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Abstract: Over the last two decades, miniaturization, integration, and automation have made
microfluidic systems popular. Core to advances in microfluidics are numerous electrophoretic
separation and preconcentration strategies, some finding their origins on bench-top systems. Among
them, gradient-based strategies are especially effective in addressing sensitivity challenges. This
review introduces several gradient-based techniques according to a broad definition, including
conductivity, field, and concentration, organized by the method of gradient generation. Each
technique is introduced and described, and recent seminal advances explored.
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1. Introduction

Superior properties compared to bench-top devices have earned microfluidic devices significant
popularity. Advantages include miniaturized operation systems, reduced reagent consumption,
minimal waste, and short time per operation. Examples of these features involve separation and
preconcentration methods, such as gravitational force [1], electrophoretic force [2-6], magnetic
force [7,8], acoustic waves [9-11], and optofluidics [12-14].

Electrophoretic-based separation and preconcentration schemes were initially drawn from
capillary electrophoretic methods. Since then, electrophoresis has exerted a powerful influence and
has led to a variety of derivations and branches, including field-amplified sample stacking [15-21],
isotachophoresis [22-30], free flow electrophoresis [31-35] and gradient focusing [36—42]. Among
them, gradient techniques are of special interest. In addition to creating separations, they can function
in sample preparation and/or preconcentration roles to increase sensitivity of microdevices.

This review focuses on strategies that include gradients which improve performance. The
term gradient, as used here, has a broad definition and includes conductivity, concentration or
velocity profile. Articles are sourced from recent years and the review does not attempt to be
comprehensive or exhaustive, but instead, provide a new perspective on recent developments. Several
subjects are excluded for clarity and space, including dielectrophoresis, field-flow electrophoresis, and
droplet-based microfluidics, even though these are all recognized as using gradients.

2. Conductivity Gradient

One strategy to create a gradient is to induce a variation in conductivity. This can be trivially
understood by examining equation E = I/0A (or simply, Ohm's law, where E is the electric field, I the
current, o conductivity, and A the cross-sectional area); the conductivity difference directly influences
the local electric field, thus creating the gradient.
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2.1. Field-Amplified Sample Stacking/Field-Amplified Sample Injection (FASS/FASI)

Field-amplified sample stacking/sample injection has long been considered. It is one of the most
commonly used, straightforward modes of electrophoretic separation. The stacking effect can be
achieved through a conductivity difference between samples and background electrolyte (usually the
conductivity of background electrolyte is 10 times higher than that of the sample). When the voltage is
applied, the electric field strength on the sample is higher compared to the background electrolyte, due
to the lower conductivity. As a result, sample starts to stack in the boundary—the nominal location of
the gradient (Figure 1).
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Figure 1. A schematic showing the basic principle of field-amplified sample stacking. Reprinted with
permission from Bharadwaj et al. [16]. Copyright 2005 Cambridge University Press, 2005.

The dynamics of this technique have been fully investigated by Bharadwaj et al. [16]. In that
work, situations with and without electroosmotic flow (EOF) were studied. By building up the
governing equations regarding convention, migration and diffusion, as well as considering the
boundary conditions, the study provided a platform for a better understanding of FASS. In later
work, they calculated that the highest concentration enhancement achieved was 1100-fold [43].

The technique is not typically used alone, as it serves as an efficient sample introduction technique.
It couples with a variety of other analytical methods for detection and identification on miniaturized
scales, including ICP-MS [44], ELISA [45], MEKC [46], and amperometry [47].

2.2. Isotachophoresis (ITP)

Isotachophoresis techniques have been used since the 1970s and, similar to field-amplified sample
stacking method, ITP also uses conductivity difference to form gradient. The major difference is that
amplified sample stacking relies on only one background electrolyte, while ITP uses two background
electrolytes with different mobilities. The higher mobility is the leading electrolyte and the lower
mobility the terminating electrolyte. The mobility of all the components of the sample must be between
that of leading electrolyte and terminating electrolyte. Given the similarities between FASS and ITP,
a comparison can be tabulated (Table 1).

Bocek et al. have contributed a great deal to this area. They have published reviews every two years
describing new progress in the field of capillary isotachophoresis [23,26,30]. They also collaborated
with Ivory’s group and reported a review on microfluidic isotachophoresis [27]. Santiago’s group has
contributed a review on the development of ITP (in addition to his considerable original contributions,
see below) [29].

This technique can be roughly divided into two categories, regular (monodirectional) and
bidirectional. Here, monodirectional ITP refers to those isotachophoretic methods that only apply
to enrich cations or anions. Bidirectional ITP aims to concentrate both cations and anions at the
same time. Monodirectional ITP has been highly developed and most recent works have focused
on practical applications of biological samples. Below are some seminal examples among all the
elegant applications.
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Table 1. A comparison between field-amplified sample stacking (FASS) and isotachophoresis (ITP).

ITP

Techniques FASS

Leading electrolyte (LE), terminating electrolyte (TE), sample (S),

Mobility requirement Background electrolyte (BGE), sample (S), usually ppgg = 10 pg

UTE < M5 < ULE

% +u-VC; = —zv;FV - (G;E) + D;V2C;, C; is the concentration of
ionic species i, D; is the molar diffusivity of species i, v; is the
electromigration mobility, z; is the valence number, F is Faraday’s
constant, u is the fluid velocity, and E is electric field; solution is
approximately electrically neutral (except EDL); modified Stokes
equation; a slip surface [16].

Governing equations

oCi +au-VC=-v,;V-|GE |+ EDZ'VZCI‘, C; is the molar

ot
concentration of ion 7, v; is the electrophoretic mobility, E is the
electric field, and D; is the diffusion coefficient, Pe = Eqvyd/Dy,
o = —eQo/ (nvg) (1 is viscosity, (g is zeta potential, and ¢ is the
length of stacked sample zone); EOF suppressed; diffusion
dominates [48].

Derived from Kohlrausch regulating function (KRF)

Based on the ratio of electric field in the sample and the BGE regions

Cotacked __Es 1 16 1100-fold [43].
Cnitim  EBGE

Concentration enhancement

Zig (|wLE |+‘ WCounter—ion D Wsample

Zsample (‘wSample + |wCounter—i0n‘) WLE
w, C are charge, mobility, concentration respectively, up to
100,000 -fold [48].

GEITP [28], FFITP [49], EKS [50], CZE [51] ...

Cre Z,

CSamplefplateuu =

Coupled techniques Mass spectroscopy [44], amperometry [47], ELISA [45], MEKC [46] ...
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Ivory’s group selected biomarker cardiac troponin I (cTnl) as a model study. cTnl is produced in
myocardium and is related to heart disease. The phosphorylated level of cTnl can help to determine
the risk and best treatment option. They started this work with a poly(methylmethacrylate) (PMMA)
microdevice with a 50 x reduction in the cross-sectional area (Figure 2, top) [52]. The reduction in width
or depth can give rise to a concentration increase. With this device, over 10,000-fold concentration
of ¢Tnl and R-phycoerythrin was achieved, and, with modifications, optimized their device to a
100x reduction (Figure 2, bottom) [53]. With that device, the sample with labeled cTnl in depleted
human serum was examined. Cationic ITP in a straight channel was investigated for a sample with
more components in solution to mimic the situation even closer to human serum, such as NaCl, urea,
and triton X-100 [54]. However, the results did not give as high an efficiency as they previously
demonstrated. They proposed it was mainly due to the surface adsorption and some leftover bubbles
from sample-loading procedures. To further explore and confirm their hypothesis, they conducted
the numerical simulation. Future directions include adapting this strategy to immunoassay for
distinguishing of phosphorylated and unphosphorylated c¢Tnl.
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Figure 2. The schematics of reduction (up: 50x adapted from Bottenus et al. [52]. Copyright 2011 Wiley
Online Library, 2011; down: 100 x adapted from Bottenus et al. [53]. Copyright 2011 Royal Society of
Chemistry, 2011.) cross-sectional area PMMA ITP microdevices for cTnl concentration from Ivory’s
group. When samples passed through the reduction area, the sample concentration increased based on
the reduction ratio.

Another excellent example is from Santiago and coworkers showing preconcentration of
biomolecules, especially DNA and RNA [29]. In 2012, they reported a miniaturized system for
extracting RNA from bacteria suspended in blood and avoided some contamination and degradation
issues, achieving high sensitivity, up to 100,000 times higher than some popular schemes [24].
The design was fairly simple, with a single straight channel and two ports (Figure 3, top left).
Terminating electrolytes (TE) were injected into the left port, and the leading electrolytes (LE) into
the right. The samples were introduced directly into the left port after incubation. After separation
they could be easily coupled to PCR and other secondary detection methods. In that work, they also
validated their results with qPCR. Later, they published a modified design to simultaneously separate
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and concentrate RNA and DNA from single cells [55]. The design was implemented with branched
channels, connecting to vacuum for sample loading (Figure 3, top right). Coupling online pretreatment
steps has also been accomplished. The whole process, including lysis, extraction and fractionation
could be done in less than five minutes [56]. A similar design has also been applied to co-focus DNA
and beads, which could potentially increase the DNA hybridization rate [57]. The entire process took
less than 20 min, a large reduction in the time required compared to conventional methods (20 h)
without significant concentration loss. In another study, a novel ITP device was designed with two
identically shaped simple compartments connected with a thin channel (Figure 3, bottom left) [58].
The latter compartment contained some DNA probes. The sample underwent preconcentration via
ITP, diffusion through the thin channel and entered the second compartment for hybridization. In a
third design, both PMMA and cyclin olefin copolymer (COC) chips were fabricated to conduct ITP
separation of DNA samples (Figure 4, bottom right) [59]. The design had a long turn channel and
high aspect-ratio, which could potentially reduce dispersion and heat dissipation. A special structure
for loading was incorporated in this device, which enabled injection of 25 uL samples into the device
without waste. This method proved to have high recovery efficiency, well suited for precious and
limited volume samples.
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Figure 3. Four promising ITP devices from Santiago’s group. Top left: Most typical design that has been
used for DNA and/or RNA extraction by their group. Reprinted with permission from Rogacs et al. [24].
Copyright 2012 American Chemical Society, 2012. Top right: The modified version with branches
facilitating sample loading. Reprinted with permission from Shintaku et al. [55]. Copyright 2014
American Chemical Society, 2014. Bottom left: Two identical-shaped compartments for ITP and
capture. Adapted from Han et al. [58]. Copyright 2014 Royal Society of Chemistry, 2014. Bottom
right: Long wind channel for high performance ITP separation of DNA samples. Adapted from
Marshall et al. [59]. Copyright 2014 Elsevier, 2014.

Santiago’s group led the development of bidirectional ITP as well. In their work, they achieved
bidirectional ITP in a straight channel through the application of shock wave [60,61]. Different
from monodirectional ITP, in their applications, four electrolytes were used, namely cationic leading
electrolyte, cationic terminating electrolyte, anionic leading electrolyte and anionic terminating
electrolyte. Using anionic analytes as an example, when voltage was applied, they formed distinct
bands between leading electrolyte and terminating electrolyte, migrating in one direction. At the
same time, the cationic electrolytes also underwent isotachophoresis, migrating in the opposite
direction. When these two shock waves met, there would be a replacement of ions, so the conditions
would dramatically change. In one of these applications, the ion-exchanging process eliminated the
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isotachophoresis condition. Then, it was switched to electrophoretic separation automatically without
any treatment, and the non-focusing tracer method was used to visualize experimental results [60].
In another case, they successfully generated the LE concentration cascade to further increase the
sensitivity of the ITP technique [61]. Their schemes could also achieve bidirectional ITP for protein
and DNA purifications [62]. This bidirectional device was with one single input in the middle and two
output reservoirs connected by two “C”-shaped channels for ITP separation of proteins and nucleic
acids simultaneously. One channel conducted cationic ITP for enriching positively charged proteins;
the other channel performed anionic ITP for negatively charged nucleic acids from human blood serum.
This bidirectional ITP method was demonstrated to have high recovery efficiency and compatibility
with PCR and other extraction methods.

Ross and coworkers have contributed to gradient elution ITP (GEITP) [28]. Compared to
conventional ITD, it includes applied pressure-driven flow as a counterforce to the electrophoretic
movement, generating precise position control and avoiding introduction of contaminates. In their
research, the capillary-based GEITP device was used to extract DNA from crude samples without
significant pretreatment.

Free flow electrophoresis is another direction of research aimed at the improvement of
current capillary electrophoresis [49]. Unlike most of the techniques addressed here, the field
is applied perpendicularly to the velocity direction, making the deflection of the species unique
to their electrophoretic mobility. This technique is quite flexible and is hybridized with other
electrophoretic separation techniques, such as free flow isotachophoresis (FFITP). Prest and coworkers
first miniaturized the FFITP device and applied this to separation of bacteria. The design consisted
of a rectangular chamber with nine inlets and nine outlets on short sides of the chamber as well as
electrodes on long sides. The leading electrolytes were injected into the chamber from the left three
inlets at a higher rate, while the terminating electrolytes from the right three inlets had a slower flow
rate as did samples from the middle three inlets. Once the chambers were filled with mixture of leading
and terminating electrolytes, the separation started with the application of a constant current. While
dealing with bacteria samples, they visualized the cells by mixing the samples with a dye solution.
Prior to bacteria separation, they first tried this device on dyes. The results were quite promising.

Electrokinetic supercharging (EKS) consists of field-amplified sample injection and
isotachophoresis. Hirokawa and his coworkers designed a microdevice with three ports and a long
curved channel for floating electrokinetic supercharging to separate, concentrate and analyze DNA
samples [50]. The three ports were electronically floated to differ from conventional EKS and the
long, turned channel was used for separation. Parameters and geometry were optimized for reducing
band-broadening effect.

Fung and coworkers realized a two-dimensional transient scheme (t-ITP/CZE) for the detection
of clinical urinary proteins [51]. Four urinary samples were successfully separated through a 2D
t-ITP/CZE microdevice. The transient step was mainly used for desalting and preconcentration,
whereas CZE was used for separation. The microdevice generated results in a short time (less than 8
min), and showed high enrichment and low limit of detection compared to standard clinical techniques.

Isotachophoresis can be performed in other media, a paper-based microdevice serving as a prime
example. In Bercovici’s work, 1000-fold concentration enhancement was demonstrated with porous
media [63]. The device was easy to fabricate without complicated enclosure operations. The key
point of designing this device is to minimize Joule heating and evaporation. This was achieved by
printing shallow channels for a high heat dissipation efficiency. One major drawback is the dispersion
effect. Another example was from Posner and coworkers [64]: a simple paper-based device was
used to perform ITP concentration of a fluorescent tracer. The results showed good agreement with
numerical simulations. Moreover, the device can be powered by a battery, showing the ability to be a
portable device.

Separations based on ITP have been performed on commercialized all-in-one platform
microdevices. Breadmore and coworkers explored some customized features of this instrument [65-67].
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To evaluate the analytical potential of the system, the method was used for the quantitative analysis
of benzoate in soft drinks. The results were validated with a CZE method with generally good
agreement [66]. The same strategy on lactate in serum did not produce the same results, especially
compared to commercial chips. In response, they designed a chip for ITP separation [67]. With this
customized chip, they performed lactate concentration determination in three different serum samples
quantified by CZE and by ITP using a commercial system. Both methods generated comparable results,
demonstrating the platform for a diverse range of applications.

2.3. Conductivity Gradient Focusing

The early application of conductivity gradient for protein concentration came from Ivory’s
group [68]. They used a chamber that was divided into compartments by a dialysis membrane
(Figure 4). Buffers of different conductivity were placed in each section. The species with low molecular
weight could pass through the membrane, creating the conductivity gradient when the voltage was
applied. A convective force was employed to balance the electrophoretic velocity of proteins. The
basic principles of this technique combining electric field, fluid field and mass transportation, were
described as well.

—

—» High saltinlet
— Gradient channel
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onwe © Dialysis membrane Purge channel

Figure 4. A schematic of conductivity gradient focusing from Ivory’s group. Adapted from
Greenlee et al. [68]. Copyright 2007 Wiley Online Library, 2007.

Inglis and coworkers have contributed to the development of this technique with a device that
has a tapered channel, filled with low-conductivity buffer on one side and high on the other side,
creating gradient along the channel [69]. Once the electric field is applied, both electrophoresis and
electroosmosis are induced. In the low-conductivity zone, the electrophoretic velocity dominates,
while at the high conductivity zone, the electroosmotic flow dominates, thus focusing different species
at distinct locations based on their individual mobilities. Separation and concentration of two proteins
were performed in this device, achieving 1000-fold concentration enhancement within 20 min. They
also investigated the effects of altering the electric field [70]. Four different geometries, including
rectangular channel and three tapered channels with different length ratios were studied. Based on the
numerical simulations and experimental results, the tapered channel with the highest length ratio had
the best performance. They proposed that in the rectangular channel, focusing took place only when
the flow direction was opposite to the conductivity gradient, since the electric field increased at the
low-conductivity end. When flow direction and conductivity gradient were the same, the trapping
was unstable. While in the tapered channel, the electric field was higher at both ends and, with the
channel width reduced, the field magnitude increased. A weakness is that, in the numerical simulation,
it was assumed the electroosmotic flow was constant along the channel. In reality, the electroosmotic
flow is non-uniform due to gradients in electric field and local electroosmotic mobility [71]. The
non-uniformity of the electroosmotic flow changed the proposed mechanism and the varying electric
field and electric double layer thickness formed a counter electroosmotic flow at the low-conductivity
zone end of the device, increasing the trapping efficiency of proteins. With a new simulation, they
re-examined the four geometries and the numerical results matched well with experimental results.
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3. Counterflow Electric Field Gradient

When the electric field gradient is combined with another force to perform focusing in a single
buffer, the strategy is commonly referred to simply as counterflow electric field gradient (Figure 5).
In most of the cases, one of the velocities holds constant while the other varies, and the species focuses
at the place where two velocities sum to zero. A brief comparison of some common counterflow
gradient techniques is summarized in the Table 2 (at the end of this sub-section).

Electrophoretic

Total ~ Zero-velocity point

Lypofap

Distance

Figure 5. A universal schematic of counterflow electric field gradient focusing strategies. Adapted
from Shackman et al. [40]. Copyright 2007 Wiley Online Library, 2007.

3.1. Electric Field Gradient Focusing/Dynamic Field Gradient Focusing (EFGF/DFGF)

This technique employs an electric field and a pressure-induced flow. Ivory’s group has made
significant contributions to the development of EFGF. As early as 1996, they published an article
introducing the strategy, where the electrophoretic force was countered by a convective force [36,72].
The apparatus consisted of a chamber with a varying cross-sectional area along the axis, inducing the
electric field gradient. The flow is constant in the chamber. The chamber was split into two parts via a
dialysis membrane, which allowed electric current to pass but not the convective flow. With this setup,
they examined the focusing and separation of hemoglobin.

They also investigated a computer controlled array of electrodes to create a precise electric field
gradient [73]. They termed this new branch dynamic field gradient focusing. From 2008 to 2010,
they reported a variety of applications using this technique in preparative-scale apparatus [73-75].
The applications were all on preparative scale and some were considered to be cumbersome
and complicated.

Lee and colleagues contributed to analytical EFGF devices. They first proposed a device made
of ionically conductive acrylic copolymer, which allowed ions to permeate but not proteins. The
horn shape of the device enabled the creation of an electric field gradient [76,77]. They successfully
concentrated fluorescent protein 10,000-fold and demonstrated the separation of a mixture of proteins.
The peak capacity and resolution of this device was relatively low and the protein adsorption was a
challenge. To ameliorate these problems, they used poly(ethylene glycol) (PEG)-functionalized acrylic
plastic, which decreased protein adsorption. The PEG-functionalized monolith was also used to reduce
dispersion (Figure 6, left) [78]. The packed or monolithic column could disrupt the laminar flow profile
(compared to an open channel), which flattened the parabolic shape of laminar flow, thus increasing
resolution. They optimized the device via switching to another buffer solution, which could produce a
more linear electric field [79]. The results from this modified device showed narrower peak width and
smaller standard deviation. With the optimized device, they investigated the ability to create bilinear
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electric field gradient focusing, which would enhance the resolving power and the peak capacity
simultaneously [80].

In 2012, Breadmore and his coworkers developed a new strategy to generate electric field gradient
by using a variable-width polyaniline (PANI) electrode (Figure 6, right) [81]. The idea was similar to
Lee’s work, replacing the horn-shaped hydrogel with a PANI electrode. The width along the axial
dimension varied to create variable resistances, thus generating electric field gradient. The advantage
of the PANI electrode is that it relies on the low conductivity of PANI polymer, enabling the application
of higher voltage with less current. With this technique, they were able to successfully concentrate two
fluorescent dyes.

m 50 pm wide Oty (—
N chip

mmmmmmm Electroosmotic
flow
:I;lydmdynamic
’\ flow
% +
Syringe pump /’/_'
Reservoir

EFGF device

s

Copper wire
to power
supply

Figure 6. Schematics of two electric field gradient focusing techniques. Right: A horn-shaped design
from Lee’s group. The device was fabricated with poly(ethylene glycol) (PEG)-functionalized acrylic
plastic to reduce protein adsorption. Moreover, the PEG-functionalized monolith was incorporated
in the device to reduce dispersion. Reprinted with permission from Sun et al. [78]. Copyright 2008
American Chemical Society, 2008. Left: A variable-width PANI electrode design from Breadmore’s
group. The dark-green area in the picture was made of PANI electrode with variable width. Adapted
from Trickett et al. [81]. Copyright 2012 Wiley Online Library, 2012.

More recent work on EFGF focused on theoretical foundations. A group in Canada, inspired by
Lee’s work, combined the bilinear gradient with swept counterflow [82]. Numerical simulations were
performed to assess the resolution using various parameters, including length, scan rate and potential.
The results agreed well with the predicted valued from the existing literature.

Another direction of EFGF started with the observation of isotachophoretic phenomena within an
EFGF device. The observations were supported by theoretical simulations. While DFGF is a somewhat
unique, it does not necessarily scale linearly and therefore miniaturization must be executed with
care. Moreover, the technique has typically relied upon membranes. Ivory’s group explored some
major issues associated with semi-permeable membranes [83]. The membranes were removed and a
novel DFGF design was developed [84]. To overcome the electrolysis in this design, an “on-line degas”
compartment was included. Compared to their previous design, the degas compartment was located
at the bottom of the device and hooked to an in-house vacuum. To prevent the collapse, the degas
compartment and the main compartment—separation compartment with multiple electrodes—were
connected only through a Teflon sheet as well as the porous ceramics. With this design, three dyes
with lower molar weight were separated over 10 h without noticeable degradation.

3.2. Gradient Elution Moving Boundary Electrophoresis (GEMBE)

Ross’s group proposed gradient elution moving boundary electrophoresis (GEMBE). Unlike EFGF
with a constant convective flow, this technique used variable hydrodynamic flow from high to low
with a constant electrophoretic velocity. All the species were initially placed outside the entrance of
the separation channel. Thus only when the bulk counterflow velocity was smaller than the species’
electrophoretic velocity could they enter the channel. Sample could be injected without using any
critical sample injection mechanisms.
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This strategy was first made available on a CE platform in 2006 with a pressure-controlled waste
reservoir coupled to CE. As a model study, fluorescein and carboxyfluorescein were used to perform the
separation. This apparatus could be miniaturized with only an all-in-one inlet port and one outlet port
per analyte. With their microfluidic apparatus, they studied linear pressure gradient, which successfully
separated two fluorescent dyes [85]. With a multistage (nonlinear) gradient, five dansyl-labeled amino
acids were isolated. The method gives rise to stair-like data, and electropherogram-like data can be
achieved by plotting the first derivative of the raw data.

To avoid some instrument-related issues, Ross’s group used capacitively coupled contactless
conductive detection (C*D) [86]. Post-processing of the data was used to generate the electropherogram-
like signals. With this detection method, complex samples were investigated, such as milk, dirt,
estuarine sediment, coal fly ash and leaves. Samples were injected into the capillary-based apparatus
filled with background electrolytes without any pretreatment. This idea has been adapted to a
microfluidic device [87]. The design was relatively simple, with one port for sample injection, the
other port for background electrolyte injection. The detection was performed around 1 mm from the
sample reservoir. The pressure adjustment compartment was connected with buffer reservoir. With
this device, dirt and whole blood samples were tested.

When implemented with a sample stacking technique, they could load preconcentrated samples
continuously [88]. They have successfully achieved substantial signal enhancement, which was no
longer limited to just the conductivity ratio. The continuous sample loading process was accomplished
by preparing samples in a lower conductivity buffer and using a higher concentration buffer in
the experiments.

3.3. Electrophoretic Exclusion (EE)

Inspired from the techniques mentioned above as well as electrophoretic separation of biological
samples is electrophoretic exclusion. It also exploits an electric field to establish a gradient and the
pressure-driven hydrodynamic flow is used to counter. However, with the geometry of the apparatus,
the electric field gradient is formed only at the entrance to the channel, making the exclusion take
place in the immediate vicinity of the entrance and nowhere else.

The technique was started as a bench-top device by Polson et al., demonstrating exclusion on
polystyrene spheres [89]. Small molecule exclusion was shown by Meighan et al. with an in-house
built instrument [90]. The setup was not complex. Separate sample and buffer vials were connected by
a capillary. Two vials were placed at different heights to create pressure-driven flow. The electric field
was applied across the capillary with an integrated electrode exactly at the entrance and a standard
electrode in the buffer vial. The spectrometer was placed near the entrance of the capillary. The
principle of exclusion was confirmed by using a mixture of fluorescent dyes, namely methyl green and
neutral red. Similar results were shown with proteins [91] by modifying the capillary with an inner
surface polyimide coating to eliminate EOF. Myoglobin, as a model study, was concentrated ~1000-fold
in a short period of time. Moreover, separation of multiple proteins was also shown, including mixtures
of two positively charged species and one of mixed charge.

Kenyon et al., adapted this technique to a microfluidic device [92]. They investigated this
miniaturized device using rhodamine 123 and 100 pm polystyrene beads. Images demonstrated
the separation of these two species. They also investigated the theoretical limit of this technique,
indicating that is very high resolution, can be run parallel, and separations can occur quickly [93].

Currently, a device with one entrance reservoir and three parallel functional units is used.
To better understand how the microdevice works and how it can be optimized, investigation on
asymmetric electrode placement (electrode only on one wall) was conducted. Numerical simulations
were compared with the experimental results, showing a good agreement. The model constructed was
believed to be beneficial for designing next-generation devices [94].
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Table 2. A brief comparison between four common counterflow gradient focusing strategies.

Techniques EFGF-Ivory [36,72] EFGF-Lee [76-80] GEMBE [85-88] EE [90-92,94]
Electrophoretic . Bulk flow swept from high .
Forces force, constant Electrophoretic force, to low, electrophoretic Hydrodynamic flow,

convective force

constant bulk fluid flow

migration constant

electrophoretic velocity

Electrokinetic injection

Pipetting small volume or

Sample injection A sample loop Continuous introduction .
or pumped syringe pump
Pressure control A back-pressure A svringe pum A precision pressure A rotatable board or
regulator yringe pump controller syringe pump
Electric field Distal electrode and Electrode and sudden
gradient A shaped chamber A horn-shaped chamber . expansion channel-reservoir
. standard CE capillary .
establishment interface
Suppressed with Coating DDAB on Suppressed with low pH
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coating the capillary wall
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Up to 14,000-fold in 60
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110x with a conductivity
ratio of 8.21
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estimated more than 10-fold in

30 s (microdevice)

4. Temperature Gradient Focusing (TGF)

An alternative technique, temperature gradient focusing (TGF), was described by Ross’s group
(Figure 7, left) [95-97]. In this technique, the electric field gradient was created with a buffer with a
temperature-dependent ionic strength and local heating. Pressure-driven flow was balanced by the
varying electrophoretic velocity, and the targeted analytes can be focused at a specific position.

They demonstrated external heating/cooling equipment to generate temperature gradient.
However, the technique has limited peak capacity as well as the dependence of analytes and buffers to
temperature. Some other groups also worked on temperature gradient focusing topic with different
strategies. Normally, Joule heating would be eliminated for separations, since it causes internal
convection within the channel or reservoir. However, in the TGF regime, separation and concentration
can take advantage of Joule heating and achieve excellent performance. The first attempt was by
Hasselbrink’s group [98]. Their work aimed at reducing the energy needed for the TGF device, as well
as eliminating the usage of temperature-dependent buffer. The microchannel was wide at the end and
narrow in the middle to establish the temperature gradient. Due to the smaller cross-sectional area
in the middle, the current density was higher in this region, thus creating the highest temperature.
Electroosmotic flow was used to counterbalance the electrophoretic velocity generated through the
temperature gradient. A mixture of two dyes were separated and concentrated in this device. However,
the steady-state temperature profile was difficult to maintain, making the focused plug gradually
move towards the anode side. This group further studied the Joule heating effect for temperature
gradient generation with numerical simulations [99].

Instead of using the geometries mentioned above, Yang’s research group designed a new system
with a sudden expansion. They started their investigation with numerical simulations and tested
some parameters that might potentially affect the performance of the device, including voltage,
buffer concentration, and channel-width ratio, among others [100]. It turned out that all these factors
influenced the concentration enhancement. The simulation results were comparable with experiments,
and showed higher concentration enhancement than the method developed by Ross. With this
information, they further optimized the device by using combined AC and DC fields to induce
the Joule heating effect, thus suppressing electroosmotic flow and decreasing the required DC field
(Figure 7, right) [101]. With this modification, the concentration could be enhanced to 2500-fold.
They performed concentration of DNA with the same setup, accomplishing 480-fold concentration
enhancement in 40 s [102].
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Figure 7. Two common schematics for temperature gradient focusing. Left: Ross and coworkers
design using external heating/cooling equipment for temperature gradient generation [96]. Copyright
2006 American Chemical Society, 2006. Right: Yang’s work by using electroosmotic flow with a sudden
expansion design for creating temperature gradient. Adapted from Ge et al. [101]. Copyright 2015
Royal Society of Chemistry, 2015.

The usage of internal heater is also a trend for temperature gradient focusing, including Peltier
element (Figure 8, top left) [103], radiative heater (Figure 8, top right) [104], and optothermal accessories
(Figure 8, bottom left) [105], among others. A miniaturized application focused on the use of liquid
metal (Figure 8, bottom right) [106]. In the work proposed by Liu and coworkers, they first filled the
channel with liquid metal as heater, then with the application of voltage, Joule heating was generated
from this liquid-metal gallium-based alloy heater to form temperature gradient with low conductivity.
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Figure 8. Different strategies for creating temperature gradient through an internal heater. Top left:

| | —Heating wire

PoMS

Peltier elements were incorporated into the device, and applied by different temperatures. The area
between two elements formed the temperature gradient. Adapted from Matsui et al. [103]. Copyright
2007 Wiley Online Library, 2007. Top right: A slantwise radiative heater was tilted and generated an
angle with the plate, and the temperature gradient was generated along the channel. Adapted from
Zhang et al. [104]. Copyright 2007 Royal Society of Chemistry, 2007. Bottom left: The heated area was
generated through the precise projection of a pattern onto the surface of the microdevice. Adapted
from Akbari et al. [105]. Copyright 2011 SpringerLink, 2011. Bottom right: Liquid metal was filled
in the channel of microdevice for generating temperature gradient. Adapted from Gao et al. [106].
Copyright 2013 The American Society of Mechanical Engineers, 2013.
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In temperature gradient focusing, the bilinear gradient can also be used to enhance the peak
capacity and resolving power at the same time. Ren’s group investigated the bilinear gradient
formation in the TGF device [82,107,108]. The basic idea was very similar to that proposed by Lee’s
team, namely combining a steep gradient followed by a shallow gradient. In order to achieve such
a bilinear gradient, a heater was integrated into the microdevice. The heater was designed to have
one large end and one small end to allow for the heat generation, thus creating a desired temperature
profile. In order to obtain a broad temperature gradient, the large region was operated in cooled water
at initial stage to enhance the temperature difference. The temperature profile was confirmed by finite
element simulation software. A comparison between linear and bilinear experimental results were also
made, and the bilinear method showed a fairly good resolving power when performing separation of
three fluorescent-labeled amino acids, whereas the linear method only showed two peaks.

5. Concentration Polarization/Ion Concentration Polarization (ICP) and Bipolar Electrodes (BPE)

5.1. Concentration Polarization/Ion Concentration Polarization (ICP)

Concentration polarization (CP) or ion concentration polarization (ICP) is well known to
electrochemists, in many instances as a nuisance. ICP is commonly achieved purposefully through
nanochannel structure and ion-permselective membrane.

The ICP phenomenon is generated by a gradient of ions and co-ions of differing mobilities
across a nanopore small enough to allow for an electric double layer (EDL) overlap or permselective
membrane. A nanostructure has pores small enough to allow the overlap of the EDL from opposite
sides of the opening. The overlapping of the EDL causes the solution in the nanostructure to be charged,
preventing transport of co-ions. The nanostructure then exhibits the permselectivity property-enriching
ions or co-ions [109]. For the membrane, the mismatch of mobile and stationary charge carriers across
the membrane causes an accumulation of ions.

Early work using nanochannel structure and charge-selective membrane for separation and
preconcentration was undertaken by Sweedler and Bohn’s research groups [110,111]. In their work,
two microfluidic channels were placed cross-wise in a layered device with a nanofluidic membrane in
between. This design enabled the sorting of species between layers and opened up the possibility of
using nanostructure and membrane as well as 3D-multilayer construction for preconcentration.

A novel nanostructure with the Nafion membrane for separation of salted species from seawater
was shown by Han and his coworkers (Figure 9, top left) [112]. In their device, the nanostructure was
located at the intersection of two branches. Due to ion depletion, the charged species were repelled to
one branch, while the desalted species (mainly water) could flow through the other. Since the charged
species were repelled, the nanoporous membrane did not foul. They showed that 99% of the salt could
be removed and that the energy consumption was low. However, recent work demonstrated that it
was not as efficient as initially presented. Nevertheless, this was a very successful trial and provided a
convenient way to address the global water-shortage problem. Later, the same device was used for
separation of biomolecules and cells [113].

This design inspired other configurations. Kang’s group used a Nafion membrane tilted to 45° and
positioned between channels (Figure 9, top middle) [114] where the ion-depletion zone formed near
the one bottom edge of the membrane. The outlet region was expanded compared to the separation
channel, amplifying the separation efficiency and acting as a dimension sorter. The separation was
demonstrated with two particles of differing diameters.

Sinton’s group contributed a 3D design for its potential use for high-throughput detection and
analysis related to desalination (Figure 9, bottom left) [115]. The device had three stacked vertical units:
the top layer had a vertical membrane, the middle layer had a channel for purified water, and the
bottom layer was used to transport charged species. Similar to Han and Kang’s designs, when voltage
was applied, the region near the membrane formed an ion-depletion zone, deflecting the charged
species. As a result, the neutral water molecules flowed through the second layer, while the charged
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impurities passed through the bottom. It was noteworthy that the purified layer and bottom layer
were not overlapped in space, making the visualization more convenient. The device has three-fold
functional density and is less energy consumption than planar devices.

Preconcentration can also be achieved through a straight channel. Han and Kang’s group
collaborated in 2012 and developed a straight channel design with a membrane located in the middle
of the channel (Figure 9, top right) [116]. With the application of sufficient flow, depletion and
ion-enrichment zones formed. The spread of these zones was limited compared to conventional
devices. They also coupled this to an immunoassay for preconcentration and obtained a limit of
detection of 1 ng/mL, which is 1000 times lower than classical strategies. Tang’s group developed
a similar single-channel device, achieving over 10,000-fold concentration enhancement of protein
samples in one case and simultaneous accumulation of cells in another application [117]. Tang’s group
further investigated the theoretical basis of their scheme using numerical simulations [118].

Channel structures were expanded to a radial concentrator by Sinton and coworkers (Figure 9,
bottom middle and right) [119]. A vertical channel was placed in the center of a radial chamber
covered by the Nafion membrane. Application of a voltage created an ion-depletion zone around the
membrane. The depletion zone spread until entering the middle vertical channel. No additional flow
was required and concentration over 150-fold was achieved in a short period of time.

Voltage + Pressure
(inlet 1) 8, —

Pressure

(inlet 2) ‘,a&

o Floating
s\ (outlet)

51 Floating Ground

NG PDMS Nafion
membrane micr rane

Separation channel

/Aﬂer channel

Nafion width

Broadened
region

Nanopotous
Water membrane

Depletion
boundary
molecules

Vertical injection
Analysis lager channel

"~ Preconcentzation

build-up

Charged molecules

Figure 9. Various ICP devices. Top left: Seawater purification device from Han’s group. Reprinted
by permission from Macmillan Publishers Ltd: [Nature Nanotechnology] (Kim et al.) [112], copyright
(2010). Top middle: Tilted Nafion membrane for particle sorting from Kang’s group. Reprinted by
permission from Macmillan Publishers Ltd: [Scientific reports] (Jeon ef al.) [114], copyright (2013). Top
right: Single channel ICP. Adapted from Ko et al. [116]. Copyright 2012 Royal Society of Chemistry,
2012. Bottom left: Out-of-plane ICP for purification of seawater from Sinton’s group. Adapted from
MacDonald et al. [115]. Copyright 2014 Royal Society of Chemistry, 2014. Bottom middle and right:
Radial concentration from Sinton’s group. Adapted from Scarff et al. [119]. Copyright 2011 Royal
Society of Chemistry, 2011.

Most recent research has been focused on paper-based devices, easing fabrication requirements.
A good example came from Wang’s group in National Cheng Kung University. They tested several
different geometries. An optimized converging device can result in ~20-fold increase, while a straight
channel only gave ~10-fold enhancement [120].
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Another fabrication technique, xurography, can also be cleanroom-free [121]. Microchannels were
created on a double-face adhesive film, then adhered to a glass slide. A strip of Nafion was placed
above the film. A cutting plotter, which was formerly used industrially, was used for adjusting the
shape of the channels and Nafion membrane. With this simple device, a concentration factor of over
5000-fold was shown.

5.2. Bipolar Electrodes (BPE)

Bipolar electrodes, mostly with respect to bipolar electrochemistry, have long been investigated.
They did not receive much attention in electrophoretic separation and preconcentration until Crooks
and coworkers reported competition between ionic conductance and electronic conductance in a
microfluidic device [122]. A number of projects followed. First, they developed a theoretical model
and studied the dynamics of species transportation and electric field formation [123]. They then
determined the rates of hydrolysis that led to the differences in conductivity, thus creating an electric
field gradient. They extended the application to simultaneously enrich and concentrate three different
species, and the result was quite promising: within 200 s, they successfully enriched three negatively
charged species over 200-fold [124]. The focusing mechanism was mainly due to the electric field
generated by faradaic reactions. When a pH-sensitive buffer, such as Tris/TrisH" was used, the OH™
generated at the cathodic pole of the BPE could react with the TrisH" near that region, forming neutral
Tris and reducing the conductivity regionally. The conductivity difference established the electric
field gradient. In addition, the electroosmotic flow was used to counter the electrophoretic velocity,
making the species accumulate at a specific position. They termed this phenomenon as “bipolar
electrode focusing” and investigated current and electric field effects [125,126]. Moreover, with the
modification of channel walls, the reversal EOF enabled the enrichment of cations in the BPE-based
microdevices [127].

They also explored the depletion zone using bipolar electrodes [128]. The principle behind it
was quite similar to that of bipolar electrode focusing, but the electrolyte was not pH-sensitive. As a
result, the OH™ at the cathodic pole and H* at the anodic pole increased the conductivity near these
two regions. Consequently, the electric field was relatively low between BPE and high on both poles,
making the anion migrate towards the cathode. They further studied the ability of this device acting as
a membraneless filter when one negatively charged dye and one neutral dye were combined.

Single-channel and dual-channel designs were investigated, leading to a discussion of faradaic
ion concentration polarization [129]. Compared to conventional ICP, which transported charged
species through a nanostructure/membrane, the faradaic ICP from BPE “transported” species through
electrochemical reactions on both cathodic and anodic poles of electrodes. As a result, conventional
ICP was noted as mass-transport limited, while faradaic ICP was electron-transfer limited.

With a clear understanding of faradaic ICP, the dual-channel design has been used for enrichment
and concentration of both cations and anions [130]. In this design, two channels were connected by a
bipolar electrode with TrisH* buffer in the top channel, and acetate buffer in the bottom channel.

Building on this body of work, Song and coworkers developed a bipolar electrode-based
microdevice combining the end-label free-solution electrophoresis for preconcentration and separation
of DNA [131]. In their approach, a simple dual-channel design was used. DNA was labeled by a
protein tag to achieve different mass-to-charge ratio, which enabled the free-solution electrophoresis
for separation and enrichment in a BPE-coupled dual-channel microdevice.

6. Concluding Remarks

This review provides a distinctive view of electrophoretic separation and preconcentration
strategies. Gradient-based approaches in electrophoretic methods are promising and continue to
attract attention of the scientific community since they serve as selective preconcentration platforms
for complex matrices. Growing interest is visible in new fabrication procedures aiming to reduce
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the complicated and 1 abor-intensive work with standard lithography procedures in the cleanroom.
A remarkable trend can be seen in paper-based microdevices.

Among all the techniques mentioned in this review, isotachophoretic strategies might be the
most practical ones as they can be applied to a variety of analytes including biological samples and
inorganic components. Field-amplified sample stacking still serves as an important role in sample
injection or introduction, and may facilitate a better performance when combined with other techniques.
Counterflow electric field gradient focusing remains an effective separation and preconcentration
method. Gradient elution moving boundary electrophoresis might be the most powerful tool in this
category as it can be applied to raw samples even without prior treatment. Electric field gradient
focusing maintains its advantage and can be used for some bio-samples. Electrophoretic exclusion is
still at an early phase and aims to provide new insight for next-generation design. Temperature gradient
focusing continues to grow, with new fabrication or new materials facilitating further development of
the technique.

The reviewed papers demonstrate that gradient-based electrophoretic approaches remain an
effective tool for keeping CE techniques competitive, and in many cases superior, compared with other
separation methods.
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