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Abstract: Due to the increasing consumer interest in wines with a controlled place of origin, PGI
(Protected Geographical Indication) and PDO (Protected Designation of Origin), the most acute
question is how to identify them. One of the most effective ways to confirm the place of origin of
wine in global practice is a comprehensive study of the elemental profile using statistical analysis
methods. In the period from 2020 to 2023, 152 grape samples of grapes were collected from various
wineries in Crimea and Kuban. The grape must that was obtained from them was fermented in
laboratory conditions. The elemental profile was determined in the prepared wines, which included
71 indicators. In the conducted work, it was revealed that wines from Crimea and Kuban differ
statistically significantly in the concentration of the elements B, Ca, Cu, Mn, Na, Ni, Re, Si, Sn and U.
At the same time, the contents of the elements U, Sn and Re prevail in wines from Crimea, and those
of B, Ca, Cu, Mn, Na, Ni and Si prevail in wines from Kuban. At the same time, methods of univariate
and multivariate statistics do not allow us to reliably classify wine samples from Crimea and Kuban
by their place of origin. In order to reveal the non-linear dependence of the studied indicators in
wines on the geographical place of grape growing, the method of a supervised learning Random
Forest was used. After training the model on the dataset, the proportion of its correct predictions was
96%. The model used 61 parameters, among which the most important were Ni, Re, Ba, Rb, Na, U,
Sb, Zn, Bi, Ag and Ti.

Keywords: wine; authentication; elemental profile; place of geographical origin; mass spectral
analysis (ICP-MS)

1. Introduction

Historically, the production of many food products has been inextricably linked to
a specific geographical region. Food products were produced from local raw materials
using traditional techniques and marketed locally. Such products were an integral part of
people’s culture and everyday life. Today, with all the availability and variety of products,
the food industry is experiencing a crisis of confidence. Consumers want to be sure that the
products they buy are safe, of high quality and environmentally friendly.

Controlled-origin wines are in high demand among consumers due to their high
quality, which is due to the specific soil and climatic conditions in which the grapes are
grown, as well as the strictly regulated production technology. At the same time, wines
in the PDO and PGI categories are particularly popular in market conditions. Such wines
usually have a high value and bring a significant share of profit to producers. In the
countries of the European Union, their production is regulated by Commission Regulation
(EC) No 607/2009 of 14 July 2009. At the same time, many countries use their national
quality marks to classify wines according to their geographical origin [1–5].
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The combination of geographical, soil and climatic features of the Black Sea coast
provides the necessary conditions for the cultivation of grapes and the production of high-
quality wines. At the same time, the largest winemaking zones are Kuban, located on the
eastern coast of the Black Sea, and the Crimean Peninsula, located on the northern coast.
Kuban is the largest grape- and wine-growing zone of the Russian Federation. The area of
vine plantations in this region is about 30 thousand hectares. The wide range of climatic
conditions of Kuban determines the complexity of the soil cover. Thus, the largest areas
of vineyards in Kuban are located on the Taman Peninsula, where southern chernozem
prevails. Smaller areas of vineyards are located in Novorossiysk, Crimean and Gelen-dzhik
districts, where sod-carbonate soils prevail. The Crimean Peninsula is unique in its soil
and climatic conditions. The main three natural–climatic zones with unique soil–climatic
factors have been identified for the cultivation of grape plants: Steppe, Piedmont and South
Coastal. These zones include 12 winemaking districts, which makes it possible to produce
a wide range of wine products. The soils are predominantly mountainous, brown and
non-carbonate [6,7].

Due to the increasing number of cases of substitution of authentic products with wines
produced from grapes of other winegrowing regions, the control of the authenticity of
the geographical place of origin of wines is an important priority area that contributes to
the protection of producers of high-quality products. Typically, methods for confirming
the geographical place of origin of wine include the identification of “fingerprints” using
instrumental and statistical methods. At present, studies aimed at investigating the ele-
mental profile of wine have become widespread. Most of the mineral elements found in
wine make their way into the grape through their absorption by the grape plant from the
soils where the grapes are grown, which form the “mineralogical signature” associated
with the wine’s terroir. The most effective method of studying the elemental profile of food
products, including wines, is the ICP-MC method. This method allows you to measure
the mass concentration of more than 70 elements in a sample, and it also has the highest
sensitivity compared to other methods [8–11].

The identification of criteria for the authenticity of the geographical origin of wines
is based on obtaining a dataset of various indicators and processing them analytically
using various statistical methods. The most common methods of data analysis are analysis
of variance (ANOVA), principal component analysis (PCA), linear discriminant analysis
(LDA), soft independent modeling of class analogies (SIMCA) and the support vector
method (SVM) [2,8,12].

Thus, researchers from Argentina were able to reliably distinguish four geographical
regions based on five elements: Ba, As, Pb, Mo and Co [9]. In South African wines,
successful classification was achieved in the Stellenbosch region, based on the elements
B, Ba, Cs, Cu, Mg, Rb, Sr, Tl and Zn [10]. In Brazilian regions, Rb and Li were the most
informative parameters for wine classification [2]. The differentiation of Romanian wines
according to their regional origin was based on the following elements: Ni, Ag, Cr, Sr and
Zn for the Valea Calugareasca region and Rb, Zn and Mn for the Murfatlar region [11].
More than 50 elements were investigated to establish the geographical origin of wines for
three regions in China. The key elements were Ca, Al, Mg, B, Fe, K, Rb, Mn, Na, P, Co,
Ga, As and Sr [8]. Using the elemental profile and machine learning techniques, wines
were classified into four regions of France (Bordeaux, Burgundy, Languedoc-Rousselon
and Rhône) with an accuracy of 98.2%. The most important parameters for the regional
traceability of French wines were the elements Mg, Mn, Na, Sr, Ti and Rb [13].

Similar studies have also been conducted in Spain, Croatia, Germany, Chile, Uru-guay,
Australia, the USA and other countries [14–27]. Studies of the isotopic characteristics of
some metals have shown high efficiency. Studies conducted in Italy, Romania, Portugal,
Canada and the USA have shown that analyzing the values of the 87Sr/86Sr, 207Pb/206Pb,
208Pb/206Pb, and 204Pb/206Pb isotope ratios also allows for making reliable conclusions
about the belonging of wine to a certain terroir [28–36]. However, this research method
requires rare and expensive equipment.
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Thus, the purpose of this study was to develop a method for classifying wines from
the Crimea and Kuban on the basis of their elemental profile data using statistical analysis
methods. Studies to determine the geographical place of origin of wine are of interest to
researchers in all countries of the world with a developed wine industry. Using various
combinations of parameters and methods of statistical processing of results, scientists can
identify wines from the studied wine regions with varying degrees of reliability.

2. Materials and Methods
2.1. Research Materials

The objects of study were 152 grape samples, based on a representative sample. Grape
samples from different wineries in Crimea and Kuban were collected from 2020 to 2023
(Figure 1 and Table 1).
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Figure 1. Geographical zones of grape samples.

The fermentation of white grape must was carried out in laboratory conditions, and
red grape varieties were fermented on pulp. Fermentation was carried out at a temperature
of 22 ± 2 ◦C, using dry wine yeast.
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Table 1. Wine samples.

Winery Zone Number of Samples Grape Varieties

Year of 2020

Kuban 13 Chardonnay, Aligote, Cabernet Sauvignon, Saperavi, Krasnostop, Penvenec
Magaracha, Pinot Blanc, Cabernet Franc, Yubilejnyj

Crimea 17 Chinuri, Malbec, Cabernet Sauvignon, Aligote, Kokur white, Shabash, Sary
Pandas, Dzhevat Kara, Ekim Kara, Kefesia Crimea

Year of 2021

Kuban 8 Aligote, Rhenish Riesling, Merlot, Saperavi, Cabernet Sauvignon, Krasnostop,
Penvenec Magaracha

Crimea 35

Chinuri, Malbec, Cabernet Sauvignon, Aligote, Kokur white, Shabash, Sary
Pandas, Dzhevat Kara, Ekim Kara, Kefesia Crimea, Kapselsky white, Kok

pandas, Solnechnodolinsky, Rkatsiteli, Citron nutmeg, Tavkveri Magaracha,
Riesling, Bastardo, Chardonnay, White Muscat, Merlot

Year of 2022

Kuban 15 Aligote, Cabernet Sauvignon, Merlot, Chardonnay, Muscat, Cabernet Franc,
Malbec, Saperavi, Penvenec Magaracha

Crimea 36
Cabernet Sauvignon, Aligote, Kokur white, Kefecia, Dzhevat Kara, Kimi Kara,

Sary Pandas, Saperavi, Kok pandas, Kapselsky, Krona, Merlot, Malbec,
Soldaya, Antey magarachsky

Year of 2023

Kuban 12 Muscat, Sauvignon Blanc, Chardonnay, Riesling, Syrah, Saperavi, Cabernet
Sauvignon, Merlot

Crimea 16
Sary Pandas, Kokur white, Kokur rassechennyj, Alburla, Kokur red, Kokurdes

black, Rkatsiteli, Kefecia, Cabernet Sauvignon, Penvenec Magaracha,
Krasnostop, Sangiovese, Shabash

2.2. Research Methods

Elemental analysis was carried out in the obtained wines using ICP-AES and ICP-MS
methods. To verify the correctness of the analysis, the results obtained by the two methods
were compared for Li, Al, Mn, Cu, Zn, Sr and Ba.

In all cases, the differences in the contents of these elements determined by the two
methods did not exceed the permissible errors of the methods. For analysis, 0.2 mL of
concentrated HNO3 (Nitric acid 65% Suprapur, Merck) was added to 5 mL of sample and
left for 8 h.

2.2.1. Atomic Emission Analysis (ICP-AES)

The contents of Li, B, Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr and Ba
in the samples were determined by inductively coupled plasma atomic emission spectrometry
(iCAP-6500, Thermo Scientific, Waltham, MA, USA). The determination was carried out under
the following parameters of the spectrometer operation: generator output power—1200 W;
reflected power < 5 W; atomizer type—concentric; Ar plasma flow rate—13 L/min; auxiliary
Ar flow rate—0.8 L/min; Ar flow rate in the atomizer—0.8 L/min.

The determination of the element content in samples was carried out by a quantitative
method using reference solutions containing 0.5 and 10 mg/l of the studied elements. The
content of elements in the samples was calculated using the spectrometer software ITEVA.
The relative standard deviation for all elements did not exceed 0.2 when measuring the
content of these elements up to 5 × [error of determination] and did not exceed 0.1 when
measuring the content > 5 × [error of determination].
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2.2.2. Mass Spectral Analysis (ICP-MS)

The contents of Li, Be, B, Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Mo, Nb, Ru, Rh, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb,
Bi, Th and U were determined by ICPMS (X-7, Thermo Elemental, Waltham, MA, USA).
The detector operation mode was dual (pulse-counting and analog); Survey Scan and
Peak Jumping mode; concentric atomizer—Poly-Con; atomizing chamber—quartz, cooled
(3 ◦C). The following settings were used: plasma Ar flow rate—13 L/min; auxiliary Ar flow
rate—0.9 L/min; atomizer Ar flow rate—0.89 L/min; resolution—0.8 M. Determination of
elements in samples was carried out by a quantitative method using reference solutions
containing from 1 to 500 µg/L of the elements to be determined.

2.2.3. Statistical Methods of Analysis

Principal component analysis (PCA) with prescaling of the data was used to visual-
ize the data. PCA allows a multivariate dataset to be displayed on a plane, keeping the
distribution of observations partially reflecting the original multivariate distribution. The
Shapiro–Wilk test (critical significance level = 0.05) was used to test for normality of the
distribution. Due to the non-normal distribution of the data, the Mann–Whitney test was used
to compare element concentrations between the two groups (critical significance level = 0.05).
Correction for multiple comparisons was performed using the Benjamini–Hochberg correction
(FDR = 5%). When comparing more than two groups, the Kraskell–Wallis test was used with
a posteriori comparison using Dunn’s test with Bonferroni correction (FWER = 5%). Correc-
tion for multiple comparisons was also performed using the Benjamini–Hochberg correction
(FDR = 5%).

Statistical analysis of the data was performed using the R 4.3.2 programming language
and the libraries ggpubr 0.6.0, modelr 0.1.11, kableExtra 1.3.4.9000, Hmisc 5.1-0, gtsum-
mary 1.7. 2, rstatix 0.7.2, broom 1.0.5, scales 1.2.1, plyr 1.8.8, factoextra 1.0.7, readxl 1.4.3,
reshape_0.8.9, psych 2.3.6, lubridate 1. 9.2, forcats 1.0.0, stringr 1.5.0, dplyr 1.1.2, purrr 1.0.2,
readr 2.1.4, tidyr 1.3.0, tibble 3.2.1, and tidyverse 2.0.0.

The libraries used for visualization were ggplot2 3.4.3 and ggbiplot 0.55 in R and
the matplotlib 3.8.0 and seaborn 0.12.2 libraries from the Python programming language
version 3.10.0.

A Random Forest model was created to classify wines according to their geographical
origin. It is a supervised model that is capable of predicting the class of observations (region
of origin) from the predictors (element concentrations) after training.

The model is based on an ensemble of simpler decision tree models, whose prediction
results are combined to produce a more correct estimate. Before loading the data into the
model, the data underwent scaling. For training, the data were split with stratification by
region into training and test datasets. The first model was trained on 2020 and 2022 data
subsets only. The second model was trained on all years in the dataset. A number of models
with different combinations of hyperparameters were trained, among which the model
with the highest accuracy was selected using grid search with cross-validation. The optimal
hyperparameters were searched, and the model was built using the sklearn 1.3.0 library.
Then, the contribution of each parameter to the prediction of the class of observations was
evaluated and visualized using the SHAP (SHapley Additive exPlanations) method. The
shap 0.42.1 library was used for this purpose.

3. Results and Discussion
3.1. Comparative Study of Elemental Profile of Wine Samples from Crimea and Kuban

Between 2020 and 2023, 152 samples of fresh grapes from different farms on the Black
Sea coast were collected during the grape harvesting and processing season (Supplementary
Materials). Of these, 47 samples were collected in Kuban, and 105 samples were collected
in Crimea. The elemental profile was determined in the obtained samples, which included
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71 indicators of the mass concentrations of elements. Ranking of elements by their average
concentration was carried out (Figure 2).
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Figure 3. PCA diagram of samples.

Figure 3 shows the distribution of samples in the feature space after clustering in
two dimensions by the PCA method. The diagram shows that samples from different
geographical areas (Crimea and Kuban) are predominantly clustered together. At the same
time, some samples from Crimea are localized separately, which may indicate the presence
of differences in the values of the parameters of some groups of samples. A rather small
share of explained variance of the principal components should be noted. Thus, the PCA
method in this case does not allow us to sufficiently describe the structure of the data and
reliably classify the samples by geographical areas.

The data were analyzed to identify statistically significant differences in the values
of the studied parameters between samples from different geographical areas. The Mann–
Whitney test with Benjamini–Hochberg multiple comparison correction was used to identify
significantly different elements between two geographical regions. In this regard, the
Mann–Whitney test was used. The multiplicity of measurements was also corrected using
the Benjamini–Hochberg correction. Ten elements were identified whose contents differ
statistically significantly in the two winemaking zones. The statistics of the identified
parameters are presented in Table 2.
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Table 2. Basic statistical data on the concentrations of the identified elements in wine samples
(N = 152) [µg/L].

Region Element Mean SD CI95 Median Iqr Min Max

Crimea B 7637.005 3534.772 6960.886–8313.123 6740.816 4342.926 2899.712 20,826.672
Kuban B 12,376.831 7891.347 10,120.732–14,632.931 9078.932 10,688.664 4019.906 34,148.367
Crimea Ca 67,442.275 22,213.511 63,193.354–71,691.195 65,000.53 26,665.862 28,763.554 154,356.604
Kuban Ca 77,736.728 17,680.162 72,682.051–82,791.405 75,989.54 25,450.436 38,759.975 115,177.129
Crimea Cu 82.59 82.842 66.744–98.436 62.323 71.051 1.744 690.86
Kuban Cu 236.861 311.815 147.715–326.008 151.559 111.903 22.811 1742.521
Crimea Mn 676.957 459.381 589.088–764.825 566.851 320.971 157.629 2883.012
Kuban Mn 871.746 421.976 751.105–992.387 812.558 526.445 170.615 2198.142
Crimea Na 11,578.113 9275.519 9803.924–13,352.301 8718.714 9153.031 1775.196 54,315.663
Kuban Na 14,803.21 5338.224 13,277.037–16,329.384 13,599.198 5085.49 6387.147 38,506.102
Crimea Ni 9.955 15.695 6.953–12.957 6.959 5.547 0.097 111.527
Kuban Ni 19.467 15.873 14.929–24.005 17.781 10.159 0.688 107.379
Crimea Re 0.021 0.022 0.017–0.025 0.015 0.019 <DL 0.12
Kuban Re 0.01 0.015 0.006–0.014 0.007 0.007 <DL 0.095
Crimea Si 9070.07 3508.267 8399.021–9741.118 8713.841 3810.774 3042.293 20,193.198
Kuban Si 11,805.177 3279.205 10,867.667–12,742.686 11,663.206 3449.058 4945.78 22,879.321
Crimea Sn 1.79 3.086 1.2–2.38 0.961 0.769 0.006 16.839
Kuban Sn 2.192 4.587 0.881–3.503 0.353 0.783 0.04 18.018
Crimea U 0.056 0.146 0.028–0.083 0.019 0.02 <DL 0.802
Kuban U 0.013 0.01 0.01–0.016 0.011 0.011 <DL 0.042

Thus, statistically significant differences in the mass concentrations of the elements
B, Ca, Cu, Cu, Mn, Na, Ni, Re, Si, Sn and U were revealed for wine produced in Kuban
and in Crimea. At the same time, the contents of the elements U, Sn and Re prevailed in
wines from Crimea (and for the parameter U, emissions played a significant role), and the
contents of the elements B, Ca, Cu, Cu, Mn, Na, Ni and Si prevailed in wines from Kuban.

It is worth noting that the mass concentration of some identified elements can undergo
significant changes as a result of various technological operations. The transition of Ca, Mn,
Ni and Cu from berry to wine is accompanied by a decrease in concentrations, as the highest
concentrations of these elements are found in grape seeds and skin, which are removed
during must separation. The decrease in the content of elements such as Ca and Cu in
wines is caused by precipitation in the form of tartrates and oxalates. Cu, when interacting
with phenolic substances and proteins, forms tannates or tannin–protein compounds that
are difficult to dissolve and precipitate. A part of mineral substances is used by yeast in
the process of life activity and are removed together with the yeast sediment [37,38]. At
the same time, in a number of scientific works, the mass concentrations of the elements B,
Ca, Cu, Mn, Ni, Na and U were found to be important in the classification of wines from
different regions of South Africa, Romania, China, Spain and others [8,10,11,13,14].

3.2. Comparative Study of Elemental Profile of Wine Samples from Different Soil and Climatic
Zones of Crimea

As was mentioned earlier, the winemaking regions of Crimea are located within the
boundaries of three different climatic zones with unique soil conditions (south coastal,
foothill and steppe). In this regard, it was of interest to compare the elemental composition
of wines from different zones of Crimea (Figure 4).
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Figure 4. Soil–climatic zones of Crimean samples.

To identify statistically significant differences in the values between the samples,
we used the Kraskell–Wallis test with a posteriori comparison using Dunn’s test with
Bonferroni correction (FWER = 5%). It was revealed that samples from the foothill zone
have no statistically significant differences in the values of the studied indicators with
samples from other climatic zones. At the same time, the samples from the steppe and
south coastal zones showed statistically significant differences in their concentrations of
the elements Ba, Be and Mn. The results are presented in the form of a BoxPlot diagram in
Figure 5.
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The figure shows that wine samples from the steppe zone of Crimea have higher
contents of the elements Ba, Be and Mn compared to samples from the south coastal
zone. Despite the different soil and climatic conditions of the studied zones, the elemental
profiles of the three wine samples have a similar character of element distribution. On the
one hand, such a distribution of elements will significantly complicate the possibility of
classifying wines from different regions of Crimea. On the other hand, it contributes to the
identification of Crimean wines using fingerprinting.

3.3. Comparative Study of Elemental Profile of Wine Samples from Different Vintage Years

The grape plant primarily extracts mobile forms of elements from the soil, which
on average make up about half of their total content. However, for some elements, this
ratio can vary considerably. In addition, the diffusive movement in the soil is very slow,
and as a result, zones of depletion may form around the roots [39]. Thus, the qualitative
and quantitative composition of trace elements and rare earth metals in grape berries and
subsequently in wine may tend to change over time. In this regard, it was of interest to
study the changes in the elemental profile of wines produced from grapes of different
harvest years.

A comparative study of the elemental profile of wines made from grapes of different
harvest years was carried out. The PCA diagram is presented in Figure 6.
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From the diagram shown in Figure 6, it can be seen that the data obtained for wines
from grapes harvested in 2021 are isolated in the space of features from the other samples,
which indicates differences in the structure of the data. This distribution of values may be
related to the anomalously heavy and prolonged rains on the Black Sea coast in Crimea and
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Kuban during the 2021 season [40]. Samples from the year of 2020 are clustered separately
from the samples from the year of 2022. At the same time, samples from the year of 2023
are clustered together with samples from the years of 2020 and 2022.

In 2020, the elements B, Cu, Re, and Sn had the highest median values for the entire
time interval from 2020 to 2023 inclusive. In 2021, the elements Ca, Na and Si had the
largest median values for the entire time interval from 2020 to 2023 inclusive. In 2021, the
elements Mn, Ni and U had the highest median values for the entire time interval from
2020 to 2023 inclusive. Thus, monitoring annual changes in the elemental profile of wines
from different regions is an important step in determining their place of origin.

3.4. Analyzing the Elemental Profile of Wines Using Machine Learning Methods

Based on the conducted research, it can be concluded that the usual methods of
univariate and multivariate statistics do not allow us to reliably classify wine samples from
Crimea and Kuban. In order to reveal the non-linear dependence of the studied indicators
in wines on the geographical place of grape growing, the method of a supervised learning
Random Forest was used, which is able to predict the class of observations by the values of
variables after training. Random Forest is a collection of decision tree models, each of which
is trained on a random subset of the dataset and outputs a customized set of rules to predict
the class of observation. Before training the models, the concentrations of the elements Cu,
Ca, Fe and S were removed from the dataset, because it is highly likely that their contents
in wine may be due to anthropogenic factors. The search for the optimal hyperparameters
of the model resulted in a Random Forest with the following characteristics:

- Maximum depth of decision trees—2;
- Maximum fraction of parameters used by each decision tree—0.2;
- Maximum number of leaves—7;
- Minimum number of samples in leaves—1;
- Minimum number of samples in a node to perform split—5;
- Number of trees in the ensemble—30.

The hyperparameters were searched, and the first model was trained on a training
dataset containing data only for the years of 2020 and 2022. The year of 2021 was taken out
of testing as a year with abnormal weather, and the year of 2023 was taken out as a year
with typical weather. After training, the model showed an accuracy of 0.875 on the entire
dataset. The accuracy of the model predictions on a portion of the dataset (the 2020 and
2022 samples on which the model was trained) was 0.94. The accuracy for the year of 2021
only (in which anomalous weather was observed) was 0.85. The accuracy for the year of
2023 only was 0.89.

Expectedly, the model achieved greater accuracy with the data on which it was trained.
However, the decrease in accuracy when dealing with data that the model had not seen
seems relatively small for the amount of data that was used for training.

The model was also built and trained on the entire population of data that was obtained.
As a result of the selection of hyperparameters, the following combination proved to be
the best:

- Maximum depth of decision trees—4;
- Maximum fraction of parameters used by each decision tree—0.2;
- Maximum number of leaves—9;
- Minimum number of samples in leaves—1;
- Minimum number of samples in a node to perform split—6;
- Number of trees in the ensemble—10.

After training the second model, the accuracy of its predictions was 0.93 on a test
sample of the entire dataset. At the same time, for samples generated in different years, the
accuracy was as follows:

- All samples—0.96;
- Sample for 2020—0.93;
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- Sample for 2021—0.93;
- Sample for 2022—0.98;
- Sample for 2023—1.

Based on the performance of the model, a list of important features was obtained and
used to classify the samples. The results are presented in Figure 7 in the form of a SHAP
diagram.
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The graph (Figure 7) shows the parameters arranged in rows. Each parameter has
a set of points (observations from the dataset). The parameters are arranged from top
to bottom in decreasing order of their importance for the model. The color of a point
corresponds to the value of this parameter for a particular observation: blue—low value
of the parameter, red—high. The location of the point along the abscissa axis shows how
important the parameter value was for model prediction. As the distance of values from
the center line increases, the importance of this value for the model increases. When the
points are localized in the left part of the graph, the model classifies the place of origin of
wine as Kuban. On the other hand, localization to the right of the mid-line means that the
sample’s origin was classified as Crimea. We can discern several groups of elements with
different distribution patterns:

1. Elements whose high and low concentrations unambiguously point to the origin of
the sample. These elements provide the most explicit clue about the origin of the
element. For instance, a high concentration of Ni is tipping the scales heavily towards
Kuban, and obviously, a low concentration of Ni suggests a Crimean origin. Such
elements include the following: high concentration for Kuban: Ni, Rb, Zn and Cd;
and high concentration for Crimea: Re, U, Sb, Ti and Lu.

2. Elements whose high or low concentrations point to the origin of the sample. Let us
consider Ba: its high concentration unequivocally tells us that a sample has a Kuban
origin. At the same time, a low concentration of Ba cannot be used alone to determine
the origin, because both Kuban and Crimean samples can have a low Ba concentration.
Elements from this group are the following: high concentration for Kuban: Ba, Na
and Mo; low concentration for Kuban: Mg; high concentration for Crimea: Bi, Ag and
Zr; and low concentration for Crimea: P.

3. Mixed elements, the concentration of which alone cannot tell us with certainty the
origin of the sample. For example, in the case of Si, most samples with a low Si
concentration are located in Crimea, but nonetheless, a small number of samples
with low Si were found in Kuban. Such elements include Si, Tl and Li. Therefore, a
combination of elements from the first and second group can be used to determine
whether the sample came from Kuban or from Crimea. A study of the elemental profile
using machine learning is the most reliable method of classifying wines according to
their place of origin. At the same time, an important stage is the annual monitoring of
the elemental profile of wines in the studied regions and additional training of the
model on new data.

4. Conclusions

The use of an array of data on the elemental profiles of wines, together with statistical
methods of analysis, including machine learning methods, is one of the most reliable
methods of their classification by place of geographical origin. In the conducted work, it
was revealed that wines from Crimea and Kuban differ statistically significantly in their
concentrations of the elements B, Ca, Cu, Mn, Na, Ni, Re, Si, Sn and U. Meanwhile, the
contents of the elements U, Sn and Re prevail in wines from Crimea, and the contents of the
elements B, Ca, Cu, Mn, Na, Ni and Si prevail in wines from Kuban. At the same time, the
methods of univariate and multivariate statistics do not allow us to reliably classify wine
samples from Crimea and Kuban by their place of origin. In order to reveal the non-linear
dependence of the studied indicators in wines on the geographical place of grape growing,
the method of a supervised learning Random Forest was used. After training the model
on the dataset, the share of its correct predictions amounted to 96%. The model used 61
parameters, among which Ni, Re, Ba, Ba, Rb, Na, Na, U, Sb, Zn, Bi, Ag and Ti were the
most important. At the same time, differences were found in the elemental contents of wine
samples produced in different years. In some cases, these differences were significant. Thus,
the most important steps are the annual monitoring of the elemental profile of wines in the
regions under study, the expansion the geography of sampling, and the further training of
the model on the basis of new data.
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