

Supplementary Materials

Challenges in Determining the Size Distribution of Nanoparticles in Consumer Products by Asymmetric Flow Field-Flow Fractionation Coupled to Inductively Coupled Plasma-Mass Spectrometry: The Example of Al₂O₃, TiO₂, and SiO₂ Nanoparticles in Toothpaste

Manuel Correia¹, Toni Uusimäki², Allan Philippe³ and Katrin Loeschner^{1,*}

- ¹ Division For Food Technology, National Food Institute, Technical University of Denmark, Kemitorvet 201, DK-2800 Kgs. Lyngby, Denmark; mglpmc@gmail.com
- ² Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland; tonimikael.uusimaeki@eawag.ch
- ³ Group of Environmental and Soil Chemistry, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany; philippe@uni-landau.de
- * Correspondence: kals@food.dtu.dk; Tel.: +45-358-870-29

Table S1. Chemical composition of the tested toothpaste as labelled in the acquired products. The function of each ingredient is described [16].

Ingredient	Function		
Aqua	-		
Hydrated Silica	Abrasive agent (SiO ₂)		
Alumina	Abrasive agent (Al ₂ O ₃)		
CI 77891	Pigment (TiO ₂)		
Sorbitol	Humectant/sweetener		
Hydroxyethylcellulose	Thickening/binding agent		
PEG-40 Hydrogenated Castor Oil	Emulsifier/binding agent,		
Stearic Acid	Emulsifier/binding agent,		
Cocamidopropyl Betaine	Secondary surfactant		
Citric acid	Therapeutical agent: synergist to		
	enhance the effectiveness of antioxidants		
3-(N-hexadecyl-N-2-	Therapeutic agent/anti-carries		
hydroxiethylammonio)propyl-bis(2-			
hydroxiethyl)ammoniumdifluorid			
Olaflur	Therapeutic agent/anti-carries		
Limonene	Fragrance		
Aroma	Flavour		
Sodium Saccharin	Artificial sweetener		
Saccharin	Artificial sweetener		

Figure S1. Intensity-based PSD obtained by DLS measurements of toothpaste dispersions (1 mg toothpaste / mL) in ultrapure water (dashed line), prepared by a two-step dilution in 0.1% w/w SDS (sample preparation method 1, gray line) and chemical oxidation with 30% H₂O₂ followed by dilution in 0.1% w/w SDS (sample preparation method 1, black line).

Figure S2. STEM-HAADF/EDX analysis of the toothpaste sample. The left panel shows an STEM-HAADF image of the particles present in toothpaste. The right panel shows the corresponding STEM-EDX mapping of the same area for Al and Ti. The Al- and Ti-containing particles are displayed in red and blue, respectively, and should correspond to the constituent Al₂O₃ and TiO₂ particles.

Figure S3. STEM-HAADF/EDX analysis of the toothpaste sample. The Al-, Ti- and Si-containing particles are displayed in red, blue and green, respectively, and should correspond to the constituent Al₂O₃, TiO₂ and SiO₂ particles. At the bottom a magnified HAADF image of the Al₂O₃ particles is shown, where their morphology can be seen in more detail.

Figure S4. AF4-ICP-MS ²⁸Si fractograms obtained for 10 μ g and 100 μ g injected toothpaste mass values (corresponding to 2.4 and 24 μ g of injected SiO₂, respectively). The AF4-ICP-MS measurements were performed on the same membrane.

Figure S5. Influence of SDS concentration on the AF4 fractionation of the toothpaste particles (10 μ g injected mass). The AF4-ICP-MS fractograms were obtained using 0.025% (gray line) or 0.05% w/w SDS (black line) or: (**a**) ²⁷Al signal and (**b**) ⁴⁷Ti signal. The AF4-ICP-MS measurements were performed on two different membranes.

Figure S6. Influence of carrier liquid composition on the AF4 separation of particles in toothpaste (10 µg injected mass). AF4-ICP-MS fractograms obtained using 0.05% w/w SDS (black line) or 0.025% v/v FL70 (gray line) as carrier liquid: (**a**) ²⁷Al signal and (**b**) ⁴⁷Ti signal. The AF4-ICP-MS measurements were performed on two different PES membranes.

Figure S7. Influence of membrane composition on the AF4 fractionation of the toothpaste particles (10 μ g injected mass). The AF4-ICP-MS fractograms were obtained using either a PES membrane (cyan, blue and navy lines, (**a**) ²⁷Al signal and (**b**) ⁴⁷Ti signal) or RC membrane (orange, red and wine color lines, (**c**) ²⁷Al signal and (**d**) ⁴⁷Ti signal). For each of the AF4-ICP-MS measurements a new PES or RC membrane was used and the measurements were all performed on separate days.

Table S2. Retention times (t_r) and AF4 recoveries determined for Al and Ti for PES and RC membranes. For each of the AF4-ICP-MS measurements a new PES or RC membrane was used and the measurements were all performed on separate days (N = 3).

Element	Membrane type	tr main peak (min)	Recovery void peak (%)	Recovery main peak (%)	Recovery release peak (%)	Recovery total (%)
Al	PES	24.3 ± 1.6	2.0 ± 0.0	10.7 ± 1.2	3.0 ± 1.0	15.7 ± 0.6
	RC	26.0 ± 2.6	0.7 ± 0.6	42.0 ± 22.6	2.3 ± 0.6	45.3 ± 23.9
Ti	PES	35.6 ± 0.2	2.0 ± 0.0	62.3 ± 6.4	29.3 ± 8.1	88.3 ± 1.2
	RC	26.3 ± 2.5	2.0 ± 0.0	84.3 ± 7.1	1.7 ± 0.6	86.3 ± 7.1

Figure S8. AF4-ICP-MS fractograms obtained for different injected masses of toothpaste (5, 10 and 25 µg injected mass): (**a**) ²⁷Al signal and (**b**) ⁴⁷Ti signal. The AF4-ICP-MS measurements were performed using the same PES membrane and on the same day. In these experiments, the cross-flow rate was 0.4 mL/min.

Figure S9. Linear dependence of AF4-ICP-MS signals (main peak area) on toothpaste injected mass (5, 10 and 25 μ g injected mass): (**a**) ²⁷Al signal and (**b**) ⁴⁷Ti signal. The experimental data points are displayed (open circles) and were fitted with a linear model (red trace). The AF4-ICP-MS measurements were performed using the same PES membrane and on the same day. In these experiments, the cross-flow rate was 0.4 mL/min.

Figure S10. AF4-ICP-MS fractograms obtained using the final method (N = 7, where N is the number of independent measurements) for separation and detection of Al₂O₃ and TiO₂ particles in toothpaste (10 μ g injected mass): (**a**) ²⁷Al signal and (**b**) ⁴⁷Ti signal. For each of the AF4-ICP-MS measurements a new PES membrane was used and the measurements were all performed on separate days.

Figure S11. AF4 size calibration by polystyrene size standards (51 nm, 100 nm, and 203 nm). The calibration curve was based on a linear fitting of the retention times of the AF4-LS peak maxima obtained for the different size standards and the void time ("0 nm"). The size standards were analyzed separately using the same AF4 separation method that was used for the toothpaste.

		Dilution factor	Total number of detected particles	Minimum particle diameter (nm)	Median particle diameter (nm)	Maximum particle diameter (nm)	Particle mass concentration (ng/mL)
	Sample						
	prep.	2.10^{6}	16	65	72	154	$0.01 \cdot 10^{6}$
	blank						
Al2O3	Bulk	40.10^{6}	1696	55	113	653	15.3.10 ⁶
	digestate	20.10^{6}	3039	58	121	877	16.4·10 ⁶
	Carrier	10	26	67	83	304	0.04
	liquid						
	Void	10	1181	53	64	340	0.29
	F1	10	27	67	79	159	0.01
	F2	10	417	66	99	177	0.20
	F3	10	96	61	116	300	0.13
	Sample						
	prep.	2.10^{6}	0	-	-	-	0
	blank						
TiO2	Bulk	40.10^{6}	1056	57.8	136	731	10.6·10 ⁶
	digestate	20.10^{6}	2041	56	143	886	11.6·10 ⁶
	Carrier liquid	10	0	-	-	-	-
	Void	10	17	59	108	364	0.05
	F1	10	8	55.8	60	196	0
	F2	10	698	56	152	951	1.51
	F3	10	341	59	224	546	1.79

Table S3. Results of spICP-MS analysis of the collected AF4 fractions and of the corresponding bulk digestate of the toothpaste sample.

Values in grey – no statistic relevance because number of detected particles was not sufficient (< 100) for determination of a PSD.

Table S4. Results of HDC-ICP-MS analysis of the toothpaste sample prepared following method 1 and 2. Standard deviations (N = 3) are given right to the mode values.

Sample preparation	Element	Distribution mode (nm)	Recovery (%)
Method 1	Al	179 ± 8	17.7 ± 2.1
	Ti	248 ± 15	127 ± 61
Method 2	Al	148 ± 25	13.8 ± 0.2
	Ti	238 ± 16	54.0 ± 1.5

Figure S12. HDC-ICP-MS chromatograms for a toothpaste sample prepared by method 2 for Ti (upper graph) and Al (lower graph).

Figure S13. Fitting of the obtained Al and Ti AF4-ICP-MS mass-based particle size distributions (black lines in (**a**) and (**b**), respectively) with Gaussian and log-normal functions (solid gray and dotted lines, respectively). The Al mass-based particle size distribution was only fitted in the range 140–525 nm in order to exclude the shoulder/possible artifact observed at 40–120 nm. For the Gaussian fits, the adjacent R-square values of 99.3% for Al and 99.3% for Ti were obtained. For the log-normal fits, the adjacent R-square values were 99.4% for Al and 94.6% for Ti, respectively.