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Abstract: Classification of un-weathered ignitable liquids is a problem that is currently addressed
by visual pattern recognition under the guidelines of Standard Test Method for Ignitable Liquid
Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry, ASTM
E1618-14. This standard method does not separately address the identification of substrate pyrolysis
patterns. This report details the use of a Kohonen self-organizing map coupled with extracted ion
spectra to organize ignitable liquids and substrate pyrolysis samples on a two-dimensional map with
groupings that correspond to the ASTM-classifications and separate the substrate pyrolysis samples
from the ignitable liquids. The component planes give important information regarding the ions from
the extracted ion spectra that contribute to the different classes. Some additional insight is gained
into grouping of substrate pyrolysis samples based on the nature of the unburned material as a wood
or non-wood material. Further subclassification was not apparent from the self-organizing maps
(SOM) results.
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1. Introduction

Fire debris samples are currently classified according to ASTM E1618-14 which makes use of
the total ion chromatogram, extracted ion chromatogram, and target compounds [1]. Ignitable
liquid residues are classified as one of the following seven classes given by ASTM E1618-14:
gasoline (GAS), petroleum distillates (PD), isoparaffinic products (ISO), aromatic products (AR),
naphthenic-paraffinic products (NP), normal alkanes products (NORMA), and oxygenated solvents
(OXY). The chromatographic profiles and the relative presence of the major compound types are used to
classify the ignitable liquid (IL) residue. Ignitable liquids that are not characteristic of these individual
classes are assigned to the miscellaneous category (MISC) and have characteristics of multiple classes,
or lack class characteristics. Even with the guidelines given by ASTM E1618-14, determining the
presence of IL residues is still a tedious manual pattern recognition process for the analyst and is
highly subjective in nature. To counteract this, automated chemometric methods have been developed
that use the covariance map and the total ion spectrum (TIS) [2–7]. The TIS is the time averaged mass
spectrum across the total chromatographic profile and allows for comparison within or between labs
due to the absence of variation in the chromatographic time component. Similarities among TIS from
the same ASTM E1618-14 class also facilitates classification which would be much more difficult if
shifts in chromatographic retention time were represented in the data set [5,6]. This work makes use
of the extracted ion spectrum (EIS), a subset of the TIS, which is generated using the ions in Table 2
of ASTM E1618-14. These ions are representative of the major compounds types present in each of
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the ASTM classes and include: alkanes, cycloalkanes/alkenes, aromatics, indanes, condensed ring
aromatics, ketones, and alcohols (Table 1).

Table 1. Compound type with associated ions commonly observed in the electron ionization spectra
from the components in ignitable liquids and substrate pyrolysis products.

Compound Type m/z

Alkane 43, 57, 71, 85, 99
Cycloalkane and alkene 55, 69

N-alkylcyclohexanes 82, 83
Aromatic-alkylbenzenes 91, 105, 119, 92, 106, 120, 134

Indanes 117, 118, 131, 132
Alkylnapthalenes (condensed ring aromatics) 128, 142, 156, 170

Ketones 43, 58, 72, 86
Alcohols 31, 45

It has been shown previously that ignitable liquids in all ASTM E1618-14 classes, with the
exception of MISC, group according to their ASTM class designations using the EIS of ASTM ions
and self-organizing maps (SOM) [2]. This work extends a previous report from [2] by using SOM to
examine the relationship of substrates and IL from the National Center for Forensic Science (NCFS)
Substrate and Ignitable Liquid Reference Collection (ILRC) databases [8,9]. Other previous reports of
the use of SOM in the chemical domain have been to classify plastic samples based on their mechanical
properties [10], to predict the retention time behavior in liquid chromatography [11], and to examine
the effect of weathering on the relationship between various lighter fluids [12].

In this work the EIS from a total of 653 samples from the ILRC and Substrate databases were used
as an input to an SOM to analyze the relationship of substrates with each of the ASTM classes.

2. Materials and Methods

Self-organizing maps are a type of artificial neural network used for the dimensionality reduction
and visualization of large datasets [13]. SOM consist of a grid of neurons or “prototypes” that are
represented by a randomly initialized weight vector. Each weight vector consists of one weight for
each factor in the input vector. Samples are presented to the map during a training phase with a
defined number of iterations. During each training iteration an input vector representing a sample
is presented to the map and the prototype vector that is the most similar will be selected as the
winning neuron or best matching unit. The similarity of the input sample to each neuron is assessed
by calculating the Euclidean distance between them. The neighborhood function defines the extent
that the weight vectors of the surrounding neurons will be updated with respect to the distance from
the winning neuron. After the map has been trained, the samples that were used in the training phase
can be projected onto the map and visualized to examine their relationship in two-dimensional space.
This results in a two-dimensional map that preserves the relationship of the original data structure
based on the similarity between sample feature vectors.

The training data for the SOM is comprised of the EIS of 653 samples from both the NCFS Substrate
and ILRC databases [8,9]. The EIS is generated using the 29 ions given in Table 1, as previously
described [2]. Each EIS was normalized so that the most abundant ion had an intensity equal to one.
A total of 475 neat liquids from the ILRC database were chosen and are designated by their ASTM class:
GAS, AR, ISO, NORMA, NP, PD, and OXY. Ignitable liquids designated as miscellaneous were not
used in this study due to their diverse nature and lack of class characteristics. A total of 178 substrates
designated as SUB were used from the Substrate Database. The ILRC and Substrate Databases were
created and are maintained by the National Center for Forensic Science in collaboration with the
Scientific Working Group for Fire and Explosions (SWGFEX). The classification of the ignitable liquids
in the ILRC represent a consensus class assignment by a committee of practicing fire debris analysts.
Substrates were produced using a two-minute burn by the modified destructive distillation method and
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extracted according to ASTM E1412. Sample preparation and instrumental parameters are described in
previous work [7]. A grid size of 225 neurons, 112,500 training epochs, and a neighborhood radius of 13
were chosen as SOM parameters and are the same as described in [2]. All calculations were performed
using the R language and environment for statistical computing, version 3.5.1 [14]. The SOM and
associated plots were generated in R using the Kohonen package [15].

The SOM performance was validated by two methods. First, validation of the unsupervised
training was accomplished by examination of the map to determine if adjacent cells contained samples
from the same ASTM E1618 class, or SUB samples. The second method of validating the SOM was to
project 50 new samples onto the map and determine the percentage correct classification for each class.
The 50 samples were comprised of 40 samples that had been weathered by 25% reduction in volume.
A similar application has been demonstrated by Mat Desa et al. [12]. The remaining 10 samples were
created by new substrate burns.

3. Results

Results from the study are depicted in Figures 1–4. Figure 1 shows the trained SOM and projected
samples. The neurons are colored according to their ASTM designation(s). For example, in the top
right corner of the map, the neuron is shaded green and is representative of a neuron that only had
GAS samples mapped to it. If a neuron serves as the best matching unit for more than one class it
is colored to reflect the proportion of each class. To visualize the PD class more effectively, it can be
subdivided on the SOM based on the carbon range of the components: light (LPD), medium (MPD),
and heavy (HPD). Neurons that did not have samples projected onto them are shaded white and are
“empty”. The numbers in each cell serve to identify the cell and have no other significance.
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Figure 1. The trained SOM with neurons colored according to their ASTM class designations. See the
color legend.

The groupings on the map in Figure 1 can perhaps be visualized more precisely using the
component planes. Each component plane is representative of an individual weight vector component
for each neuron on the map. The relative intensity of these components can be compared to visualize
the correlation between one or more variables on the map. The component planes for each of the input
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variables is shown in Figure 2 and the ions are grouped by the compound type from ignitable liquids
or substrate pyrolysis that likely produced them in electron ionization mass spectra. Neurons that
are shaded white represent a high intensity for the corresponding component and neurons shaded
red represent a low intensity for that component. Yellow and orange shaded neurons represent
intermediate intensities, with the yellow shading representing the higher intensity of the two colors.
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The mapping plot in Figure 1 does not allow for the relative distances between neurons to be
visualized and, therefore, the distance relationship between samples and classes that are mapped to
these neurons are not readily clear from Figure 1. The structure of groupings within the SOM may be
examined more closely using the unified distance matrix or U-matrix, shown in Figure 3. The U-matrix
represents the sum of normalized Euclidean distances between the weight vectors that represent each
neuron and those of the neurons surrounding them. Neurons shaded white are surrounded by neurons
that have a large difference in one or more components of their weight vectors. Neurons that do not
have a large distance to their neighbors will have similar weight vectors and are shaded red to indicate
that they are closer in the mapping space.

Each SUB-associated cell in the SOM can be directly related to one or more type of substrate
material. One example of these relationships is, wood (W) and non-wood-based (X) materials,
which are mapped back onto the SOM cells that contain pyrolyzed substrates in Figure 4.
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Figure 4. The trained SOM with neurons labeled according to the type of substrates mapped to them.
Neurons labeled X denote a non-wood-based substrate and neurons labeled W indicate a wood derived
product. Neurons that are labeled WX had both substrate types mapped to them.

The results from projection of the validation samples onto the SOM are given in Table 2. The classes
specified in columns correspond to the ground-truth for each sample and the class specifications for
the rows reflect the projected classifications. Projected classifications are determined by the class or
classes associated with each cell in the trained SOM. For example, if a SUB sample projects onto cell
172, this would be a correct assignment. Likewise, if a SUB sample projected into cell 207, this would
also be considered a correct assignment since cell 207 in the trained SOM had both GAS and SUB class
samples assigned. If any sample projected into an empty cell in the SOM, it is considered a failure to
assign, which is treated as an incorrect assignment.
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Table 2. Validation sample assignment results.

Ground-Truth Class

AR GAS HPD ISO LPD MPD NORMA NP OXY SUB Percent Correct
AR 5 0 0 0 0 0 0 0 0 0 100

GAS 0 6 0 0 0 0 0 0 0 0 100
HPD 0 0 3 0 0 0 0 0 0 0 100
ISO 0 0 0 5 0 0 0 0 0 0 100
LPD 0 0 0 0 3 0 0 0 0 0 100
MPD 0 0 0 0 0 5 0 0 0 0 100

NORMA 0 0 0 0 0 0 4 0 0 0 100
NP 0 0 0 0 0 0 0 4 0 0 100

OXY 0 0 0 0 0 0 0 0 5 0 100
SUB 0 0 0 1 0 0 0 0 1 8 80
Total 5 6 3 6 3 5 4 4 6 8 96

4. Discussion

Figure 1 shows how the samples were mapped by the trained SOM. Based on the coloring
of the cells, distinct groupings can be seen for most of the ASTM E1618-14 ignitable liquid classes
and for the substrates. Neurons representing AR and GAS samples are primarily at the top and
upper-right corner of the map respectively, however, the cells associated with AR solvents are not
tightly clustered. A few GAS samples are also distributed into two cells in the upper-left corner of the
map and partially surrounded by cells containing OXY compounds. The gasolines occupying these
cells are E85 (ethanol containing) GAS samples. ISO and NORMA neurons are along the left edge of the
SOM. The immediate proximity of these two classes is understood based on the similar fragmentation
patterns of the chemical types that constitute these classes. Previous hierarchical clustering of ignitable
liquids based on the total ion spectrum also found an association between the ISO and NORMA
classes [6]. In a previous study of the clustering of ignitable liquids by SOM, without inclusion of SUB
samples, the ISO and NORMA classes were also closely associate on the map [2], indicating that the
addition of SUB samples has not significantly impacted the mapping of these two IL classes.

The cells associated with NP liquids are primarily in the lower-right corner of the map and share
neurons corresponding to the MPD and HPD subclasses of the petroleum distillate (PD) class. The HPD
and MPD occupy a large fraction of the lower three rows of the map, with the HPD samples primarily
in the lower-left corner. In previous SOM analysis of ignitable liquids [2], the MPD cells were associated
in two clusters that surrounded the HPD cluster. One of the two MPD clusters was characterized by
aromatized MPD, while the other cluster was characterized by the presence of de-aromatized MPD [2].
This division is not obvious in Figure 1; however, the component planes for m/z 105, 119 and 120 in
Figure 2 show a slightly increased abundance of these ions at the HPD/MPD interface. Most of the
LPD samples are associated with a cluster of cells adjacent to the MPD in the lower half of the map.
The continued clustering of the petroleum distillates in Figure 2 demonstrates that including substrate
pyrolysis samples in the SOM has not interfered with the clustering of these ASTM E1618-14 classes.

Oxygenates contain a major “oxygenated” component (i.e., alcohol, ketone, etc.) by ASTM E1618-14
definition [1], and do not show any clear clustering tendency on the SOM map. The OXY-occupied
cells are dispersed throughout the map in a pattern that is interspersed with the SUB-occupied cells.
The relationship between the SUB- and OXY-occupied cells can be understood based on the significant
fraction of oxygen containing partial combustion products that are generated in the burning/pyrolysis
of substrates. The SUB neurons show a broad grouping within the center and right-hand side of the
map. The SUB-occupied cells are surrounded by the other ignitable liquid classes, except for OXY
liquids, which were discussed above.

The component planes for the various ions are shown in Figure 2. Component planes are grouped
by associated compound type from which they derive and show the ions that are primarily responsible
for the groupings seen in Figure 1. The component plane for m/z 43 is prominent in both the alkanes
(corresponding to CH3CH2CH2

+) and the ketones (corresponding to the acylium ion, CH3CO+),
and the distribution of intensities visually reinforces separation of the distillates from the oxygenates
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and SUB pyrolysates. The m/z 45 component plane has high intensity in the upper left corner of the
map, in the area where alcohols make a significant contribution. Similar distributional interpretations
can be assigned to other component planes that show areas of high intensity. Notably, the component
planes that appear to give the largest contributions to the cells occupied by SUB are m/z 43, 55, and 91.
There is a high intensity on neurons associated with both GAS and SUB in component planes m/z
91 and 105, which is understood based on the significant contributions of aromatic compounds to
gasoline and many substrate pyrolysis products. Interestingly, neurons in the m/z 55 component plane
show somewhat higher intensities on SUB associated neurons than PD associated neurons. The m/z 69
component plane has the highest intensity on SUB associated neurons. Component planes associated
with indane ions are primarily represented by SUB associated neurons. Some of the component planes
in Figure 2 (i.e., m/z 99, 134,142, 156 and 170) show minimal variation across the map and low relative
intensity. These ions could possibly be dropped from the list of features used to cluster the samples.

The U matrix, Figure 3, shows the distance between adjacent cells. When distinct boundaries exist
between classes, this is observed as a set of lighter colored cells (i.e., yellow to white) running through
the map and dividing the distinctly different classes. Distinct boundaries are not clearly observed in
Figure 3, even though clustering by ASTM E1618-14 ignitable liquid types and substrates are observed
in Figure 1. More distinct boundaries were observed between some ignitable liquid groups in [2].
This result is interpreted to indicate that while the SOM continues to group samples into the ASTM
E1618-14 classes separately from most substrate pyrolysis samples, the differences between samples
are becoming less distinct, as reflected in the Euclidean distances across all samples.

While the ignitable liquid classes, as defined by ASTM E1618-14, are organized on the SOM and
have been shown to organize by class using hierarchical clustering [6], organization of the pyrolysis
products from different substrates has not previously been addressed. Some rough groupings of
substrates (i.e., those having similar material types and producing pyrolysis products that exhibit
similar ions under electron ionization) were observed by mapping the product types back onto the SOM.
Figure 4 shows a tendency to form two groupings within the substrates for wood and non-wood-based
materials. A distinct cluster of non-wood materials is observed slightly below the map center along
the right edge. This clustering corresponds to high intensities in the component planes for ions from
alkenes/cycloalkanes and cyclohexane/n-alkylcyclohexanes (i.e., m/z 55, 69, 82, and 83).

As described above, the SOM groups samples from the same ASTM E1618-14 class in a reasonable
fashion and substrate samples also cluster. The SOM also projects a set of validation samples with an
overall 96% accuracy, see Table 2. The 25% weathered samples from each ASTM E1618-14 class are
assigned with 100% accuracy. Eighty percent of the 10 SUB samples are assigned correctly. One of the
validation samples, comprised of burned carbonless paper, incorrectly assigned to a cell in the trained
SOM that contained only ISO class solvents. No explanation is offered for this assignment. A cherry
hardwood substrate sample assigned to an empty cell, number 140, in the trained SOM. The empty
cell was flanked by cells in the trained SOM that contained SUB and OXY samples. This assignment is
perhaps not difficult to understand given the nature of the assignments to the surrounding cells.

The SOM presented here and in previous work demonstrates a clear ordering of ignitable liquid
classes as defined under ASTM E1618-14 [1,2,6]. The map organization of substrates reinforces gross
differences in material type, however, given the complex nature of composite manmade materials,
a more compositionally refined clustering cannot be assigned at this time. Similarly, attempts to project
known ground truth fire debris samples onto the SOM did not result in easily interpretable results.
In those tests, samples of a pyrolyzed substrate containing progressively increasing amounts of a
partially evaporated liquid did not project onto the SOM in such a way as to produce a clear path
between the respective SUB and IL samples. Although the mixed composition of the samples results
in total ion spectra that reflect a linear mixture of the SUB and IL which comprise the sample, there is
no guarantee that the corresponding extracted ion spectra will coincide with a set of codebook vectors
falling on a smooth curve between the IL and SUB. This may be attributed, in part, to the use of partially
evaporated IL to produce the known ground truth mixed samples. Partially evaporated IL samples
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were not used to create the SOM. However, previous work by Nic Daeid and co-workers found that a
SOM trained on features comprising 51 characteristic peaks from lighter fluid chromatograms could
be used to correctly assign evaporated fluids to the proper manufacturer [12]. Unlike the previous
SOM works on lighter fluids and ignitable liquids, which showed clear boundaries between classes
when viewing the U matrix [2,12], such clear boundaries were not observed in this work.

5. Conclusions

The EIS corresponding to the ions in Table 2 of ASTM E1618-14 lead to groupings by a self-organizing
map that are consistent with the ASTM-defined classes when substrate pyrolysis samples are
introduced [1]. Substrate pyrolysis samples roughly organize along a split between the wood and
non-wood-based products. Samples comprised of both IL and SUB, and exposed to progressively
greater extents of burning failed to project onto clearly defined paths on the SOM, which is partially
attributed to evaporation of the IL during the burning process.
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