that is hydrolytically unstable. Thus, the synthesis
must be done under scrupulously dry conditions or otherwise the chlorinated silica reverts back to
the original material. In the second reaction with a Grignard reagent or an organolithium compound,
the by-products are salts that can easily be trapped on the stationary phase surface and thus, result in
erratic chromatographic behavior. Thus, while feasible, this is not a practical approach to make a
commercially viable stationary phase based on a material with a direct bond between the surface and
the organic moiety.

2. Evolution of Silica Hydride Stationary Phases

In the late 1980s and early 1990s, a new reaction protocol was developed in an attempt to use silica
as a support material and having the organic moiety attached through a direct silicon-carbon bond [3–5].
This synthetic approach also involves a two-step process but is considerably less stringent with respect
to reaction conditions than the previously described chlorination/Grignard or organolithium method.
The first step is to change the surface morphology from one that is dominated by silanols to another
reactive site for the attachment of organic groups. This goal is achieved by reacting silica with a
trifunctional silane so that through controlled polymerization a monolayer is formed on the surface
where the new functionality is an Si–H group as shown below.
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In this case, the surface of ordinary silica is transformed from a very polar medium to the slightly
hydrophobic character of silica hydride. This has profound effects with respect to the chromatographic
capabilities of silica hydride that will be described later in this review. The attractive feature of ordinary
silica is that the surface could be modified by chemical reactions, such as those described above.
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This made it possible to tailor the surface, and hence the chromatographic properties, from the strong
polar and adsorptive character of silica to quite hydrophobic when long chain aliphatic moieties are
bonded to the surface.

However, silica hydride can be modified just as easily as ordinary silica through the use of a
well-characterized reaction referred to hydrosilation. The general process is shown below.
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The reaction can utilize a wide range of organic compounds having a terminal double (alkenes) or
triple (alkynes) bond and is easily done in a heterogeneous media (solid silica hydride in contact with
the organic compound dissolved in an appropriate solvent). Therefore, a new surface can be tailored to
the desired chromatographic properties by a selection of the appropriate alkene or alkyne. Optimum
loading of the organic group is controlled by temperature, solvent, and catalyst (many types of metal
complexes, such as hexachloroplatinic acid or free radical initiators, can be used).

An important difference can now be noted between stationary phases based on organosilanization
of silica and hydrosilation of silica hydride. In both cases, due to steric considerations at best, no more
than about 50% of the surface reactive groups (silanols on silica and Si–H on silica hydride) can
be modified. Thus the remaining groups are polar silanol groups on ordinary silica but mildly
hydrophobic Si–H moieties on silica hydride materials. A readily measurable difference between the
two surfaces is the amount of water adsorbed. For stationary phases based on ordinary silica, there are
between four and ten layers of water on the surface [6]. However, silica hydride has less than 0.5 of a
monolayer of water on the surface due to its hydrophobic nature. This finding has a substantial impact
on chromatographic differences that are found between stationary phases based on the two support
materials that will be discussed later in this review.

In the development of any reaction protocol, reproducibility is a key issue. This is particularly
true for the fabrication of stationary phases for HPLC because many types of analyses require
retention times from run to run and from column to column to be extremely precise, usually with a
standard deviation of a few percent or less. The protocol for the production of silica hydride-based
stationary phases has been optimized since its inception and is now extremely reproducible as
shown by the chromatograms in Figure 1. Similar chromatograms can be obtained for all of
the different commercially available columns based on a silica hydride support: Bidentate C18,
bidentate C8, Diamond Hydride, phenyl, cholesterol, undecanoic acid, diol, and amide. The term
“bidentate” refers to the double attachment to the surface of the organic moiety due to the use of an
alkyne in the hydrosilation reaction [7]. This synthetic approach then provides attachment to the
surface by two stable silicon-carbon bonds. This feature is responsible for the long lifetime of these
reversed-phase column materials. The versatility of the hydrosilation reaction has been demonstrated
over the years by bonding a wide variety of alkenes and alkynes to the silica hydride surface [8–25].
Some examples of organic moieties attached to silica hydride and tested chromatographically as
stationary phases include typical straight chain hydrophobic moieties for reversed-phase (1-octadecene,
1-octene, 4-phenyl-1-butene), large hydrophobic molecules (squalene), polar organic compounds (allyl
glycidyl ether, 7-octene-1,2-diol), halogenated compounds (perfluoro-1-octene), charged moieties
(N-benzylcinchonidinium chloride), liquid crystals (cholesteryl-10-undecenoate) and potential chiral
selectors (β-cyclodextrin) [26]. To date only a few of the successful reactions developed have resulted
in commercially available columns. In many cases, these materials have not been thoroughly tested so
it may be possible that useful applications will be found for them in the future.
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Figure 1. Overlay of chromatograms for the same analyte (diphenhydramine) taken on the same
bonded phase (silica-C) of silica hydride columns made from four different synthetic batches. Mobile
phase 50:50 acetonitrile/DI water + 5 mM ammonium acetate. (http://kb.mtc-usa.com/article/AA-00918).

3. Characterization of Silica Hydride Materials

A crucial part of the fabrication of new materials for chromatographic stationary phases is
characterization by physical and spectroscopic methods. There are several approaches that have been
used to establish the success of the hydrosilation reaction on silica hydride and to verify the identity
of the bonded organic moiety. One of the most frequently used spectroscopic techniques is diffuse
reflectance infrared Fourier transform (DRIFT) spectroscopy [8,9,27–29]. This approach results in the
infrared spectrum of the surface of the silica hydride particle. An example of such a spectrum is
shown in Figure 2 for a butyl phenyl moiety bonded on a silica hydride surface. The essential features
are as follows: just above 3000 cm−1 peaks are due to aromatic carbon-hydrogen stretch, just below
3000 cm−1 are peaks for aliphatic carbon-hydrogen stretch, and the large peak near 2250 cm−1 is
the silicon-hydrogen stretch from the unreacted Si–H groups on the surface. The remainder of the
features in the spectrum are the result of silicon-oxygen matrix vibrational frequencies. Another
useful spectroscopic technique is cross-polarization magic-angle spinning (CP-MAS) nuclear magnetic
resonance (NMR) [30–32]. This method results in the NMR spectrum of the surface of solid particles
such as typical chemically modified chromatographic supports. An example of a carbon-13 spectrum
obtained for a silica hydride-based material with cholesterol bonded to the surface is shown in Figure 3.
While the spectrum is complex, it shows the wide variety of aliphatic carbons, the two olefinic carbons
and the carbonyl carbon that are part of the cholesterol moiety. Further corroboration of successful
bonding via hydrosilation of silica hydride has also been obtained from the solid-state Si-29 CP-MAS
NMR spectrum. These two characterization techniques provide sufficient documentation that the
organic moiety used in the hydrosilation reaction was successfully bonded to the silica hydride support
material. The extent of bonding is determined from elemental carbon analysis [33]. Using the molecular
weight on the bonded moiety and the percent carbon, the surface coverage expressed in µmol/m2 can
be calculated. As with organosilanization the extent of bonding (surface coverage) is controlled by
the size of the organic moiety attached. Both ordinary silica and silica hydride have approximately
8 µmol/m2 of reactive groups (Si–OH for silica and Si–H for silica hydride) on the surface. For very
small organic moieties as much as 4–5 µmol/m2 can be reacted, but for very large groups it can be as
low as 2 µmol/m2 or less. The crucial difference between chemical modification of ordinary silica and
silica hydride is that the unreacted groups are silanols on silica but Si–H on silica hydride. Thus the
underlying surface is very polar on silica but mildly hydrophobic on silica hydride.

http://kb.mtc-usa.com/article/AA-00918
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Figure 3. Carbon-13 cross-polarization magic-angle spinning (CP-MAS) nuclear magnetic resonance
(NMR) spectrum of the silica hydride cholesterol stationary phase.

An important outcome of the differences in surface chemistry is the amount of water adsorbed by
the two chromatographic supports. Table 1 lists a number of silica-based phases (top four) and silica
hydride materials (bottom five indicated as Cogent) and their respective layers of adsorbed water [6].
As can be seen, the silica phases have multiple layers (up to 10) of water on the surface while the silica
hydride phases have less than one-half of a monolayer on its surface. This property results in a unique
chromatographic feature that is shown in Figure 4. All stationary phases based on silica hydride have
dual retention mechanism as shown in a plot of retention time vs. mobile phase composition [34].
At high water composition, reversed phase retention for hydrophobic compounds is obtained while at
high organic composition normal phase retention is observed for hydrophilic compounds. Therefore,
both modes can be tested for a particular sample and the best mode can be selected for developing an
analytical format. Except for mixed-mode phases [35–38], most common stationary phases offer only
one mode for doing separations, either reversed-phase or normal phase.
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Table 1. Number of water layers on chromatographic stationary phases.

Column Nw

ZIC HILIC 6.11
ZIC cHILIC 9.48
Luna HILIC 4.72
Triart DIOL 3.06

Cogent Silica C 0.45
Cogent Diamond hydride 0.43
Cogent UDC Cholesterol 0.32

Cogent Bidentate C18 0.28
Cogent Phenyl hydride 0.23

Data taken from [34].
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properties of these materials.

4. Separation Mechanisms on Silica Hydride

An interesting challenge with respect to silica hydride-based stationary phases is determining
the mechanism that allows these materials to operate in both the reversed-phase and normal-phase
modes. The reversed-phase capability is easily explained by ordinary hydrophobic interactions. If the
bonded moiety has any hydrophobic properties (and most have at least a minimal amount) plus the
mildly hydrophobic nature of the hydride surface, then at least some reversed-phase capabilities are
to be expected. However, a more challenging problem is to determine what is responsible for the
normal-phase retention properties with respect to polar compounds. The first clue to solving this
problem was obtained by measuring the zeta potential of various silica hydride-based stationary
phases [39]. The zeta potential provides a measurement of the surface charge on the stationary phase
material. In the case of all silica hydride-based stationary phases, it was determined that each had
a substantial negative charge on the surface when it is in contact with a high organic content liquid.
Such a result was not expected because silica hydride is fabricated by removing more than 95% of
silanol groups with the resulting surface being hydrophobic as measured chromatographically under
reversed-phase conditions. However, recent investigations [39] have determined that the negative
charge on the silica hydride surface is due to hydroxyls from the auto-dissociation of water. This result
is similar to those obtained for oil droplets in mixed organo-aqueous solvents [40]. Since the silica
hydride particle is hydrophobic in a way that is similar to an oil droplet, the assumption that two
behave similarly in comparable environments is a good one. This model accounts for the fact that there
is only a small amount of water on the surface, but some of it auto dissociates to give OH− where the



Separations 2019, 6, 27 7 of 15

negative charge is measured, and the H+ is below the surface and does not affect the chromatographic
properties. Thus, retention in the normal phase mode is due to either charge attraction for positive or
positively polarized analytes and charge displacement for negative or negatively polarized analytes.

A particularly good example of the unusual properties of the silica hydride-based phases is
demonstrated by chromatographic results obtained for the highly polar chemotherapy agent and
immunosuppressant methotrexate. A representative chromatogram for this compound is shown in
Figure 5. The unique feature of the analysis shown is that this hydrophilic compound is strongly
retained on a silica hydride material modified with an octadecyl (C18) moiety. This result would not be
possible on an ordinary silica C18 stationary phase that only retains compounds in the reversed-phase
mode. Using a mobile phase with a high aqueous content would produce some retention based on the
weakly hydrophobic character of the molecule but would be much weaker than the strong interaction
of methotrexate with the silica hydride phase in the aqueous normal phase mode. While characterizing
and identifying the unique properties of a new separation material is important, the final step and
ultimately most relevant is to determine how such a stationary phase can provide analytical capabilities
that are useful in practical applications. The U-shaped retention behavior shown in Figure 4 can be
used advantageously for complex samples particularly when the two modes overlap. Thus, there is
the ability to retain both hydrophobic and hydrophilic compounds in a single analysis. A simple
example is shown in Figure 6 where two compounds, one polar (phenylglycine) and one nonpolar
(sertraline), both exhibit significant retention under the same analytical conditions. The column used in
this analysis was the Diamond Hydride, a silica hydride stationary phase with only a minimal amount
of an organic moiety (~2% carbon) on the surface. Retention of both of these diverse compounds
illustrates the hydrophobic properties of the silica hydride group and the presence of the hydroxyl
ions for polar retention. Another more challenging application is illustrated in Figure 7. Here a
mixture of peptides ranging from very hydrophobic to very hydrophilic is separated in a single run
on the same Diamond Hydride column [41]. Such a result is not possible on other columns and in
fact, most proteomic analyses are done using a two-dimensional approach. One run was done on
a hydrophobic phase such as C18 and the second run was done on a more polar medium such as
ion-exchange. Because of the versatility of the silica hydride columns, many analyses can be attempted
by three possible approaches: reversed-phase, aqueous normal-phase, or a method that combines some
of both modes so that both hydrophobic and hydrophilic compounds can be retained simultaneously.
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5. Applications of Silica Hydride HPLC Columns

Because of the extensive work already done on Type C columns, such as some of those found in
the literature [42–65], a summary of all possible applications is not possible. A few examples will be
presented to illustrate some of the capabilities of these unique stationary phases.

An area of growing importance is that of food analysis. Methods have been developed for food
quality, purity, and possible health benefits. The determination of polyphenols is an active area of
investigation for many food products. Polyphenols fall into the general category of anti-oxidants,
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which have been shown to have the potential for preventing and curing cancer as well as other diseases.
Figure 8 shows the analysis of two polyphenols, rutin, and quercetin, that have been identified as
having potential health and medicinal benefits [66]. Rutin is a citrus flavonoid glycoside found in
many plants including buckwheat and asparagus. Rutin is also found in citrus fruits such as orange,
grapefruit, lemon, and lime, apple, berries such as mulberry, clingstone′ peaches, and green tea
infusions. Quercetin is found a wide variety of food sources including red kidney beans, cilantro, dill,
red onion, kale, cranberry, sweet potato, blueberry, broccoli, and tea. Both of these compounds are
analyzed on the Diamond Hydride column in the aqueous normal-phase mode because of the multiple
polar hydroxy groups in their structures.
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The analysis of metabolites is an important aspect of pharmacokinetic studies, understanding
various physiological and biological systems, clinical tests and food production. These determinations
are almost always made in complex matrices with hundreds and in some cases even thousands of
compounds in many samples. Figure 9 shows the analysis of some crucial components in the uric
acid cycle along with the internal standard tyrosine [67]. This metabolite is crucial in a number of
physiological functions, and the concentrations of these compounds can potentially be used in disease
diagnosis. As shown in the two extracted ion chromatograms, the analysis of these compounds in
a real physiological sample parallels the data obtained with standards. Thus, matrix effects for this
silica hydride-based (Type C) column (Cogent Diol) are minimal for this analysis in the aqueous
normal-phase mode.
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Another area of growing importance in chemical analysis are investigations and method
development related to the forensic field. Of the various aspects of forensic analysis, methods
related to illicit drugs are among the most important. Figure 10 is an LCMS analysis of several of
the street drugs classified as “bath salts”. The chemical category of these compounds is cathinones,
and the basic structure is also shown in Figure 10. In this analysis, the column used is the phenyl
phase operating in the reversed-phase mode [68]. The phenyl column is used because as can be seen
the cathinone moiety has an aromatic ring as a primary constituent. Thus pi-pi interactions between
the analyte and the stationary phase can offer a means for discriminating among the various analytes.
The chromatogram shown in Figure 10 illustrates the excellent selectivity and efficiency that silica
hydride-based stationary phases offer in the reversed-phase mode. The unique surface composed
of Si-H moieties in contrast to ordinary silica phases where residual silanols are present results in
enhanced chromatographic capabilities in both reversed-phase and normal-phase applications.
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The analysis of pharmaceuticals, both name-brand and generic, has been an active area of
investigation using silica hydride columns in both the reversed-phase and aqueous normal phase
modes. Because a significant number of pharmaceuticals are polar compounds, the aqueous normal
phase mode using the Diamond Hydride column provides an excellent tool in order to develop
reliable analytical protocols for these types of drugs. Figure 11 illustrates the typical results that are
obtained with a polar pharmaceutical compound (atenolol) on the Diamond Hydride in the aqueous
normal phase mode [69]. Both significant retention and excellent peak shape can be achieved for
this hydrophilic compound. Also demonstrated in this figure is the batch-to-batch reproducibility
of fabricating this stationary phase as the analyte peak from the two lots are nearly superimposable
in the chromatograms. These unique capabilities have made silica hydride-based stationary phases
a superior approach to hydrophobic interaction liquid chromatography (HILIC) when developing
analytical protocols for polar compounds. In addition, the hydride surface is less adsorptive that
ordinary silica. This property results in less contamination of the stationary phase when complex
biological matrices are analyzed and when some deterioration of performance does occur it is much
easier to remove the contaminants with column washing than with ordinary silica-based materials.
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A more exhaustive compilation of applications can be found in the Knowledge Base section of the
Microsolv Technology web site (http://kb.mtc-usa.com/).

6. Conclusions

The use of silica hydride-based stationary phases (Type-C silica) has grown steadily over the last
15 years based on the unique properties these materials possess. The dominant feature of silica hydride
with respect to ordinary silica is the presence of Si-H groups on the surface in contrast to silanols.
This results in a very thin water layer (<0.5 monolayer) on silica hydride while on ordinary silica
there is a more substantial amount of water (3–10 monolayers). This difference gives silica hydride
properties that can be exploited for solving difficult analytical problems. In particular, for the analysis
of polar compounds using the aqueous normal-phase mode in comparison to HILIC, there is excellent
run-to-run, day-to-day and batch-to-batch reproducibility, good peak shape and fast re-equilibration
between runs particularly for gradients and easy clean-up when analyzing biological matrices. All of
the silica hydride phases can be used in either the reversed-phase or aqueous normal-phase modes.
The extent of retention in each of the modes is determined by the organic moiety bonded to the
surface. With little or no modification, or with a very small or polar moiety bonded, the aqueous
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normal-phase mode is dominant. With more hydrophobic bonded groups, the reversed-phase mode is
more prevalent. Differences in selectivity, when compared to reversed-phase materials on ordinary
silica, are also observed. Overall, silica hydride-based separation materials offer a new approach to
solving challenging analytical problems in complex samples and matrices.
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