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Abstract: The plate model proposed by Martin and Synge has been used for the characterization of
columns up-to-date. In this approach, the column is divided into a large number (N) of identical
theoretical plates. Mobile phase transference between plates takes place in infinitesimal steps with
mixing of the solutions in the adjacent plates during the flow. The plate height is related to the
band broadening that occurs in the mixing process due to the microscopic heterogeneities in the
mobile phase flow. According to the original Martin and Synge model, solutes reach the equilibrium
instantaneously in each theoretical plate, where dispersion is produced by: (i) convection or mixing of
the mobile phase reaching a theoretical plate with that existing in that plate; and (ii) the equilibrium
of the solute that is partitioned between mobile phase and stationary phase. In this work, a general
method is proposed to solve the problem of chromatographic elution by means of an extended plate
model assuming slow mass transfer, longitudinal diffusion in both mobile phase and stationary phase,
and the extra column dispersion. The final equation was validated by comparing the results with
those obtained through the numerical simulation of the solute migration using the finite differential
approach. Experimental data were also used to check the validity of the derived equations.

Keywords: liquid chromatography; peak profile; slow mass transfer; longitudinal diffusion;
extra-column dispersion; extended plate model; Laplace transform

1. Introduction

In 1941, Martin and Synge developed the principles of partition chromatography [1,2], and
proposed the theoretical plate model to describe the elution in linear chromatography. These authors
introduced the concept of “theoretical plate” in analogy to the description of fractional distillation [3].
In 1952, both researchers were awarded with the Nobel Prize [4]. Because of its simplicity, the plate
model was useful to measure the chromatographic column performance through the proposal of the
concept of number of column theoretical plates (N). Later, Craig [5] introduced the counter-current
distribution and derived a mathematical treatment to explain the experimental results [6]. In the
plate model, the theoretical plate is represented as a column disk of very small thickness, where the
equilibrium is reached instantaneously. In the Craig model, the elution is discontinuous and at each
step the mobile phase inside a theoretical plate is replaced completely by the mobile phase in the
preceding plate. In that time interval, the distribution equilibrium is assumed to be reached. This
process results in a peak showing a binomial distribution [7], which can be approximated to a Gaussian
with a variance equal to:

σ2 “
tR ptR ´ t0q

N
(1)

Separations 2016, 3, 11; doi:10.3390/separations3020011 www.mdpi.com/journal/separations

http://www.mdpi.com/journal/separations
http://www.mdpi.com
http://www.mdpi.com/journal/separations


Separations 2016, 3, 11 2 of 24

where tR and t0 are the retention time and dead time, respectively. According to this model, a
non-retained compound would give rise to a peak with null width; hence, the peak broadening
modeled by Equation (1) is due solely to the equilibrium between mobile phase and stationary phase.

Instead, according to Martin and Synge, the elution is continuous and the mobile phase is
transferred from one plate to the next in infinitesimal volumes, and the incoming phase is mixed with
the theoretical plate receiver. Therefore, the proposed model implies an additional broadening due to
this convective effect. Martin and Synge originally solved the plate model by the sequential study of
the infinitesimal steps taking place during the elution process. Later, Said [8,9] performed a treatment
based on the continuous flow of eluent through the column plates. More recently, we have studied the
elution process by solving a system of differential equations consisting of mass balances that occur in
each plate [10]. For plate i:

dni
dt

“
N

t0 p1` kq
ni´1 ´

N
t0 p1` kq

ni (2)

where k is the retention factor and ni the moles of solute in plate i at time t. The analytical solution of
the system of differential equations yields the following peak profile versus time [7,10]:

f ptq “
ˆ

N
t0 p1` kq

˙N tN´ 1

pN ´ 1q!
e

´N
t0 p1` kq

t
(3)

Equation (3) describes an Erlang distribution [11], which for sufficiently large values of N, tends
to a normal distribution [7], with mean and variance equal to:

tR “ t0 p1` kq (4)

σ2 “
t2
R

N
(5)

In the Martin and Synge model, when a solute does not interact with the stationary phase, peak
broadening is given by:

σ2
0 “

t2
0

N
(6)

The plate model theory described by Martin and Synge has been adopted as a basis for defining
the efficiency and separation capability of chromatographic columns up-to-date. Despite its popularity,
the plate model had only been solved for the simplest case that considers only the instantaneous
equilibrium. By applying the Laplace transform, we managed to consider a slow mass transfer between
mobile phase and stationary phase [10], proposing the following dispersion equation:

σ2 “
t2
R

N

ˆ

1` 2
´ τ

ν

¯ k
1` k

˙

(7)

where τ is a parameter related with the mass transfer due to the flow, and ν is the mass transfer
constant between phases.

A more comprehensive study of the chromatographic elution process requires considering besides
the equilibrium and slow mass transfer kinetics between mobile phase and stationary phase, the
longitudinal diffusion in the mobile phase (and to a lesser extent, in the stationary phase), together
with the eddy diffusion and heterogeneities in the flow [12,13]. In addition, the dispersion due to
extra-column sources should be included [14,15]. The rate models [16] have been most widely used to
consider some of these factors in both linear and non-linear elution [17], and for isocratic and gradient
elution [18]. However, its resolution can be difficult and requires several approximations [17,19], or
the use of numerical methods [20–22]. When an equilibrium with slow mass transfer and diffusion in
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the mobile phase is considered, the differential mass balance in an infinitesimal column segment can
be expressed as:

Bc
Bt
` u

Bc
Bx
`Φ

Bq
Bt
“ Dm

B2c
Bx2 (8)

In the solid-film linear driving-force model, the rate of concentration change in the stationary
phase is given by:

Bq
Bt
“ kfpq˚ ´ qq “ kf pK c´ qq (9)

and the differential equations can be solved as [18,23]:

σ2 “
t2
R
L

˜

2Dm

u
` 2

k
p1` kq2

u
kf

¸

(10)

In Equations (8)–(10), c and q are the concentration of the solute in the mobile phase and stationary
phase, respectively; x is the axial coordinate along the column; u is the linear flow velocity; q* is
the theoretical concentration of solute at equilibrium with c in the mobile phase; Φ is the volume
phase ratio (Φ = Vs/Vm, where Vs and Vm are the volumes of stationary phase and mobile phase,
respectively); Dm is the solute diffusion coefficient in the mobile phase; kf is the mass transfer rate
between phases; K is the partition constant; and L is the column length.

Band broadening is usually expressed in terms of column plate height (H):

H “
Lσ2

t2
R

(11)

Accordingly, Equation (10) is developed as:

H “ 2 λ dp ` 2
Dm

u
` 2

k
p1` kq2

u
kf
“ A`

B
u
` Cu (12)

where the first term has been added to take into account the eddy diffusion. A, B and C are constants
that account for the contributions to band broadening from the eddy diffusion, longitudinal diffusion,
and mass transfer resistance, respectively. This equation is known as “van Deemter equation” [24], and
provides a basis to study the properties of chromatographic columns (column performance) that affect
the peak shape, usually characterized by relating H to the linear mobile phase velocity (u), showing
the different contributions to band broadening [25].

In another approach, proposed by Giddings and Eyring [26], the random migration of a single
molecule is considered from a probabilistic point of view to describe the distribution function of the
solute in the elution process [27], the elution profile being the probability density function of the
retention time of the individual molecules. Recently, Chen [28] obtained identical results with this
approach to those provided by the macroscopic models.

Other studies have described the band dispersion as a combination of independent processes,
being the global variance the summation of the individual variances [29–31]:

σ2 “ σ2
E ` σ2

d ` σ2
s ` σ2

ext (13)

where σ2
E, σ2

d, σ2
s and σ2

ext are the variance associated to the eddy diffusion, longitudinal diffusion, slow
mass transfer, and external factors, respectively. Therefore, each mechanism can be studied separately.
Thus, for example, Knox et al. included the molecular diffusion in the stationary phase by considering
it as a random walk process, where the theoretical plate height was given by [32]:

Hd “ 2
γm Dm ` k γs Ds

u
(14)
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where the subscripts m and s account for the mobile phase and stationary phase, respectively, γ
is the obstruction factor, D the diffusion coefficient, and the products γD quantify the effective
diffusion coefficients.

Following these approaches, several equations similar to Equation (12) have been
developed [19,33,34] to explain the behavior of the theoretical plate height at varying mobile phase
velocity. According to Knox, the most important contribution to dispersion under practical operating
conditions comes from factors affecting the term A in Equation (12), the slow mass transfer within the
porous particles being usually unimportant [35,36]. On the other hand, Desmet et al. has reviewed the
expression for term B [37], using a numerical procedure. A significant deviation was shown from the
Knox type expression traditionally employed in high-performance liquid chromatography (HPLC).

In this work, a general approach is proposed to describe the peak broadening in liquid
chromatography by applying an extended plate model that assumes slow mass transfer, the
longitudinal diffusion in both mobile phase and stationary phase, and the extra-column contributions.
The results have been validated by comparison with those obtained by simulating the elution
using a finite difference approach. Experimental data were also used to check the validity of the
derived equations.

2. Theory

2.1. General Description of the Chromatographic Elution Based on the Extended Plate Model

The next conditions will be considered to develop the approach:

(i) The solute crosses a fixed length L inside the column.
(ii) The column is divided into N equal microscopic theoretical plates.
(iii) The interaction between solute and stationary phase in each theoretical plate is determined by a

linear isotherm:

K “
rBs˚i
rAs˚i

“
b˚i
a˚i

Vm

Vs
“ k

Vm

Vs
(15)

where rAs˚i and rBs˚i are the solute concentration in the mobile phase and stationary phase, respectively,
at equilibrium inside the i theoretical plate, and b˚i and a˚i the corresponding number of moles.

In the theoretical plate theory, the column is divided into N microscopic and equal segments
through which the mobile phase moves. The solute mass transfer between adjacent theoretical plates
is influenced by the mobile phase flow, the mass transfer between mobile phase and stationary phase,
and the longitudinal diffusion in both mobile phase and stationary phase. The mass balance between
adjacent plates can be described by the differential equations given below. The transfer component
due to the mobile phase flow is first quantified through [10]:

ˆ

Bai
Bt

˙

flow
“ τ ai´1 ´ τ ai (16)

where ai is the number of moles in the mobile phase inside the theoretical plate i, and τ the flow rate
expressed as the number of theoretical plates per time unit:

τ “
N
t0
“

u
H
“

F
Vm

(17)

where F is the mobile phase flow rate.
The mass transfer between mobile phase and stationary phase in each theoretical plate is described

by the following equation [13]:
ˆ

Bai
Bt

˙

transfer
“ ν pa˚i ´ aiq (18)
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where ν is the mass-transfer rate constant and a˚i the moles of solute in the mobile phase when the
equilibrium is reached. Considering that:

a˚i ` b˚i “ ai ` bi (19)

and assuming a linear isotherm as in Equation (15), the next expression is derived:

ˆ

Bai
Bt

˙

transfer
“

ν

1` k
bi ´

ν k
1` k

ai “ s bi ´ m ai (20)

where s and m are the kinetic constants for the slow mass transfer of the solute from the stationary
phase and mobile phase, respectively.

Similarly, the change in the number of moles of solute in the stationary phase will be given by:

ˆ

Bbi
Bt

˙

transfer
“ m ai ´ s bi (21)

Finally, the flow expressed as moles per unit area and time between two theoretical plates, due to
the longitudinal diffusion, will be given by the Fick’s law [7]. For the mobile phase:

J “ ´Dm
dc
dx

– ´Dm
∆c
H

(22)

where Dm is the diffusion coefficient (length2¨ time-1), ∆c the difference in the solute concentration
between two adjacent plates, and H the theoretical plate height; that is, the distance between the center
of both plates. The change in the number of moles of solute in the mobile phase between two adjacent
plates will be:

S J “ ´S Dm
∆a

H Vm
“ ´

Dm

H2 ∆a “ ´dm ∆a (23)

where S is the mobile phase area, Vm = SH, and ∆a is the difference in the number of moles between two
adjacent plates. Therefore, taking into account the two theoretical plates adjacent to plate i, it results:

ˆ

Bai
Bt

˙

diffusion
“ dm pai`1 ´ ai q ´ dm pai ´ ai´1 q (24)

for the mobile phase and

ˆ

Bbi
Bt

˙

diffusion
“ ds pbi`1 ´ bi q ´ ds pbi ´ bi´1 q (25)

for the stationary phase, where dm and ds are the diffusion transfer kinetic constants for the mobile
phase and stationary phase, respectively:

dm “
Dm

H2 (26a)

ds “
Ds

H2 (26b)

The change in the number of moles of solute due to all the described processes for plate i will be:

dai
dt

“ ´τ pai ´ ai´1q ´m ai ` s bi ` dm pai`1 ´ aiq ´ dm pai ´ ai´1q (27)

dbi
dt

“ m ai ´ s bi ` ds pbi`1 ´ bi q ´ ds pbi ´ bi´1 q (28)
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For the whole column, the following system of differential equations can be outlined:

ap1q1 “ τext aM,ext ´ τ a1 ´m a1 ` s b1 ` dm pa2 ´ a1q

bp1q1 “ m a1 ´ s b1 ` ds pb2 ´ b1 q
...

ap1qi “ ´τ pai ´ ai´1q ´m ai ` s bi ` dm pai`1 ´ aiq ´ dm pai ´ ai´1q

bp1qi “ m ai ´ s bi ` ds pbi`1 ´ bi q ´ ds pbi ´ bi´1 q
...

ap1qN “ ´τ paN ´ aN´1q ´m aN ` s bN ´ dm paN ´ aN´1q

bp1qN “ m aN ´ s bN ´ ds pbN ´ bN´1 q

(29)

where ap1qi “ dai{dt, bp1qi “ dbi{dt, and a1 ... aN and b1 ... bN are the moles of solute in the mobile
phase and stationary phase associated to each theoretical plate, respectively, which change with time;
aM,ext is the solute that is entering the column from the M plate of the extra-column tubing; and m
and s are the mass-transfer constants between mobile phase and stationary phase, and vice versa. The
Equation System (29) can be visualized as a kinetic system as shown in Figure 1, with the kinetic mass
transfer constants τ, (τ + dm), s, m, dm and ds (observe that the units for all these parameters are time´1).
These kinetics parameters are independent of the flow rate, except τ as shown in Equation (17).
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Figure 1. Kinetic representation of the elution inside the column as a combination of mass transfer
processes from plate to plate (see Glossary for symbol explanation).

The solute monitored at the detector corresponds to the portion that flows out of the N plate to
enter the detector in each dt. The peak profile at the detector is described by:

f ptq “ τ aN (30)

Here we are assuming that the moles of solute that are detected at each time go from the last plate
to the detector pushed by the flow. Therefore, the area of the function in Equation (30) will equal the
moles of solute injected into the column.

2.2. Extra-Column Effects

The extra-column effects can be taken into account assuming that the solute moves through the
external tubing similarly to through the column, but without interacting with the stationary phase.
Thus, the tubes can be divided into M plates as shown in Figure 2.Separations 2016, 3, 11  7 of 23 

 

Figure  2.  Kinetic  representation  of  the  extra‐column  mass  transfer  (see  Glossary  for  symbol 

explanation). 

This involves a mass transfer process that can be described by the following system of equations. 

(1)
1,ext ext 1,ext ext 2,ext 1,ext

(1)
,ext ext ,ext 1,ext ext 1,ext ,ext ext ,ext 1,ext

(1)
,ext ext ,ext 1,ext ext ,ext 1,ext

( )

( ) ( ) ( )

( ) ( )

  

 

    

       

     




i i i i i i i

M M M M M

a a d a a

a a a d a a d a a

a a a d a a

  (31) 

which would be added at the beginning of Equation System (29). The theoretical plate in the extra‐

column region has been considered to be different from the theoretical plate inside the column: 

ext
ext

ext ext m,ext

   
uM F

t H V
  (32) 

ext 2
ext


D

d
H

  (33) 

where  Hext  is  the  extra‐column  plate  height,  text  the  extra‐column  time,  and  D  the  apparent 

longitudinal diffusion  that can be described by  the Taylor‐Aris regime  if  the capillary diameter  is 

large enough [38]. 

Regardless the longitudinal diffusion, the extra‐column peak shape according to this approach 

is similar to that given by Equation (3). Figure 3 shows the fitting to Equation (3) of an extra‐column 

peak obtained for a probe compound (sulfamerazine), which is fairly satisfactory. 

 

Figure 3. Extra‐column experimental peak for sulfamerazine (symbols), compared with that predicted 

according to the plate model (Equation (3)) (solid line). Peak eluted using 1 mL/min flow rate and 

20% acetonitrile. A.U. is arbitrary units. 

2.3. Peak Profile 

Figure 2. Kinetic representation of the extra-column mass transfer (see Glossary for
symbol explanation).



Separations 2016, 3, 11 7 of 24

This involves a mass transfer process that can be described by the following system of equations.

ap1q1,ext “ ´τexta1,ext ` dext pa2,ext ´ a1,extq

...

ap1qi,ext “ ´τext pai,ext ´ ai´1,extq ` dext pai`1,ext ´ ai,extq ´ dext pai,ext ´ ai´1,extq

...

ap1qM,ext “ ´τext paM,ext ´ aM´1,extq ´ dext paM,ext ´ aM´1,extq

(31)

which would be added at the beginning of Equation System (29). The theoretical plate in the
extra-column region has been considered to be different from the theoretical plate inside the column:

τext “
M
text

“
uext

Hext
“

F
Vm,ext

(32)

dext “
D

H2
ext

(33)

where Hext is the extra-column plate height, text the extra-column time, and D the apparent longitudinal
diffusion that can be described by the Taylor-Aris regime if the capillary diameter is large enough [38].

Regardless the longitudinal diffusion, the extra-column peak shape according to this approach is
similar to that given by Equation (3). Figure 3 shows the fitting to Equation (3) of an extra-column
peak obtained for a probe compound (sulfamerazine), which is fairly satisfactory.
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Figure 3. Extra-column experimental peak for sulfamerazine (symbols), compared with that predicted
according to the plate model (Equation (3)) (solid line). Peak eluted using 1 mL/min flow rate and 20%
acetonitrile. A.U. is arbitrary units.

2.3. Peak Profile

The ordinary differential Equation System (29) is a first order system that can take the
general form:

dn
dt
“ Q n (34)
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where n is a vector containing the solute moles in both mobile phase and stationary phase in each
column plate, t is the time, and Q is a square matrix (2N ˆ 2N) containing the mass transfer constants.
The general solution for this system is given by:

niptq “
2N
ÿ

j“1

zij
tmj´1

pmj ´ 1q !
eλj t (35)

where mj are integers related to the multiplicity of the eigenvalues of matrix Q (mj takes a value unity if
the multiplicity is one). The peak profile function only has a simple form when the elution follows the
Martin and Synge ideal conditions. In this case, matrix Q has only one eigenvalue with N multiplicity
and the peak equation is that shown in Equation (3). With other assumptions, the complexity of the
peak function is extraordinarily increased [10]. However, even assuming slow mass transfer, the peak
equations tend to an almost Gaussian function (with very low asymmetry) if N is high enough.

Therefore, given the high number of theoretical plates and the complexity reached by matrix Q
for complex cases, the peak equation (Equation (35)) lacks of practical value, being the study through
the calculation of moments preferable.

2.4. Evaluation of Peak Profile Moments

2.4.1. General Method

As explained in previous work [10], obtaining an explicit equation for the peak profile is highly
difficult or unfeasible. Therefore, we characterized the peaks through the calculation of the associated
moments, following the procedure described below:

(i) The equations describing the elution process (in this work, the sum of Equation Systems (31)
and (29)) are first outlined.

(ii) The system of differential equations is transformed to a system of algebraic equations in the
Laplace space, which is a function of the variable r.

(iii) The peak function is then obtained in the Laplace space (r-domain): F(r).
(iv) To obtain the moments about the origin, the following property of the Laplace transformation is

considered [10]:

µn “

ż 8

0
tn f ptqdt “ p´1qn lim

rÑ0

dnFprq
drn “ p´1qn Fprqpnqr“0 (36)

(v) For the moment of order n, the system of equations in the Laplace space describing the elution
is derived n fold with regard to r. Then, it is solved to obtain the corresponding derivative after
making r = 0 (see Equation (36)).

(vi) The peak parameters are obtained from the moments about the origin.

Although the operations are simple and just consist in solving a linear equation system, the
large number of implied equations makes the process rather complex. To follow it, it is interesting
to understand the meaning of the derivatives at r = 0 in Equation (36). The derivative of order 0 is
proportional to the amount of substance passing through the theoretical plate, the derivative of order 1
is proportional to the average time taken to cross the theoretical plate, and the derivative of order 2 is
proportional to the average squared time to cross the theoretical plate.
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2.4.2. Transformation of the System of Differential Equations into the Laplace Space

Obtaining the Laplace transform of the first-order Equation Systems (29) and (31) is rather simple.
The Appendix of this work shows the whole process to calculate the first and second derivatives with
regard to r. From Equation (30), the peak profile in the r-domain will be:

Fprq “ τ AN (37)

where AN is the variable in the Laplace domain associated to the mobile phase moles in the last
theoretical plate. Taking into account Equation (36) and considering that τ is a constant parameter:

µn “ p´1qn τ ApnqN pr“0q (38)

The peak position is given by the first moment about the origin:

t “
µ1

µ0
“ ´

Ap1qN pr“0q

AN pr“0q
(39)

The variance is given by the second-order moment about the mean:

σ2 “
µ2
µ0
´

ˆ

µ1
µ0

˙2
“

Ap2qN pr“0q

AN pr“0q
´

¨

˝

Ap1qN pr“0q

AN pr“0q

˛

‚

2

(40)

2.4.3. Solution for the Mean and Variance of the Peak Profile

The derivatives of the Laplace function associated to the last theoretical plate have been obtained
using the approach described above, as shown in the Appendix. The derived equations are:

AN pr“0q “
a0

τ
(41)

Ap1qN pr“0q “ ´
a0

ττext
M´ a0

1` k
τ2 N (42)

Ap2qN pr“0q “
a0

τ τ2
ext
pM2 `Mq ` 2

dext

τ τ3
ext
pM´ 1q a0 ` 2

p1` kq
τ2 τext

N M a0

`
p1` kq2

τ3 pN2 ` Nq a0 ` 2 pdm ` k dsq
p1` kq2

τ4 N a0 ` 2N
a0

ντ2 k p1` kq
(43)

By substituting Equations (41)–(43) in the corresponding equations (Equations (38)-(40)), the
different moments are obtained:

µ0 “ Fp0q
pr“0q “ τ ANpr“0q “ a0 (44)

which agrees with the characteristics of the Laplace transform and the fact that, along the
chromatographic elution (where τ > dm), all solute molecules cross the whole column.

The mean elution time is obtained from Equation (39):

t “
M
τext

`
N
τ
p1` kq “ text ` t0 p1` kq “ text ` tcol “ tR (45)

where text is the extra-column time, tcol = t0 (1 + k) is the column time, and tR the experimental retention
time. For this calculation, Equations (17) and (32) have been considered.
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To calculate the variance, we will start from Equation (40), and operate considering
Equations (41)–(43):

σ2 “
M
τ2

ext
` 2

dext

τ3
ext
pM´ 1q `

p1` kq2

τ2 N ` 2 pdm ` k dsq
p1` kq2

τ3 N ` 2N
k p1` kq

ντ
(46)

Taking into account Equations (17), (26), (32) and (33), the following results:

σ2 “
t2
ext
M

ˆ

1` 2
D

Hext uext

M´ 1
M

˙

`
t2
col
N

ˆ

1` 2
Dm ` kDs

H u
` 2

k
1` k

u
Hν

˙

(47)

This equation agrees with Equation (5) when text = 0, Dm = 0, Ds = 0 and ν =8. The first term is
the extra-column variance. Considering that in the extra-column capillary tubes, the axial dispersion
should be controlled by the Taylor-Aris regime [38]:

D ” Dm `
r2

ext u2
ext

48 Dm
“ Dm `wext u2

ext (48)

where rext is the radius of the extra-column tubing. Finally, the extra-column effect is given by:

σ2
ext “

t2
ext
M

ˆ

1` 2
Dm

Hext uext

M´ 1
M

` 2
wext uext

Hext

M´ 1
M

˙

(49)

The column variance produced by a solute travelling in a unique path will be described by
the second term in Equation (47), which could also include a term for considering the Taylor-Aris
dispersion in the column:

σ2
col “

t2
col
N

ˆ

1` 2
Dm ` k Ds

H u
` 2

k
1` k

u
Hν

` 2
wcol u

H

˙

(50)

However, owing to the small interstitial diameter within the column and the smaller linear
velocity, this term would only be significant at high velocities, and will not be considered.

3. Experimental Section

3.1. Reagents and Columns

Five sulfonamides were used as probe compounds: sulfamerazine, sulfamethizole,
sulfachloropyridazine, sulfisoxazole and sulfadimethoxine, purchased from Sigma (St. Louis, MO,
USA), which were dissolved in a small amount of acetonitrile and diluted with water up to reach the
concentrations of the stock and injected solutions (100 and 10 µg/mL, respectively), and stored in the
darkness at 4 ˝C.

The mobile phase was prepared with 20% (v/v) HPLC-grade acetonitrile from Scharlau (Barcelona,
Spain) and buffered at approximately pH 3 using 0.01 M sodium dihydrogen phosphate from Panreac
(Barcelona, Spain) and HCl from Scharlau. Nanopure water obtained with a Barnstead purification
system from Sybron (Boston, MA, USA) was used throughout. The mobile phase and the solutions
of the probe compounds were filtered through 0.45 µm Nylon membranes with a diameter of 47 mm
(Magna type) and 17 mm (Cameo type), respectively, from Osmonics (Herentals, Belgium).

Chromatographic analysis was carried out with a Spherisorb (150 mm ˆ 4.6 mm ID) column with
5 µm particles from Scharlau. The column was protected with a pre-column of similar characteristics
(30 mm ˆ 4.0 mm).
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3.2. Apparatus and Measurement of Peak Parameters

The HPLC system was equipped with the following modules from Agilent (Waldbronn,
Germany): quaternary pump, autosampler, thermostated column compartment and UV-visible detector
(Series 1200 and 1260). The signals were monitored at 254 nm. The flow rate was 1 mL/min and the
dead time, 1.18 min. Dead time and extra-column contributions were measured by injecting a solution
containing 20 µg/mL KBr from Acros Organics (Fair Lawn, NJ, USA).

The chromatographic system was controlled by a ChemStation from Agilent (B.04.03). The peak
mean time and variance were calculated from the peak moments measured by numerical integration
of experimental peaks using the Simpson rule. Data treatment was implemented in QB64.

The pH was measured with a potentiometer from Crison (Model MicropH 2002, Barcelona, Spain)
and a combined glass electrode containing Ag/AgCl reference electrodes with 3.0 M KCl aqueous
solution as salt bridge from Orion (Model 8102, Barcelona, Spain). The electrode was calibrated with
aqueous buffers, and the pH of the mobile phases measured after the addition of the organic solvent.

4. Results and Discussion

4.1. Comparison of the Proposed Model with a Simulation Approach

The proposed approach was checked by comparison with the profile obtained by simulation of
the solute migration using the finite difference approach [18], dividing the process inside a theoretical
plate in 100 time intervals. This was repeated for all theoretical plates up to achieve full elution from
the column. The variance values calculated with the simulation approach and predicted with Equation
(46) are compared in Figure 4 for hypothetical compounds exhibiting different retention times and
assuming several values of column and extra-column theoretical plates, flow rate, mass transfer, and
longitudinal diffusion. The high agreement between both approaches in different situations proves the
validity of Equations (46) and (47).
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Figure 4. Comparison of the calculated variance using the simulation approach with that predicted with
Equation (46) for several elution conditions, changing N (in the range 500–2000), M (5–20), τext (50–400),
dext (0.02–0.375), τ (500–2000), dm (20–400), ds (2–40), ν (1000–5000), and k (0–4).

Figure 5 depicts simulated peaks along with the corresponding Gaussian peaks, obtained using
the peak profile parameters (mean time and variance) according to Equations (45) and (46). As
observed, the agreement is highly satisfactory and the peaks were highly symmetrical, independently
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of the variation in mass transfer or diffusion (asymmetry values, measured as B/A at 10% peak high,
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Figure 5. Comparison of numerically simulated peaks (symbols) obtained by solving the differential
system composed by Equation Systems (31) and (29) with Gaussian peaks (lines) obtained with the
retention time and variance calculated with Equations (45) and (46) for a peak described by the
following data: k = 3, t0 = 1.0, text = 0.1, M = 10, and from top to bottom: (♦) N = 2000, dext = 0.0222,
dm = 80, ds = 8, ν = 5000; (#) N = 2000, dext = 0.111, dm = 400, ds = 40, ν = 2500; (˝) N = 1000, dext =
0.111, dm = 100, ds = 10, ν = 1500. A.U. is arbitrary units.

4.2. Comparison of Predicted Variance with Experimental Data

It is not possible to know the linear velocities needed in Equation (47), because the effective
lengths are unknown. A transformation to volume and flow units is thus convenient, according to the
following relationship:

u “ F
L

V0
“ F

Lext

Vext
(51)

The final equation, obtained by combination of Equations (49) and (50), would be:

σ2
V “ σ2 F2 “ AV `

BV

F
` CVF (52)

where

AV “
V2

ext
M

`
V2

0
N

p1` kq2 “ α0 ` α1 p1` kq2 (53)

BV “ 2
Dm V3

ext

L2
ext

M´ 1
M

` 2
Dm ` k Ds

L2 V3
0 p1` kq2 “ β0 `β1 k`β2 k2 `β3 k3 (54)

CV “ 2 wext Vext
M´ 1

M
`

2
ν

V0 k p1` kq “ γ0 ` γ1 k p1` kq (55)

Figure 6 shows the behavior of parameters AV, BV and CV according to Equations (53)–(55). As
observed in the figure, the parameters show the behavior predicted in the equations. Thus, parameters
AV and CV are linear against (1 + k)2 and k(1 + k), respectively, while parameter BV gives rise to a
third-order polynomial function against k. The quality of the fittings should be emphasized, especially
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for the CV term, considering that there are other more complex contributions to the band broadening
that have not been taken into account [38]. In addition, the diffusion constants and mass transfer may
vary with the eluted solute. Finally, a similar linear behavior of parameter CV with (1 + k)2 could be
found if the dispersion followed the Taylor-Aris regime.
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Figure 6. Behavior of parameters AV, BV and CV calculated according to Equations (53)–(55). The
plotted values were obtained by the non-linear fitting to Equation (52) of the experimental variances
for the five sulfonamides eluted at several flow rates.
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4.3. Variance Components

From Equation (47), we can see that in the elution process the sum of variances established in
Equation (13) is fulfilled and taken as an initial premise to obtain the usual equations to calculate the
theoretical plate. According to this point of view, the variance components come from the following
sources:

(i) Equilibrium between the mobile phase and stationary phase according to a Craig process:

σ2
eq “

tcol ptcol ´ t0q

N
(56)

(ii) Convection or flow through the column:

σ2
conv “

tcol t0

N
(57)

This variance is exclusively due to the flow, and can be obtained considering that it follows
Equation (6), which describes the variance of a solute that does not interact with the stationary phase.
Assuming that this broadening is only experienced by molecules found in the mobile phase:

σ2
conv “

a˚

a˚ ` b˚
t2
col
N
“

1
1` k

t2
col
N
“

tcol t0

N
(58)

where a* and b* are the moles of solute at equilibrium in the mobile phase and stationary phase,
respectively. Finally, the ideal variance for a column without slow mass transfer or diffusion will be:

σ2
elution “

tcol ptcol ´ t0q

N
`

tcol t0

N
“

t2
col
N

(59)

(iii) Slow mass transfer between the phases:

σ2
mt “ 2

tcol
ν

k (60)

(iv) Mobile phase diffusion:

σ2
diff,m “ 2Dm

t2
col t0

L2 (61)

(v) Stationary phase diffusion:

σ2
diff,s “ 2 k Ds

t2
col t0

L2 (62)

(vi) Extra-column dispersion given by Equation (49) that includes convection, diffusion and
dispersion due to the Taylor-Aris regime.

It is interesting to note that the components of band broadening due to mass transfer and diffusion
do not depend on the theoretical plate height, but on the residence time inside the column.

4.4. Equation Describing the Theoretical Plate Height

The total variance is usually expressed in terms of the theoretical plate height, which includes all
column band broadening factors. However, in the Martin and Synge elution model, the theoretical
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plate is a fixed parameter. Therefore, transforming Equation (47) to the usual terms, band broadening
should be expressed as:

σ2 ´ σ2
ext

ptR ´ textq
2 L “ Happ “ H ` 2

Dm ` k Ds

u
` 2

k
1` k

u
ν

(63)

Equation (63) gives an apparent value for the theoretical plate height (in the plate model H = L/N
is a system constant). Therefore, the calculated theoretical plate (Happ) agrees with the real value only
in the absence of longitudinal diffusion, multipath diffusion and slow mass transfer dispersion. In
these conditions, as can be seen in Equation (10), the rate models would predict a null value for the
band broadening. Thus, the extended plate approach and the rate models only agree when N tends to
infinite. Equation (63) can be rewritten as:

Happ “ A`
B
u
` Cu (64)

which agrees with the van Deemter equation except that the term A is associated to the dispersion due
to convection. However, it can also be related to the particle diameter (dp): (H = nH ˆ dp, being nH the
number of particles inside a theoretical plate). Besides, other sources of dispersion independent of
the flow (as the multipath dispersion) should be included in this term. On the other hand, the term C
in Equation (63) seems also different from that in Equation (10). Taking into account that ν = s + m
and k = m/s, the mass transfer term in Equation (63) may be expressed with regard to the retention
factor as:

C “
2
ν

k
1` k

“
2
s

k
p1` kq2

“
2
m

ˆ

k
1` k

˙2
(65)

where each term assumes a constant kinetic parameter.

5. Conclusions

The original Martin and Synge approach has been extended to describe longitudinal diffusion
in both mobile phase and stationary phase, slow mass-transfer and extra-column dispersion. To our
knowledge, this is the first time the plate model has been solved including longitudinal diffusion in
both phases, together with the slow mass transfer. Moreover, the extra-column dispersion has been
included as a part of the dispersion model.

A systematic approach to obtain the moments of the elution profile applying the extended plate
model has been developed. The final equation agrees with the van Deemter description for longitudinal
diffusion in the mobile phase, and with the Knox equation, which also includes the diffusion in the
stationary phase. The slow mass transfer results in a similar term to that in the van Deemter approach,
but including a k/(1 + k) factor that fits better to the experimental data. The equations, expressed as a
function of the theoretical plate height, provide an explanation for the three terms in the van Deemter
equation. The term A is associated to the dispersion produced by the flow due to the mixing process
inside each plate, and would only be null for N values tending to infinite. Other factors contributing to
term A, such as the multipath dispersion, should be considered separately.

Simulated experiments showed that neither the slow mass transfer nor the longitudinal diffusion
yield significant peak asymmetry. The plate model is assimilated to a kinetic mass transfer process
coupling the various processes that take place both extra-column and inside the column. The proposed
equation demonstrates the assumption of the sum of variances in the case of linear elution. Therefore,
the plate model could be used to study separately each factor affecting the dispersion, adding in a
further step each contribution to the final variance. The approach can be applied to study the factors
affecting the elution process individually for educational purposes, only requiring knowledge on the
solving of algebraic equations.
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Glossary

A, B, C van Deemter equation constants
AV, BV, CV constants in the variance-flow rate equation, where the variance is expressed in volume units
a0 initial moles of solute in the mobile phase associated to the first theoretical plate
ai moles of solute in the mobile phase associated to the i theoretical plate
a˚i moles of solute in the mobile phase at equilibrium in the i theoretical plate
rAs˚i solute concentration in the mobile phase at equilibrium in the i theoretical plate
bi moles of solute in the stationary phase associated to the i theoretical plate
b˚i moles of solute in the stationary phase at equilibrium with the mobile phase in

the i theoretical plate
rBs˚i solute concentration in the stationary phase at equilibrium associated to

the i theoretical plate
c solute concentration in the mobile phase as a function of t and x
Dm, Ds solute longitudinal diffusion coefficient in the mobile phase and stationary phase
dm, ds diffusion transfer kinetic constants in the mobile phase and stationary phase
dext diffusion transfer kinetic constant in the mobile phase in the extra-column tubing
F flow rate
F(r) peak function in the r-domain
f (t) peak function in the time-domain
Φ volume phase ratio
H column plate height (H = L/N)
Hext extra-column plate height (Hext = Lext/M)
i plate index
J molar flow per unit area and time due to the longitudinal diffusion
K distribution coefficient or partition constant
k solute retention factor (k = KΦ)
kf rate of mass transfer between phases
L column length
m kinetic constant for the solute slow mass transfer from the mobile phase to

the stationary phase
M number of theoretical plates in the extra-column tubing
N efficiency or number of column theoretical plates
ni total moles of solute in the i theoretical plate

np1qi change in the total moles of solute per time unit
q solute concentration in the stationary phase as a function of t and x
q* solute concentration in the stationary phase at equilibrium with the solute in the mobile

phase at concentration c
r Laplace variable
s kinetic constant for the solute slow mass transfer from the stationary phase

to the mobile phase
t time coordinate
t0 column dead time
tcol solute retention time associated to the column
text solute retention time associated to the extra-column tubing
tR solute retention time or peak mean time (time at the peak maximum for symmetrical peaks)
u linear flow velocity
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Vm mobile phase volume associated to a theoretical plate
Vs stationary phase volume associated to a theoretical plate
x axial coordinate
γm, γs obstruction to the diffusion transfer factors in the mobile phase and stationary phase
µk kth moment about the origin
σ2 peak variance
σ2

col column variance
σ2

d variance associated to the longitudinal diffusion
σ2

E variance associated to the eddy dispersion
σ2

ext variance associated to the extra-column dispersion
σ2

s variance associated to the slow mass transfer
τ mass transfer kinetic parameter related to the flow in the column
τext mass transfer kinetic parameter related to the flow in the extra-column tubing
ν mass-transfer rate constant between both phases (ν = m + s)

Appendix

A.1. Extra-Column Contribution

The Laplace transform of a first-order differential equation system can be easily obtained by
considering its properties:

L pw aiq “ w Ai (A1)

L pap1qi q “ r Ai ´ a0 (A2)

where w is a constant, ai is the variable in the time domain, Ai is the variable in the Laplace domain, r
is the Laplace variable, and a0 the initial value of the ai variable. By assuming that, initially, there are
only a0 moles of solute in the first plate, the following system of algebraic equations is obtained for the
extra-column contributions (Equation System (31)):

rA1,ext ´ a0 “ ´τext A1,ext ` dext pA2,ext ´ A1,extq
...
rAi,ext “ ´τext pAi,ext ´ Ai´1,extq ` dext pAi`1,ext ´ Ai,extq ´ dext pAi,ext ´ Ai´1,extq
...
rAM,ext “ ´τext pAM,ext ´ AM´1,extq ´ dext pAM,ext ´ AM´1,extq

(A3)

where M is the number of elution steps before entering the column. By adding all above equations:

r
M
ÿ

i“1

Ai,ext ´ a0 “ ´τext AM,ext (A4)

and for r = 0:
AM,extpr“0q “

a0

τext
(A5)

Therefore, the solution of the Equation System (A3) at r = 0 is:

Ai,extpr“0q “
a0

τext
(A6)

This is in consonance with the Laplace variable properties, since the product τext Ai,extpr“0q is
equal to the total moles of solute that have travelled through plate i. The first-order derivative can be
obtained by deriving Equation (A4) with respect to r:
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M
ÿ

i“1

Ai,ext ` r
M
ÿ

i“1

Ap1qi,ext “ ´τext Ap1qM,ext (A7)

Note that at r = 0, and taking into account Equation (A6), we have:

a0

τext
M “ ´τext Ap1qM,ext pr“0q (A8)

Working out the first-order derivative:

Ap1qM,extpr“0q “ ´
a0

τ2
ext

M (A9)

The second-order derivative is obtained by deriving Equation (A7):

2
M
ÿ

i“1

Ap1qi,ext ` r
M
ÿ

i“1

Ap2qi,ext “ ´τext Ap2qM,ext (A10)

At r = 0:

2
M
ÿ

i“1

Ap1qi,ext pr“0q “ ´τext Ap2qM,ext pr“0q (A11)

Finally:

Ap2qM,ext pr“0q “ ´
2

τext

M
ÿ

i“1

Ap1qi,ext pr“0q (A12)

The summation of the first-order derivatives can be obtained by adding the first j equations in
Equation System (A3):

r
j
ÿ

i“1

Ai,ext ´ a0 “ ´τext Aj,ext ` dext pAj`1,ext ´ Aj,extq (A13)

The derivative with respect to r is:

j
ÿ

i“1

Ai,ext ` r
j
ÿ

i“1

Ap1qi,ext “ ´ τext Ap1qj,ext ` dext pA
p1q
j`1,ext ´ Ap1qj,extq (A14)

and considering Equation (A6) at r = 0:

a0

τext
j “ ´ τext Ap1qj,ext pr“0q ` dext pA

p1q
j`1,ext pr“0q ´ Ap1qj,ext pr“0qq (A15)

Equation (A15) is only valid for the j values between 1 and M – 1. For j = M, Equation (A8) should
also be considered. By adding all equations from j = 1 to M:

a0

τext

M pM` 1q
2

“ ´ τext

M
ÿ

j“1

Ap1qj,ext pr“0q ` dext pA
p1q
M,ext pr“0q ´ Ap1q1,ext pr“0qq (A16)

where
M
ÿ

j“1

j “
M pM` 1q

2
(A17)

Considering that the first-order derivative at r = 0 is related to the average time the solute takes in
crossing a plate, and that the elution is isocratic, from Equation (A9) it can be assumed that:
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Ap1q1,ext pr“0q –
Ap1qM,ext pr“0q

M
“ ´

a0

τ2
ext

(A18)

Taking again into account Equation (A9), from Equation (A16):

M
ÿ

j“1

Ap1qj,ext pr“0q “ ´
a0

τ2
ext

M pM` 1q
2

´
dext

τ3
ext
pM´ 1q a0 (A19)

Finally, from Equations (A12) and (A19):

Ap2qM,ext pr“0q “
a0

τ3
ext
pM2 `Mq ` 2

dext

τ4
ext
pM´ 1q a0 (A20)

A.2. Column Contribution

The following equation system, obtained from Equation System (29) in the report, describes the
elution inside the column in the Laplace space:

rA1 “ τext AM,ext ´ τ A1 ´m A1 ` s B1 ` dm pA2 ´ A1q

rB1 “ m A1 ´ s B1 ` ds pB2 ´ B1q
...
rAi “ ´τ pAi ´ Ai´1q ´m Ai ` s Bi ` dm pAi`1 ´ Aiq ´ dm pAi ´ Ai´1q

rBi “ m Ai ´ s Bi ` ds pBi`1 ´ Biq ´ ds pBi ´ Bi´1q
...
rAN “ ´τ pAN ´ AN´1q ´m AN ` s BN ´ dm pAN ´ AN´1q

rBN “ m AN ´ s BN ´ ds pBN ´ BN´1q

(A21)

Similarly to the extra-column elution, solving this system of equations is facilitated by adding all
the equations for the first j theoretical plates:

r
j
ÿ

i“1

Ai ` r
j
ÿ

i“1

Bi “ τext AM,ext ´ τ Aj ` dm pAj`1 ´ Ajq ` ds pBj`1 ´ Bjq (A22)

By adding all the equations for the N theoretical plates:

r
N
ÿ

i“1

Ai ` r
N
ÿ

i“1

Bi “ τext AM,ext ´ τ AN (A23)

Considering only the equations for the first j theoretical plates in the stationary phase:

r
j
ÿ

i“1

Bi “ m
j
ÿ

i“1

Ai ´ s
j
ÿ

i“1

Bi ` ds pBj`1 ´ Bjq (A24)

For all theoretical plates in the stationary phase:

r
N
ÿ

i“1

Bi “ m
N
ÿ

i“1

Ai ´ s
N
ÿ

i“1

Bi (A25)

The solutions for the zero-, first- and second-order derivatives are next given:
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A.2.1. Zero-Order Derivative

Making r = 0 in Equation (A23), considering Equation (A6) and working out, the following
is obtained:

ANpr“0q “
a0

τ
(A26)

Considering Equation (A25) at r = 0:

N
ÿ

i“1

Bi pr“0q “ k
N
ÿ

i“1

Ai pr“0q (A27)

k = m/s being the retention factor. Then, the solution of the Equation System (A21) at r = 0 is:

A1 pr“0q “ A2pr“0q “ ¨ ¨ ¨ “ ANpr“0q “
a0

τ
(A28)

B1 pr“0q “ B2 pr“0q “ ¨ ¨ ¨ “ BN pr“0q “ k ANpr“0q “ k
a0

τ
(A29)

Again, this solution is in agreement with the meaning of the Laplace transform variable, which at
r = 0 is proportional to the total moles of solute that have travelled through the theoretical plate.

A.2.2. First-Order Derivative

The derivative of Equation (A23) with respect to r is:

N
ÿ

i“1

Ai `

N
ÿ

i“1

Bi ` r
N
ÿ

i“1

Ap1qi ` r
N
ÿ

i“1

Bp1qi “ τext Ap1qM,ext ´ τ Ap1qN (A30)

Making r = 0 and taking into account Equations (A28) and (A29):

a0
1` k
τ

N “ τext Ap1qM,ext pr“0q ´ τ Ap1qN pr“0q (A31)

Working out and considering Equation (A9):

Ap1qN pr“0q “
τext

τ
Ap1qM,ext pr“0q ´ a0

1` k
τ2 N “ ´

a0

ττext
M´ a0

1` k
τ2 N (A32)

A.2.3. Second-Order Derivative

The derivative of Equation (A30) with respect to r is:

2
N
ÿ

i“1

Ap1qi ` 2
N
ÿ

i“1

Bp1qi ` r
N
ÿ

i“1

Ap2qi ` r
N
ÿ

i“1

Bp2qi “ τext Ap2qM,ext ´ τ Ap2qN (A33)

At r = 0:

2
N
ÿ

i“1

Ap1qi pr“0q ` 2
N
ÿ

i“1

Bp1qi pr“0q “ τext Ap2qM,ext pr“0q ´ τ Ap2qN pr“0q (A34)

The first derivatives of B and A can be related by deriving Equation (A25):

N
ÿ

i“1

Bi` r
N
ÿ

i“1

Bp1qi “ m
N
ÿ

i“1

Ap1qi ´ s
N
ÿ

i“1

Bp1qi (A35)
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For r = 0:
N
ÿ

i“1

Bi pr“0q “ m
N
ÿ

i“1

Ap1qi pr“0q ´ s
N
ÿ

i“1

Bp1qi pr“0q (A36)

Taking into account Equation (A29) and working out:

N
ÿ

i“1

Bp1qi pr“0q “ k
N
ÿ

i“1

Ap1qi pr“0q ´ N
a0

sτ
k (A37)

By substituting in Equation (A34), the following is obtained:

Ap2qNpr“0q “
τext

τ
Ap2qM,ext pr“0q ´ 2

p1` kq
τ

N
ÿ

i“1

Ap1qi pr“0q ` 2N
a0

sτ2 k (A38)

In order to obtain the summation of the first-order derivatives, Equation (A22) should be derived
with respect to r:

j
ř

i“1
Ai `

j
ř

i“1
Bi ` r

j
ř

i“1
Ap1qi ` r

j
ř

i“1
Bp1qi “ τext Ap1qM,ext ´ τ Ap1qj ` dm pA

p1q
j`1 ´ Ap1qj q ` ds pB

p1q
j`1 ´ Bp1qj q (A39)

At r = 0 and considering Equations (A28) and (A29):

a0
1` k
τ

j “ τext Ap1qM,ext pr“0q ´ τ Ap1qj pr“0q ` dm pA
p1q
j`1 pr“0q ´ Ap1qj pr“0qq ` ds pB

p1q
j`1 pr“0q ´ Bp1qj pr“0qq (A40)

To obtain the summation of all first derivatives, it should be considered that Equation (A40) is
only valid up to j = N ´ 1, but assuming Equation (A31) it is possible to take into account the whole
number of theoretical plates:

a0
1` k
τ

NpN` 1q
2

“ N τext Ap1qM,ext pr“0q ´ τ
N
ř

j“1
Ap1qj pr“0q ` dm pA

p1q
Npr“0q ´ Ap1q1 pr“0qq ` ds pB

p1q
Npr“0q ´ Bp1q1 pr“0qq (A41)

To relate the differences between the first-order derivative of A and B in Equation (A41), we
will derive the second and last equation for the Equation System (A21) (the equations associated to
the stationary phase in plates 1 and N). At r = 0, after subtracting both equations and considering
Equation (A29):

Bp1qNpr“0q ´ Bp1q1 pr“0q “ k pAp1qNpr“0q ´ Ap1q1 pr“0qq ´
ds

s
pBp1qNpr“0q ´ Bp1q1 pr“0q ´ Bp1qN´1 pr“0q ` Bp1q2 pr“0qq (A42)

Assuming that N is high enough and if we consider that the first-order derivative at r = 0 is
proportional to the average time the solute takes to go through a theoretical plate, and assuming also
that the elution rate within the column is constant, it follows that the solute takes almost the same time
to go from plate 1 to plate N as from plate 2 to plate N ´ 1. On the other hand, ds should be a very
small value. Consequently:

Bp1qNpr“0q ´ Bp1q1 pr“0q “ k pAp1qNpr“0q ´ Ap1q1 pr“0qq (A43)

By substituting in Equation (A41):

a0
1` k
τ

NpN ` 1q
2

“ N τext Ap1qM,ext pr“0q ´ τ
N
ÿ

j“1

Ap1qj pr“0q ` pdm ` k dsq pA
p1q
N pr“0q ´ Ap1q1 pr“0qq (A44)
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Taking into account the constant elution rate and that τ Ap1qi pr“0q is the average time to cross plate i:

τ Ap1q1 pr“0q – τext Ap1qM,ext pr“0q `
τ Ap1qN pr“0q ´ τext Ap1qM,ext pr“0q

N
“ τext Ap1qM,ext pr“0q ´ a0

1` k
τ

(A45)

where Equation (A31) has been used. Considering also Equation (A32) and working out from
Equation (A44):

N
ÿ

j“1

Ap1qj pr“0q “
τext

τ
N Ap1qM,ext pr“0q´

1` k
τ2

NpN ` 1q
2

a0 ´ pdm ` k dsq
1` k
τ3 pN ´ 1q a0 (A46)

By substituting in Equation (A38) and considering N high enough so that N ´ 1 « N:

Ap2qNpr“0q “
τext

τ
Ap2qM,ext pr“0q ´ 2p1` kqN

τext

τ2 Ap1qM,ext pr“0q `
p1` kq2

τ3 pN2 ` Nq a0

`2 pdm ` k dsq
p1` kq2

τ4 N a0 ` 2N
a0

sτ2 k
(A47)

Taking into account that s “ ν{p1` kq and substituting Equations (A9) and (A20):

Ap2qNpr“0q “
a0

τ τ2
ext
pM2 `Mq ` 2

dext

τ τ3
ext
pM´ 1q a0 ` 2

p1` kq
τ2 τext

N M a0

`
p1` kq2

τ3 pN2 ` Nq a0 ` 2 pdm ` k dsq
p1` kq2

τ4 N a0 ` 2N
a0

ντ2 k p1` kq
(A48)

Finally, Equations (A28), (A32) and (A48) account for Equations (41), (42) and (43) in the
report, respectively.
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