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Abstract: It is necessary to determine the limit of detection when validating any analytical method.
For methods with a linear response, a simple and low labor-consuming procedure is to use the
linear regression parameters obtained in the calibration to estimate the blank standard deviation
from the residual standard deviation (sres), or the intercept standard deviation (sb0). In this study,
multiple experimental calibrations are evaluated, applying both ordinary and weighted least squares.
Moreover, the analyses of replicated blank matrices, spiked at 2–5 times the lowest calculated
limit values with the two regression methods, are performed to obtain the standard deviation of
the blank. The limits of detection obtained with ordinary least squares, weighted least squares,
the signal-to-noise ratio, and replicate blank measurements are then compared. Ordinary least
squares, which is the simplest and most commonly applied calibration regression methodology,
always overestimate the values of the standard deviations at the lower levels of calibration ranges.
As a result, the detection limits are up to one order of magnitude greater than those obtained with
the other approaches studied, which all gave similar limits.

Keywords: limit of detection; analytical calibration; linear regression; ordinary least squares;
weighted least squares

1. Introduction

The limit of detection (LOD) is a fundamental parameter of method validation that defines
the limitations of an analytical method. According to the IUPAC, the LOD, expressed as either the
concentration or the quantity, is derived from the smallest measure, yLOD, that can be detected with a
reasonable certainty for a given analytical procedure [1,2]. Despite the simplicity of this definition,
the LOD is a troublesome concept from a practical point of view. This is due to the different approaches
that can be applied to calculate this parameter with “reasonable certainty” [2–10], which leads to
differences that can reach several orders of magnitude depending on the approach used [11–13].
For this reason, validation guidelines leave the analyst free to choose, but suggest that the method
used for determining the LOD should be documented and supported, and that an appropriate number
or samples should be analyzed at the limit to validate the level [10].

Some industrial guidelines, such as those of the International Council for Harmonisation (ICH) [4],
allow the determination of LODs simply by visual inspection. This procedure is based on preparing
samples with known concentrations of the analyte and establishing the level at which the analyte can
be reliably detected (e.g., by successive dilution until the analyte is no longer detected visually).
The main drawbacks of this approach are that it is subjective, it is not based on any statistical
assessment, and when compared with other approaches, the smaller values are usually obtained
by visual inspection [7].
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In chromatographic methods, the use of the signal-to-noise (S/N) ratio is probably the most
widespread procedure applied to assess LODs [3,7,8,10,14]. This approach requires working at the
minimal attenuation of the chromatographic signal, and the S/N is determined by comparing the
analytical signals at known low concentrations with those of a blank sample. The noise is taken as an
estimate of the blank standard deviation, and a concentration that gives a peak with an S/N equal to
two or three is taken as the LOD. However, the measurement of the noise is not always trivial, and it
is often subjective and highly variable. Nowadays, instrumentation software of chromatographic
instruments allows this value to be auto-integrated, measuring the baseline at a pre-fixed time interval
near the analyte peak.

The hypothesis testing approach to detection limit decisions introduced by Currie [11] has
gradually become accepted since the term “detected with reasonable certainty” in the LOD definition
implies the need for statistics. The IUPAC [1,2,12] and ISO [15] put emphasis on the use of statistics
and indicate that the LOD depends on the variability of the method at the blank level (σbl) and on two
risk values: α (probability of false positives, type I error) and β (false negatives, type II error or power).
This procedure requires the determination of two analytical parameters: the standard deviation of the
blank, and the slope of a regression function (i.e., analytical sensitivity) [5].

The value of σbl can only be estimated when blank measurement gives a signal, which is
not the common situation in chromatographic methods. To solve this problem, the analysis of
matrix blanks fortified at a level close to the LOD (usually <5 times the LOD) is accepted by many
validation guidelines for the estimation of σbl [4,5,16]. This procedure is labor intensive, as ≥20 blank
measurements [7,12] are required to calculate a value of the standard deviation of the blank (sbl) that
can be taken as a good estimator of σbl. However, from a practical point of view a minimum of seven [6]
or ten blank analyses [7,16] are typically used.

In order to simplify the experimental requirements needed to determine σbl, the Hubaux-Vos
approach has been proposed when the instrument response is linearly related to the concentration [17].
This approach indicates that σbl can be estimated from the linear calibration curve, either by the
regression residual standard deviation (sres) or the standard deviation of the y-intercept (sb0). To fulfil
the requirements of this approach, the error distribution of all standards used in the calibration must
be constant (homoscedasticity). This procedure is also accepted by ISO [18].

Despite the large number of studies discussing the requirements to calculate the LOD of a
chromatographic method from a theoretical point of view, there is still considerable variation in the
methods used in routine laboratories to determine this fundamental parameter. A large amount of
work performing many replicate assays and calibrations is required to obtain good estimates of the
detection limits. As a result, these procedures are not the most appropriate for routine laboratories.

The aim of this study was to assess whether one of the simplest approaches to calculating limits
of detection from a practical point of view—estimating σbl from the standard deviations obtained
applying ordinary least squares to analytical calibrations—enables useful LODs to be obtained for
routine work.

2. Experimental and Statistical Calculations

Twenty different experimental analytical calibrations using gas chromatography with flame
ionization detector GC-FID (n = 6), gas chromatography with mass spectrometry GC-MS (n = 3),
high performance liquid chromatography with ultra-violet detection HPLC-UV (n = 8) and capillary
zone electrophoresis with ultra-violet detection, CZE-UV (n = 3) were evaluated (see Supplementary
Materials for specific information about each method). In all cases, a minimum of six standards evenly
distributed along the calibration range were used. The signal for each calibration level was obtained as
the mean value of seven replicates prepared for each standard, which were prepared and measured
(once each) on different days. This allowed an estimation of σ at each calibration level to be obtained.

Linearity for all calibration curves was evaluated applying the lack-of-fit (LOF) [19] and
Mandel’s [20] tests, whereas the homogeneity (homoscedasticity) of the variances in each calibration
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was evaluated using the Levene test [21,22]. SPSS 15.0 for Windows (SPSS Inc., Chicago, IL, USA),
was used for the regression (both with ordinary least squares, OLS, and weighted least squares, WLS)
and statistical analyses, and p < 0.05 was considered as significant. The weighting factor (wi) as inverse
of si

2 was applied in the WLS regressions [14,23]. Other empirical wi such as 1/xi
2 and 1/yi

2 were
also evaluated.

Once the LODs were calculated using the Hubaux-Vos approach for the OLS and WLS calibrations,
two fortified matrix blanks at levels equivalent to the calculated LOD for each regression method were
prepared and analyzed to assess the S/N ratio. For the determination of the standard deviation of the
blank (sbl), a minimum of seven replicates of a blank matrix were obtained for each method and spiked
at a level between 2–5 times the smallest LOD value calculated through OLS and WLS regressions.
The LODs from the standard deviation of the fortified blanks were also determined.

3. Statistical Considerations

According to Currie [11], if we consider both type I and type II errors, the value of the signal
corresponding to the LOD (yLOD) is given by the following equation:

yLOD = µbl + z1−ασbl + z1−βσLOD (1)

where µbl is the signal of the “true” blank mean (which is usually zero in chromatography in absence
of bias in the procedure), z1−α and z1−β are the z-values of the one-sided standardized normal
distribution at given significance levels α and β, σbl is the standard deviation at the blank level when
the component is not present in the sample, and σLOD is the standard deviation at the LOD level.

When µbl = 0, and assuming normal distribution for the blank and LOD signals and a constant
dispersion between blank and LOD range (i.e., σbl = σLOD), Equation (1) can be rewritten as:

yLOD = z1−ασbl + z1−βσLOD = 2z1−ασbl (2)

IUPAC and ISO recommend fixing confidence levels α = β at 0.05 [1,2,14]; therefore
z1−α = z1−β = 1.645:

yLOD = 2z1−ασbl = 2·1.645σbl = 3.29σbl (3)

When the response calibration function is linear, this measurement is converted to concentration as:

LOD =
yLOD

b1
=

3.29σbl
b1

(4)

where b1 is the slope of the linear regression function.
In practice, σbl is unknown and has to be estimated from the standard deviation of a limited

number of blank measurements (sbl). Therefore, the z1−α value should be replaced by the one-tailed
Student’s t for ν degrees of freedom and α = 0.05 (t(1−α,ν)) [1,3,11]:

LOD =
2t(1−α,ν)·sbl

b1
(5)

which means that in experimental measurements the constant value (2t(1−α,ν)) multiplying sbl should
range from 3.89 (for 7 blank replicates) to 3.67 (n = 10).

Some guidelines, such as the US-EPA [6], only consider the type I error, but require α = 0.01
(99% significance) and n ≥ 7. In this situation, t(0.99,ν) ranges from 3.14 (n = 7) and 2.82 (n = 10).

In general, the 2 t-value is rounded to three for practical applications and results in the common
value of yLOD = 3 sbl that is usually applied in many studies. It should be taken into account that
3 sbl corresponds either to α = 0.00135 and β = 0.50 [24], which means that there is no control of false
negative errors, or to α = 0.05 and β = 0.16 (84% power) [10], which may be considered as an acceptable
β level, but is higher than the recommended β = 0.05 (95% power) by ISO and IUPAC. In general, it is
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accepted that yLOD ≥ 3 sbl, but the use of yLOD = 2 sbl, as proposed by some studies, should not be
applied for estimating LODs as this value corresponds to the critical level (Lc) and would result in
a concentration level where, assuming a normal distribution, there is only a 50% probability of the
analyte being detected [3,11–13,25].

4. Results

Before performing the regression analyses, the linearity was checked for each calibration curve.
Initially, 22 calibrations were evaluated, but Mandel’s test [20] yielded F-values that were higher than
the tabulated values at 95% and 99% confidence for two HPLC-UV calibrations. This indicates that the
variance explained by the addition of a quadratic factor to the linear model was statistically significant
and does not correspond to random errors. These two calibrations were not considered in the study as
they cannot be considered linear (Figure S1 in Supplementary Materials).

The linearity of the 20 selected calibrations was confirmed through the LOF test [19], which gave
p > 0.10 for each method (Tables 1–4), and Mandel’s test [20]. Therefore, the instrumental response can
be considered linear in the ranges evaluated and the use of linear regression functions was adequate.
The Levene test for homogeneity of variances [21,22] showed that the calibrations evaluated yielded
non-constant variances (p < 0.01), confirming heteroscedasticity (Figure 1, Tables 1–4).
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Figure 1. Calibration curve and standardized residuals plot obtained for the method HPLC-UV#3
(determination of caffeine in coffee samples). Each calibration point is the mean of 8–10 replicate
standards prepared and measured in different days. The error bars show the standard deviations
obtained at each level. Solid line shows the linear trend obtained applying OLS (y = 121,810x + 224,242;
R2 = 0.99926), whereas the dashed line corresponds to the linear trend obtained by WLS
(y = 124,904x + 1678; R2 = 0.99896).
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Table 1. Regression parameters obtained with different GC-FID methods. All calibrations were
performed with a minimum of -six calibrations standards evenly distributed along the working range.
The signal value for each calibration was determined as the mean value obtained for at least seven
replicates prepared and measured in different days. sres = regression residual standard deviation;
b0 = y-intercept; sb0 = y-intercept standard deviation; b1 = slope of the calibration function; sb1 = slope
standard deviation; sbl = standard deviation of the blank.

Method
LOF Levene

Model sres
b0 b1 b0 = 0 b1 = 0

(p-Value) (p-Value) (sb0) (sb1) (p-Value) (p-Value)

#1 0.419 0.001 OLS 0.0043 0.0029 6.73·10−4 0.981 <0.001
(0.0029) (6·10−6)

WLS 0.4294 0.0053 6.64·10−4 0.004 <0.001
(0.0009) (6·10−6)

Blank sbl= 0.0012

#2 0.952 0.008 OLS 0.0263 0.0023 1.73·10−3 0.901 <0.001
(0.0177) (4·10−5)

WLS 1.5490 0.0147 1.67·10−3 0.079 <0.001
(0.0063) (3·10−5)

Blank sbl= 0.0015

#3 0.107 <0.001 OLS 0.01367 0.0096 1.69·10−3 0355 <0.001
(0.0092) (2·10−5)

WLS 0.9568 0.0154 1.67·10−3 0.016 <0.001
(0.0039) (2·10−5)

Blank sbl= 0.0045

#4 0.362 <0.001 OLS 0.0143 0.0163 1.72·10−3 0.166 <0.001
(0.0096) (2·10−5)

WLS 0.6781 0.0147 1.72·10−3 0.005 <0.001
(0.0027) (2·10−5)

Blank sbl= 0.0043

#5 0.168 <0.001 OLS 0.0088 0.0125 1.72·10−3 0.098 <0.001
(0.0058) (3·10−5)

WLS 0.4307 0.0150 1.70·10−3 0.0004 <0.001
(0.0013) (2·10−5)

Blank sbl= 0.0025

#6 0.745 0.002 OLS 5.78·10-3 8·10−3 3.94·10−3 0.158 <0.001
(5·10−3) (4·10−5)

WLS 0.3604 6·10−3 3.91·10−3 0.022 <0.001
(2·10−3) (4·10−5)

Blank sbl= 3·10−3

OLS: ordinary least squares calculations; WLS: weighted least squares calculations; blank: 7–10 replicate
measurements of spiked blank matrices prepared at a level 2–5 times equal to the LOD level determined by WLS.

Table 2. Regression parameters obtained with GC-MS methods. Experimental conditions as indicated
in Table 1.

Method
LOF Levene

Model sres
b0 b1 b0 = 0 b1 = 0

(p-Value) (p-Value) (sb0) (sb1) (p-Value) (p-Value)

#1 0.473 <0.001 OLS 233,473 249,259 860,379 0.152 <0.001
(140,875) (13,251)

WLS 0.6620 27,495 887,238 0.515 <0.001
(38,502) (24,696)

Blank sbl= 33,580

#2 0.372 <0.001 OLS 93,959 41,563 149,078 0.505 <0.001
(56,865) (2679)

WLS 0.7872 53,521 148,848 0.030 <0.001
(16,267) (4955)

Blank sbl= 22,673

#3 0.188 <0.001 OLS 72,065 −50,424 179,903 0.312 <0.001
(43,615) (3131)

WLS 1.3649 −25,615 174,245 0.133 <0.001
(13,614) (8048)

Blank sbl= 9628
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Table 3. Regression parameters obtained with HPLC-UV methods. Experimental conditions as
indicated in Table 1.

Method
LOF Levene

Model sres
b0 b1 b0 = 0 b1 = 0

(p-Value) (p-Value) (sb0) (sb1) (p-Value) (p-Value)

#1 0.378 <0.001 OLS 52,459 57,359 385,884 0.083 <0.001
(27,656) (1804)

WLS 2.2863 −2136 393,588 0.302 <0.001
(1894) (8524)

Blank sbl= 840

#2 0.147 <0.001 OLS 62,530 47,160 400,992 0.194 <0.001
(32,266) (3074)

WLS 0.8077 5079 407,693 0.012 <0.001
(1431) (4671)

Blank sbl= 2458

#3 0.621 <0.001 OLS 68,178 24,242 121,810 0.653 <0.001
(50,056) (1653)

WLS 0.5428 1678 124,904 0.845 <0.001
(8024) (2013)

Blank sbl= 13,719

#4 0.537 <0.001 OLS 77,517 113,661 129,902 0.117 <0.001
(56,913) (1879)

WLS 0.7255 13,710 134,518 0.574 <0.001
(23,893) (2889)

Blank sbl= 32,336

#5 0.761 <0.001 OLS 46,038 −19,495 11,310 0.615 <0.001
(35,823) (118)

WLS 0.2274 −50,238 11,444 0.004 <0.001
(8227) (87)

Blank sbl= 7538

#6 0.741 0.004 OLS 48,296 −101,407 10,799 0.054 <0.001
(37,580) (124)

WLS 0.2353 −73,067 10,682 0.002 <0.001
(9659) (85)

Blank sbl= 11,925

#7 0.600 0.002 OLS 68,095 −93,167 10,995 0.154 <0.001
(52,987) (175)

WLS 0.7003 −43,109 10,628 0.195 <0.001
(27,742) (229)

Blank sbl= 31,162

#8 0.774 0.007 OLS 104,152 −163,207 18,540 0.114 <0.001
(81,043) (267)

WLS 0.8237 −65,272 17,849 0.234 <0.001
(46,590) (383)

Blank sbl= 44,535

Table 4. Regression parameters obtained with CZE-UV methods. Experimental conditions as indicated
in Table 1.

Method
LOF Levene

Model sres
b0 b1 b0 = 0 b1 = 0

(p-Value) (p-Value) (sb0) (sb1) (p-Value) (p-Value)

#1 0.868 <0.001 OLS 205 105 692 0.338 <0.001
(99) (6)

WLS 0.4109 89 709 0.008 <0.001
(21) (10)

Blank sbl= 48

#2 0.486 <0.001 OLS 321 3 1031 0.986 <0.001
(155) (9)

WLS 1.2439 −140 1049 0.112 <0.001
(72) (24)

Blank sbl= 66

#3 0.534 <0.001 OLS 135 140 509 0.084 <0.001
(65) (4)

WLS 1.0296 44 536 0.166 <0.001
(27) (8)

Blank sbl= 29
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The statistical evaluation of the linear regression parameters (Tables 1–4) showed that all the
slopes (b1) obtained were significant (p < 0.001 for the null hypothesis b1 = 0) for both OLS and
WLS regressions. The y-intercept values (b0) did not differ significantly from zero (p > 0.05 for the
null hypothesis b0 = 0) for OLS regression functions. However, ten calibrations (50%) did not yield
intercepts equivalent to zero with WLS regression. It is important to point out that the b0 value of the
linear function must not be significantly different from the mean blank signal, which means that b0

must not differ statistically from zero for chromatographic methods with no bias.
In the present study, none of the analyses of blank matrices for any of the methods evaluated

yielded detectable signals, suggesting that the WLS calculations introduced some bias at low
concentration levels in the ten calibrations where the y-intercept was not equivalent to zero.
Taking these considerations into account, Equation (4) was applied for the calculation of LOD values
with OLS calculations and those WLS with no bias, whereas it was substituted in the WLS calibrations
where b0 was found to differ from zero by:

LOD =
yLOD

b1
=

b0 + 3.29σbl
b1

(6)

Two standard deviation parameters (sb0 and sres) are usually accepted as estimates of σbl when
linear calibrations are applied for the determination of LODs [5,8,10]. In the case of WLS, the calculated
sres is significantly rounded to near unity due to the inverse variance weighting scheme [26,27]
(Tables 1–4) and cannot be used directly as an estimate of σbl, with sb0 being the only estimator for this
regression model. For OLS regressions with appropriate determination coefficients for quantitative
purposes and ≥6 calibration standards, it is common to find that sb0 < sres [5,8,28,29], which also
happened with the calibrations analyzed in the present study. Therefore, sb0 has been chosen to make
the comparison between OLS and WLS regressions. In most calibrations (n = 16), LODs determined
with OLS were significantly higher than those obtained with WLS (from 1.4–15 times higher, Table 5).
In four GC-FID calibrations, LOD values calculated by OLS and WLS were equivalent.

Table 5. Limits of detection determined with the different approaches.

Method
Blank OLS WLS (sb0)

(sbl) (sb0) wi = 1/si
2 wi = 1/xi

2 wi = 1/yi
2

GC-FID #1 6 mg·L−1 14 mg·L−1 12 mg·L−1 10 mg·L−1 10 mg·L−1

GC-FID #2 9 mg·L−1 34 mg·L−1 13 mg·L−1 10 mg·L−1 11 mg·L−1

GC-FID #3 9 mg·L−1 18 mg·L−1 17 mg·L−1 10 mg·L−1 11 mg·L−1

GC-FID #4 8 mg·L−1 19 mg·L−1 14 mg·L−1 8 mg·L−1 11 mg·L−1

GC-FID #5 5 mg·L−1 11 mg·L−1 11 mg·L−1 10 mg·L−1 10 mg·L−1

GC-FID #6 3 mg·L−1 4 mg·L−1 3 mg·L−1 3 mg·L−1 3 mg·L−1

GC-MS #1 0.2 ppbv 0.5 ppbv 0.1 ppbv 0.1 ppbv 0.1 ppbv
GC-MS #2 0.5 ppbv 1.3 ppbv 0.7 ppbv 0.6 ppbv 0.6 ppbv
GC-MS #3 0.2 ppbv 0.8 ppbv 0.3 ppbv 0.2 ppbv 0.2 ppbv

HPLC-UV #1 0.01 mg·L−1 0.24 mg·L−1 0.02 mg·L−1 0.02 mg·L−1 0.02 mg·L−1

HPLC-UV #2 0.02 mg·L−1 0.27 mg·L−1 0.02 mg·L−1 0.02 mg·L−1 0.02 mg·L−1

HPLC-UV #3 0.4 mg·L−1 1.4 mg·L−1 0.2 mg·L−1 0.1 mg·L−1 0.1 mg·L−1

HPLC-UV #4 0.8 mg·L−1 1.4 mg·L−1 0.6 mg·L−1 0.2 mg·L−1 0.2 mg·L−1

HPLC-UV #5 2 µM 10 µM 2 µM 3 µM 3 µM
HPLC-UV #6 4 µM 11 µM 3 µM 3 µM 3 µM
HPLC-UV #7 10 µM 16 µM 9 µM 5 µM 6 µM
HPLC-UV #8 8 µM 14 µM 9 µM 8 µM 8 µM
CZE-UV #1 0.2 mg·L−1 0.5 mg·L−1 0.2 mg·L−1 0.2 mg·L−1 0.2 mg·L−1

CZE-UV #2 0.2 mg·L−1 0.5 mg·L−1 0.2 mg·L−1 0.1 mg·L−1 0.1 mg·L−1

CZE-UV #3 0.2 mg·L−1 0.8 mg·L−1 0.2 mg·L−1 0.1 mg·L−1 0.1 mg·L−1
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In those calibrations where different LOD values were obtained by applying OLS and WLS
regressions, spiked blanks at the two calculated LOD values were analyzed. In all cases, it was found
that fortified blanks prepared at the LOD level determined by OLS gave signals with S/N > 8, whereas
the fortified blanks prepared at the levels calculated with the WLS regression were always detectable
with S/N ≥ 3 (Figure 2).
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HPLC-UV #8 8 μM 14 μM 9 μM 8 μM 8 μM 
CZE-UV #1 0.2 mg·L−1 0.5 mg·L−1 0.2 mg·L−1 0.2 mg·L−1 0.2 mg·L−1 
CZE-UV #2 0.2 mg·L−1 0.5 mg·L−1 0.2 mg·L−1 0.1 mg·L−1 0.1 mg·L−1 
CZE-UV #3 0.2 mg·L−1 0.8 mg·L−1 0.2 mg·L−1 0.1 mg·L−1 0.1 mg·L−1 

In those calibrations where different LOD values were obtained by applying OLS and WLS 
regressions, spiked blanks at the two calculated LOD values were analyzed. In all cases, it was found 
that fortified blanks prepared at the LOD level determined by OLS gave signals with S/N > 8, whereas 
the fortified blanks prepared at the levels calculated with the WLS regression were always detectable 
with S/N ≥ 3 (Figure 2). 

 
Figure 2. Chromatograms obtained to assess S/N for two of the methods evaluated in the present study
(HPLC-UV #1, #2: determination of theobromine and caffeine in tea beverages): (a) chromatogram for
a matrix blank; (b) the same blank spiked at 0.04 mg·L−1, a level close to the LOD value determined by
WLS; (c) chromatogram for the blank spiked at 0.30 mg·L−1, close to the LOD level calculated by OLS.

Finally, 7–10 replicates of spiked blank matrices prepared at levels 2–5 times greater than those
determined by WLS were analyzed and the measured sbl was used as a new estimate of σbl. All LOD
values obtained from sbl were equivalent to those obtained by WLS regression (Table 5).

5. Discussion

To estimate σbl from the linear calibration curve applying the Hubaux-Vos approach, the error
distribution of all standards used in the calibration must be constant (homoscedasticity) [8,13,17].
However, despite the fact that many researchers often do not take it into account, heteroscedasticity
is more frequent than might be expected in experimental sciences. Many analytical methods yield
non-constant variances over the calibration range [8,26,27,30–34], as was the case with the calibrations
evaluated in the present study (Figure 1). In these conditions, the absolute errors of the instrument tend
to be proportional to the concentrations, and the relative standard deviation is the constant parameter
across the curve instead of the standard deviation [33,35–38].
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Different studies have demonstrated that since homoscedasticity is a necessary condition to
apply the Hubaux-Vos approach, the use of OLS to assess limits of detection should be limited to
calibrations where experimental levels are chosen in a small range, around and up to ten times the
LOD [7,8,14,34,39]. Moreover, those guidelines that accept the estimation of LOD via the calibration
approach require the calibration to be performed in the range of the detection limit [4,7], with the most
concentrated standard not exceeding ten times the level of the LOD [7]. Unfortunately, this procedure
limits the use of the calibration function obtained, as the working range is very restricted.

Despite this basic requirement, it is common to find many studies in which OLS is applied to
estimate σbl without considering whether or not the calibration presents heteroscedasticity [28,29,40–44].
Unfortunately, OLS assumes constant variance over the whole calibration range and the standard
deviations calculated by OLS can differ greatly from the true standard deviation, particularly at low
concentration levels [35–37,45]. Moreover, as indicated by Meites et al. [46], in experimental calibrations
where the independent variable can also be subject to random measurement errors, OLS always lead to
biased estimates of the intercept. As can be seen in the results obtained in the present study, sb0 values
were always higher when OLS regression was applied, leading to an overestimation of LOD values
(Table 5). This was corroborated by the fact that when fortified blanks were prepared at the LOD level
estimated by OLS regression, the signals obtained gave S/N > 8 (as auto-integrated by the software of
the instruments, Figure 2c); and fortified blanks prepared below this limit gave chromatograms with
clearly identified peaks (S/N ≥ 3) (Figure 2b). Moreover, in many of the calibrations evaluated the
value of the signal obtained for the first standard and the S/N confirmed that this standard gave a
signal clearly above the LOD, but its concentration was below the LOD determined on applying OLS.

The use of WLS regression has been proposed as a good alternative to OLS in linear calibrations,
as it can manage heteroscedasticity [8,26,27,30]. It should be considered that OLS and WLS regression
models consider that the independent variable is free of error. Therefore, biased estimates of the
intercept are always to be anticipated in analytical calibrations, but sometimes this error is too small to
have any experimental significance [46]. It has been reported that WLS does not alter significantly the
slope estimate obtained by OLS, whereas the intercept is moderately affected [26,27]. In this study,
differences for the slopes calculated by OLS and WLS regressions were <5%, a difference that for
practical applications can be considered as equivalent. In the case of y-intercepts, the differences were
>10% (up to 1300%), which do have experimental significance.

Previous studies have found that the variances obtained at low concentrations with WLS are
significantly reduced when compared to OLS, and that precision loss with OLS calculations can be
as high as one order of magnitude in the lower range of the calibration curves [32,35–37]. The results
obtained in the present study show that in 17 calibrations sb0 values determined by WLS were
significantly smaller (2–23 times, p < 0.05, Fisher F-test) than by OLS (Tables 1–4), which agrees
with the results obtained by other studies comparing OLS and WLS with experimental calibrations
involving heteroscedastic data [8,26,27,47].

The standard deviations of the blanks determined through the analysis of matrix blanks spiked at
2–5 times the LOD levels calculated by WLS (n = 7–10, Tables 1–4) confirmed that the LODs obtained
with the sbl approach were equivalent to the LODs determined by WLS (Table 5). In general, the limits
determined with OLS were up to one order of magnitude higher than those obtained with WLS,
S/N and fortified blank measurements.

One of the main drawbacks of WLS is the need to analyze a large number of replicate standards at
each level to obtain the weighting factors (wi = 1/si

2). Taking into account that standard deviation is usually
proportional to the concentration [33,35–38], different experimental approaches have been proposed to
avoid the requirement of replicate measurements at each calibration level [33,35,38,48]. Therefore, different
empirical weighting factors, such as 1/xi

1/2, 1/xi, 1/xi
2, 1/yi

1/2, 1/yi and 1/yi
2, have been proposed,

from which 1/xi
2 and 1/yi

2 seem to yield the best results. The WLS regressions were evaluated
applying these two empirical weighting factors and the corresponding regression parameters, and their
standard deviations were used to determine the LODs (Table 5). It was observed that, in general,
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there were no significant differences between the LODs determined by WLS independently of the
weighting factor used. Only in two calibrations were the LODs determined applying both 1/xi

2 and
1/yi

2 weights significantly smaller than those obtained by 1/si
2 or sbl.

6. Conclusions

For routine applications, the working range of a calibration needs to cover several orders of
magnitude, which results in heteroscedastic data being obtained in experimental sciences. In these
conditions, the use of OLS, which is the simplest and most applied regression method for linear
calibrations, leads to an overestimation of the real standard deviation at the blank level. Therefore,
the calculated sb0 through OLS is not a good estimate of σbl (sb0 can be up to one order of magnitude
higher than the real σbl).

The results obtained in the present study show WLS to be the most adequate regression function
in determining LODs when the Hubaux-Vos approach is applied with linear chromatographic methods.
When WLS regression is used in the determination of the regression parameters, the deviation in the
variance at the blank level is significantly reduced. The LODs obtained with this regression function
tend to be equivalent to those calculated by the most common and accepted methodologies, such as
the S/N, and by performing a large number of analyses of fortified blank samples to calculate the sbl.

The WLS procedure is not the most appropriate in laboratory routine as it requires a large number
of replicate analyses to be performed at each calibration level. It is known that the experimental
requirements needed to perform WLS can be reduced by using empirical weighting factors such as
1/xi

2 and 1/yi
2. In the present study, it has been found that, in general, the use of these empirical

weighting factors allows equivalent LODs to those determined by 1/si
2 to be obtained.

Despite the limitations of OLS in determining LODs, the limits calculated by OLS can be accepted
as conservative estimates. It has been demonstrated that the limits obtained with OLS are always
higher than those obtained by other procedures and are often just above the quantification limit.
In many non-research laboratories, the minimum required performance limit (MRPL) is the minimum
concentration that laboratories must be able to reliably detect and identify for routine and daily
operations. In situations where LODs determined by OLS are below the MRPL, the limit obtained is
sufficient to confirm the ability of the laboratory to reach the MRPL.

Supplementary Materials: The following are available online at http://www.mdpi.com/2297-8739/5/4/49/s1,
Figure S1: Calibration curves and residual plot obtained for an HPLC-UV method for the analysis of theobromine
in chocolate samples.
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