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Abstract: Podostroma cornu-damae, one of the lethal toxic mushrooms, is known to contain macrocyclic
trichothecene mycotoxins exhibiting potent cytotoxic effects, attracting attention as an important
research subject for scientists interested in natural product chemistry and toxicity research. To
investigate the mycotoxins from the toxic mushroom P. cornu-damae and evaluate their cytotoxic
activities, the fungus was large-cultured on solid plates and successively extracted to acquire a
crude methanol (MeOH) extract. After performing successive separation and purification processes,
a total of eight macrocyclic trichothecenes were isolated from the MeOH extract of plate cultures
of P. cornu-damae using the liquid chromatography/mass spectrometry (LC/MS)-guided isolation
technique. Extensive interpretation of nuclear magnetic resonance (NMR) spectroscopic and high-
resolution (HR)-electrospray ionization (ESI)-MS data allowed for the structural identification of
all isolated macrocyclic trichothecenes, including satratoxin I (1), satratoxin H (2), roridin E (3),
miophytocen D (4), roridin L-2 (5), trichoverritone (6), 12′-episatratoxin H (7), and roridin F (8). We
conducted a cytotoxicity evaluation of compounds 1–8 against 4T1 breast cancer cells and fibroblast
cell lines (L929 cells) using the Counting Kit-8 (CCK-8) cell viability assay to validate their cytotoxic
potential. Our results indicated that compounds 1–6 lack anti-cancer effects on 4T1 cells and have
minimal impact on the viability of the fibroblast cell line, L929 cells. In contrast, compounds 7 and
8 exhibited no cytotoxicity in normal cells (L929) and demonstrated specific cytotoxicity in breast
cancer cell lines. Notably, the cytotoxic effects of compounds 7 and 8 in 4T1 cells were significantly
stronger than those observed with free doxorubicin. These findings suggest that compounds 7 and 8
may possess targeted anti-cancer effects, specifically against breast cancer cells, emphasizing their
efficient and selective toxicity towards breast cancer cells.
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1. Introduction

For centuries, mushrooms have been utilized in traditional medicine. They house
bioactive compounds believed to offer diverse health advantages [1–3]. Some mushrooms
are thought to enhance the immune system, possess anti-inflammatory properties, and
even show potential for anti-cancer effects [1–3]. While many mushrooms are safe and
even beneficial, certain species contain harmful compounds, some of which can be fatal if
consumed [4]. The severity of symptoms depends on the specific toxins present in the mush-
room and the amount ingested. Mild symptoms include nausea, vomiting, abdominal pain,
and diarrhea, resembling common food poisoning. However, specific toxic mushrooms
contain compounds that can harm the liver, kidneys, and other organs, leading to more
severe and potentially life-threatening consequences [5]. Accurate identification is crucial
due to the potential dangers, as some toxic mushrooms closely resemble edible varieties. In
the identification process, exploring the chemical metabolites of toxic mushrooms is vital to
differentiate their harmful or beneficial properties.

By isolating and identifying the specific mycotoxins found in poisonous mushrooms,
researchers can enhance their understanding of how these compounds interact with the
human body and cause harmful effects. The process involves separating and purifying
the toxic compounds, followed by detailed chemical analysis, such as nuclear magnetic
resonance (NMR) spectroscopy, column chromatography, and mass spectrometry, to de-
termine their structures and properties [6]. Developing reliable analytical methods for
mycotoxin detection is crucial for promptly and accurately diagnosing cases of mushroom
poisoning. It also contributes to establishing safety guidelines for the consumption of wild
mushrooms [6–8]. Overall, the isolation and characterization of fungal compounds from
toxic mushrooms play a vital role in advancing our understanding of mushroom toxicity
and improving public health measures related to mushroom foraging and consumption.

Previous studies exploring the pharmacological properties of toxic mushrooms have
unveiled potential anti-cancer, antimicrobial, and immunomodulatory activities [9–11]. The
same compounds that render certain mushrooms toxic to humans can showcase diverse
and often beneficial effects when studied for other applications. However, the reported
compounds derived from poisonous mushrooms remain limited. This scarcity may be
attributed to the intricate chemical profiles of mushrooms and the potential risks associated
with handling and studying toxic compounds [12]. Additionally, safety concerns have
understandably overshadowed a more extensive exploration of the beneficial properties of
poisonous mushrooms.

The presence of trichothecenes in Podostroma cornu-damae, one of the lethal toxic mush-
rooms from the Hypocreaceae family, makes it particularly hazardous, as these mycotoxins
can cause a range of adverse health effects, including nausea, vomiting, and, in severe
cases, organ damage or even death [13]. The mushroom’s toxic properties highlight the
importance of caution and awareness when dealing with wild mushrooms, emphasizing
the need for accurate identification to avoid accidental ingestion of poisonous species.
Ganoderma lucidum, known for its medicinal properties in traditional Chinese medicine,
has distinct characteristics that differ from potentially toxic mushrooms. However, during
their early growth phases, G. lucidum and P. cornu-damae share visual similarities with
other less benign species, leading to misidentification and accidental poisonings [13]. Early
symptoms of P. cornu-damae poisoning are reported to include dehydration, vomiting, and
diarrhea. Subsequently, within approximately three days of exposure, affected individu-
als may experience anuria, thrombocytopenia, hypotension, leukopenia, polypnea, and
altered consciousness.
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In our ongoing effort to find bioactive compounds from intriguing natural sources [14–18],
we have directed our focus toward investigating the presence of mycotoxins in the methanol
(MeOH) extract of plate cultures of the fungus P. cornu-damae. In a recent study on the
mycotoxins of P. cornu-damae, we isolated several macrocyclic trichothecenes, along with
novel compounds (roridin F, satratoxin I, and miophytocen D) [19]. In their evaluation
for cytotoxic activity, most of the macrocyclic trichothecenes displayed significant effects
against human cancer cell lines, including ovary cancer, skin cancer, lung cancer, colon
cancer, and breast cancer cells, with IC50 values ranging from 0.02 to 80 nM. Some of these
compounds exhibited even greater potency than doxorubicin, the positive control. In the
current subsequent investigation of P. cornu-damae aimed at the efficient isolation of macro-
cyclic trichothecenes and validation of their cytotoxic activity, we explored macrocyclic
trichothecenes from the scale-up cultivation of the fungus P. cornu-damae in the process of
extensive chromatographic purifications using liquid chromatography/mass spectrometry
(LC/MS)-guided isolation techniques, coupled with 3D plot visualization of LC/MS data
and reference to an in-house library of ultraviolet (UV) spectra. As a result, this successfully
led to the efficient isolation of eight macrocyclic trichothecenes. The chemical structures
were determined by comparing their NMR data with previously reported NMR spectra
and LC/MS analysis data. The isolated macrocyclic trichothecenes were validated for their
cytotoxic effects on cancer and normal cell lines using the D-PlusTM CCK cell viability assay
kit, CCK-8 (Dongin LS, Seoul, Republic of Korea) method. In this study, we describe the iso-
lation and structural characterization of the macrocyclic trichothecenes from P. cornu-damae,
along with their validation of cytotoxicity.

2. Results and Discussion
2.1. Isolation and Structural Characterization of the Macrocyclic Trichothecenes 1–8

The MeOH extract obtained from the cultivation of P. cornu-damae on potato dextrose
agar (PDA) plates underwent solvent partitioning using four organic solvents (hexane,
dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and n-butanol), which afforded four
main fractions, including hexane, CH2Cl2, EtOAc, and n-butanol soluble fractions. Based on
previous research associating P. cornu-damae with macrocyclic trichothecenes, each fraction
was analyzed by LC/MS, and the 3D plot visualization of the LC/MS data was processed
using the application MZmine 3.2.8 (Figure 1). The 3D plot visualization showed that the
CH2Cl2-soluble fraction has many peaks with the polarity of macrocyclic trichothecenes and
promising molecular formula at m/z 500–550 (Figure 1). This allowed the CH2Cl2-soluble
fraction to be considered a promising fraction for investigating macrocyclic trichothecenes.

To specifically isolate the macrocyclic trichothecenes from the CH2Cl2-soluble frac-
tion, we employed an LC/MS-guided isolation approach. The CH2Cl2-soluble fraction
underwent fractionation by preparative reversed-phase high-performance liquid chro-
matography (HPLC), yielding six fractions, each of which was monitored by LC/MS using
the Agilent G6545B quadrupole time-of-flight (Q-TOF) mass spectrometer in conjunction
with an in-house library of UV spectra for the early detection of macrocyclic trichothecenes.
The LC/MS-guided isolation and semi-preparative reversed-phase HPLC purification led
to the efficient isolation of a total of eight macrocyclic trichothecene-type compounds (1–8).
In the MeOH extract of P. cornu-damae, the total percentage of the eight isolated macrocyclic
trichothecenes was 0.28%. Table S1 presents the percentage ratio of each isolated compound
within the total macrocyclic trichothecenes. The NMR data of these eight compounds were
compared with previously reported NMR spectra and LC/MS analysis data confirmed
their structures as satratoxin I (1) [19], satratoxin H (2) [20], roridin E (3) [20], miophytocen
D (4) [19], roridin L-2 (5) [21], trichoverritone (6) [22], 12’-episatratoxin H (7) [23], and
roridin F (8) [19] (Figure 2).
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Figure 2. The chemical structures of the isolated macrocyclic trichothecenes 1–8.

2.2. Evaluation of Cytotoxicity of Compounds 1–8 on Cancer and Normal Cell Lines

To assess the cytotoxicity of compounds 1–8, we incubated these compounds and free
doxorubicin (DOX) at concentrations of 0.1, 0.25, 0.5, 0.75, and 1 µM with 4T1 breast cancer
cells. After 24 h incubation, the cytotoxicity of compounds 1–8 was tested using the CCK-8
cell viability assay kit, following the manufacturer’s protocols. Vehicle controls received
treatment with 0.5% dimethyl sulfoxide in cell culture media, and 0.5% DMSO is known to
have a non-cytotoxic effect on breast cancer cells [24]. The results demonstrated that 4T1
cell viability gradually decreased as the concentration of free DOX increased; however, 4T1
cell viability showed an increasing pattern when treated with compounds 1–6 (Figure 3).
This suggests that compounds 1–6 do not have an anti-cancer effect on 4T1 cells but rather
increase their activity. As demonstrated in Figure 3B, with the increasing concentration
of compounds 1–6, there was a negligible influence on the fibroblast cell line, L929 cell
viability. Even when the concentration was increased to 1 µM, the cell viability remained
over 80%, indicating good biocompatibility.

On the other hand, the viability of 4T1 cells significantly decreased when treated
with compounds 7 and 8 compared to the normal fibroblast cell line, L929 (Figure 4).
Moreover, the cytotoxic effects of compounds 7 and 8 in 4T1 cells were notably stronger
than those of free DOX (Figure 4). As these compounds demonstrated no cytotoxicity
in normal cells (L929) and exhibited specific cytotoxicity in breast cancer cell lines, it
suggests that compounds 7 and 8 may possess anti-cancer effects specifically targeting
breast cancer cells. These results highlight the efficient targeted toxicity of compounds
7 and 8 toward breast cancer cells. In our recent study [25], we evaluated the cytotoxicity
of satratoxin H, 12′-episatratoxin H, and roridin F against four human-derived cancer cell
lines: SK-OV-3 (ovary malignant ascites), A549 (non-small cell lung carcinoma), SK-MEL-
2 (skin melanoma), and HCT (colon adenocarcinoma). The assessment was conducted
using the sulforhodamine B (SRB) bioassay [25], with doxorubicin serving as the positive
control. Results showed that 12′-episatratoxin H demonstrated potent cytotoxic effects
against all four tested cell lines, with IC50 values ranging from 0.7 to 2.8 nM, surpassing
those of doxorubicin. Satratoxin H exhibited moderate cytotoxic potency against all four
cell lines, with IC50 values ranging from 1.93 to 4.22 µM. In contrast, roridin F did not
show significant cytotoxicity (IC50, >10.0) [25]. The observed potent cytotoxicity of 12′-
episatratoxin H compared to satratoxin H aligns well with previous data despite differences
in the tested cancer cell lines. For roridin F, although it did not exhibit cytotoxicity against
SK-OV-3, A549, SK-MEL-2, and HCT, it displayed selective cytotoxic effects against the
breast cancer cell line 4T1 with no impact on normal cells (L929) in this study. In another
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recent study focusing on breast cancer cell lines (Bt549, HCC70, MDA-MB-231, and MDA-
MB-468) [19], 12′-episatratoxin H again demonstrated potent cytotoxic effects, with IC50
values ranging from 0.3 to 3.0 nM, surpassing those of doxorubicin. Satratoxin H exhibited
moderate cytotoxic activity, while roridin F did not show cytotoxicity [19]. The consistency
in results between satratoxin H and 12′-episatratoxin H across different cell lines, albeit with
differences in breast cancer cells, suggests a potential role for stereochemistry, particularly
the 12′-OH configuration, in their relative cytotoxicity. This emphasizes the potential for
optimizing trichothecene mycotoxins to achieve higher efficacy and lower toxicity, making
them promising candidates for chemotherapeutic agents in various cancer treatments.
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Figure 3. The CCK-8 assay of compounds 1–6 on 4T1 and L929 cells at various concentrations.
(A) The effects of compounds (1–6) on mouse breast cancer (4T1) cell viability. 4T1 cells were treated
with free DOX and compounds 1–6 (0.1, 0.25, 0.5, 0.75, and 1 µM) for 24 h. Vehicle controls received
treatment with 0.5% dimethyl sulfoxide in cell culture media. (B) The effects of compounds (1–6) on
mouse fibroblast (L929) cell viability. L929 cells were treated with free DOX (0.1, 0.25, 0.5, 0.75, and
1 µM) and compounds 1–6 (0.1, 0.25, 0.5, and 1 µM) for 24 h. Vehicle controls were treated with 0.5%
dimethyl sulfoxide in cell culture media. Cell viability was assessed using the CCK-8 cell viability
assay. The data are presented as the mean ± standard error of the mean (SEM), with n = 3. Statistical
significance is denoted as **** p < 0.0001 compared with the control (0 µM).

The findings in this study delve into the potential advantages of natural products
in cancer treatment when compared to traditional drugs like cisplatin, doxorubicin, and
fluorouracil [26]. The isolated natural products are notable for their low toxicity in non-
cancer cells while exhibiting specific toxicity in breast cancer cells. However, the discussion
also acknowledges certain limitations and areas for future exploration. Although natural
products show promise in reducing toxicity, the precise pathways through which they exert
their effects remain incompletely understood. The suggestion is to integrate the study of
natural products with classical anti-cancer prescriptions to obtain a more comprehensive
understanding of their anti-cancer effects. Furthermore, the passage underscores the poten-
tial synergies between natural products and traditional anti-tumor therapies, indicating
that combining them with existing treatments could amplify overall effectiveness. The
development and progress of science and technology are deemed crucial for discover-
ing new natural products, advancing anti-tumor drug research, and instilling hope in
cancer patients.
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(A) Effects of compounds (7 and 8) on mouse breast cancer (4T1) cell viability. 4T1 cells were treated
with free DOX and compounds 7 and 8 (0.1, 0.25, 0.5, 0.75, and 1 µM) for 24 h. Vehicle controls
received treatment with 0.5% dimethyl sulfoxide in cell culture media. (B) Effects of compounds
(7 and 8) on mouse fibroblast (L929) cell viability. L929 cells were treated with free DOX (0.1, 0.25,
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treated with 0.5% dimethyl sulfoxide in cell culture media. Cell viability was assessed using the
CCK-8 cell viability assay. The data are presented as the mean ± standard error of the mean (SEM),
with n = 3. Statistical significance is denoted as **** p < 0.0001 compared with the control (0 µM).

There are significant challenges in cancer drug development, encompassing the need
to effectively target cancer cells, achieve water solubility, and minimize cytotoxicity to
normal cells [27]. The importance of testing potential anti-tumor agents extends beyond
tumor cells to encompass normal cells for a comprehensive understanding of their effects.
Current agents for treating solid tumors are potent in killing cancer cells, including resistant
ones, through various mechanisms targeting mitosis, DNA repair, or protein synthesis.
However, these treatments also affect normal cells, tissues, and organ systems, leading to
debilitating side effects for patients. Without the ability to selectively target cancer cells,
the entire body becomes susceptible [28,29].

In a prior study, Gollahon et al. introduced the potential of a new “Green” anti-
cancer compound derived from Arctium lappa known as Greater Burdock. The compound,
identified as NeoImmune®-07 or NI-07, was found to selectively destroy various breast
cancer cells while exhibiting minimal cytotoxicity to normal cells. According to the data,
NI-07 performed comparably or even better than anti-tumor agents like Taxol™ in killing
cancer cells [30]. Our results demonstrated significant decreases in cell viability in cancer
cells treated with compounds 7 and 8 after 24 h, in contrast to the more rapid effect of
free DOX. Additionally, compounds 7 and 8 showed reduced cytotoxicity in normal cells.
The absence of cytotoxicity, coupled with their efficacy in killing cancer cells, suggests
that compounds 7 and 8 could potentially serve as robust anti-cancer compounds or neo-
adjuvants to current chemotherapy-based treatments. Overall, we propose that compounds
7 and 8 derived from P. cornu-damae could be promising options for anti-cancer therapy.

Early diagnosis and prompt intervention are pivotal for effectively managing cancer.
While treatments like radiation therapy and surgical resection can be highly effective,
particularly in the early stages of the disease, they may not always suffice for advanced or
metastatic cancers. In such cases, chemotherapy becomes indispensable. Chemotherapy tar-
gets rapidly dividing cells, including cancer cells, and is utilized to shrink tumors, control
cancer spread, or alleviate symptoms in metastatic disease. Despite its side effects resulting
from its impact on normal rapidly dividing cells, chemotherapy remains a cornerstone
of cancer treatment, especially for malignancies that have metastasized. Combination
chemotherapy is a widely used strategy in cancer treatment. By employing multiple drugs
with diverse mechanisms of action, combination chemotherapy can target cancer cells
more effectively and mitigate the risk of resistance development. These combinations often
include drugs derived from both natural and synthetic sources. Natural compounds have
been a valuable source of anti-cancer agents, often serving as the foundation for synthetic
analogs optimized for efficacy and safety. Combination chemotherapy with natural com-
pounds can produce synergistic effects, enhancing overall treatment outcomes. In essence,
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combination chemotherapy represents a robust approach to cancer treatment, leveraging
the strengths of both natural and synthetic compounds to improve patient outcomes.

3. Materials and Methods
3.1. General Experimental Procedures

The equipment and devices used in the analyses and experimental procedures are
listed in Table S2.

3.2. Fungus Material

Fresh fruiting bodies of P. cornu-damae were collected from a forest in Pocheon, Korea,
in 2020, and the mycelium was isolated from its fruiting body tissue. The amplified internal
transcribed spacer (ITS) region sequence was then compared to the available sequences in
the NCBI Gene Bank. Upon analysis of the highest score and homology, ITS sequence was
determined as a match to P. cornu-damae.

3.3. Extraction and Fractionation

P. cornu-damae was cultivated on 200 potato dextrose agar (PDA) plates (90.0 × 15.0 mm)
at 25 ◦C for 30 days. Following the fungal growth covering the PDA plates, they were
chopped into small pieces and combined, and an overnight extraction was conducted
with 90% MeOH three times. The MeOH phase was filtered and then evaporated under
vacuum conditions to obtain a MeOH extract. Dissolving the MeOH extract (12.0 g) in
distilled water (700 mL) and partitioning with four different organic solvents (each 700 mL),
namely hexane, CH2Cl2, EtOAc, and n-BuOH three times resulted in four main fractions,
including hexane, CH2Cl2, EtOAc, and n-butanol soluble fractions for 0.2, 0.6, 0.4, and 0.8 g,
respectively. Based on the LC/MS analysis of each fraction obtained, the CH2Cl2-soluble
fraction was selected as a promising fraction for investigating macrocyclic trichothecenes.

3.4. LC/MS Analysis for Fractions and 3D Plot Visualization

The LC/MS analysis was carried out using an Agilent 1200 series HPLC system
equipped with a diode array detector and a 6130 Series ESI mass spectrometer. For the
analysis, an analytical Kinetex C18 100 Å column (100 × 2.1 mm i.d., 5 µm particle size)
from Phenomenex (Torrance, CA, USA) was employed, with a flow rate maintained at
0.3 mL/min. The fraction samples were analyzed using a gradient elution program from
10% MeOH-H2O to 100% MeOH for 52 min [10% MeOH-H2O → 100% MeOH (0–30 min),
100% MeOH (30–41 min), 100% MeOH → 10% MeOH-H2O (41–42 min), 10% MeOH-H2O
(42–52 min), and a flow rate of 0.3 mL/min]. For the LC/MS data analysis, the application
MZmine 3.2.8 was used to process the 3D plot visualization of the LC/MS data. The
parameters were set as follows: MS mass range 100–1000 Da, retention time resolution
500, m/z resolution 500, MS level 1, Polarity +, Spectrum type Centroided.

3.5. Isolation of Compounds 1–8

The CH2Cl2-soluble fraction (600 mg) underwent fractionation by preparative reversed-
phase HPLC (Column: Phenomenex Luna C18, 5 µm, 250 × 21.2 mm i.d.) using solvent
of CH3CN-H2O (2:8–1:0, v/v, gradient system) with a flow rate maintained at 5 mL/min,
yielding six fractions (A−F). Based on the LC/MS analysis for each fraction using the
Agilent G6545B Q-TOF mass spectrometer in conjunction with an in-house library of UV
spectra, compounds 1 (5.0 mg, tR = 24.0 min) and 4 (3.4 mg, tR = 35.0 min) were purified
from fraction C through semi-preparative reversed-phase HPLC (Column: Phenomenex
Luna C18, 5 µm, 250 × 21.2 mm i.d.) with a 52% MeOH−H2O isocratic system with
a flow rate maintained at 2 mL/min. Utilizing semi-preparative reversed-phase HPLC
(Column: Phenomenex Luna C18, 5 µm, 250 × 21.2 mm i.d.) using a 60% MeOH−H2O
isocratic system with a flow rate maintained at 2 mL/min afforded the isolation of com-
pounds 2 (2.7 mg, tR = 34.5 min), 5 (3.5 mg, tR = 18.0 min), 6 (3.7 mg, tR = 57.0 min), and
8 (4.3 mg, tR = 32.0 min) from fraction D (30 mg). Fraction E (25 mg) was separated by
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semi-preparative reversed-phase HPLC with a 62% MeOH-H2O isocratic system (flow rate:
2 mL/min) to yield compound 7 (5.5 mg, tR = 42.0 min). Finally, compound 3 (6.0 mg,
tR = 36.0 min) was obtained from fraction F (26 mg) by using semi-preparative reversed-
phase HPLC with a solvent system of 70% MeOH-H2O with a flow rate maintained at
2 mL/min.

3.6. Cell Culture

Mouse breast cancer 4T1-Luc2 cells, which were stably tagged with the luciferase-2
gene, were procured from ATCC (Manassas, VA, USA). Additionally, the mouse fibroblast
cell line L929 was obtained from ATCC. Both cell lines were cultured in RPMI-1640 media
(Gibco, Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS) and
100 U/mL penicillin–streptomycin (both from Gibco), and they were maintained at 37 ◦C
in a humidified atmosphere containing 5% CO2.

3.7. Cell Viability Assay

4T1 cells or L929 cells were seeded in a 96-well plate at a density of 10,000 cells per
well. After 24 h of incubation at 37 ◦C, 4T1 cells were treated with free-doxorubicin (DOX)
or compounds 1–8 (100 µL per well) at different DOX and compounds 1–8 concentrations
(0.1, 0.25, 0.5, 0.75, and 1 µM) and then further incubated for 24 h at 37 ◦C. L929 cells were
incubated with free DOX or compounds 1–8 at concentrations of 0.1, 0.25, 0.5, and 1 µM
for 24 h. Following the incubation, 10 µL of CCK-8 stain was added to each well. Two
hours later, the quantification of CCK-8 was conducted by measuring the optical densities
at a wavelength of 450 nm using a microplate reader (Model 550; Bio-Rad, Hercules, CA,
USA) [31]. The percentage viability of the cells was calculated by comparing cells treated
with the compounds and free DOX with the untreated group. CCK-8 assay was performed
in triplicate from each reagent.

3.8. Statistical Analysis

After the normality test, data that exhibited normal distribution were analyzed using
one-way ANOVA followed by multiple comparisons between groups using Tukey’s post-
hoc test. For flow cytometry data analysis, a Mann–Whitney U test was employed. All statis-
tical analyses were conducted using GraphPad Prism 10.0 software, and a p-value of <0.05
was considered significant.

4. Conclusions

In conclusion, our study focused on exploring mycotoxins from the toxic mushroom
P. cornu-damae, specifically macrocyclic trichothecenes, known for their potent cytotoxic
effects. Through a comprehensive extraction, separation, and purification process by
LC/MS-guided isolation, we successfully identified eight macrocyclic trichothecenes from
the MeOH extract of P. cornu-damae, including satratoxin I (1), satratoxin H (2), roridin
E (3), miophytocen D (4), roridin L-2 (5), trichoverritone (6), 12’-episatratoxin H (7), and
roridin F (8). Subsequent cytotoxicity evaluations on 4T1 breast cancer cells and fibroblast
cell lines (L929 cells) revealed that compounds 1–6 did not show a killing effect on 4T1
breast cancer cell lines but rather induced cell proliferation. It was also confirmed that
compounds 1–6 were less cytotoxic against L929 normal cells than doxorubicin but did
not induce cell proliferation of L929. In contrast, compounds 7 and 8 showed higher
toxicity than doxorubicin in 4T1 breast cancer cells but lower toxicity than doxorubicin in
L929 normal cell lines. These results suggest the possibility of a tumor-targeting effect, as
compounds 7 and 8 demonstrated higher apoptosis effects than doxorubicin in 4T1 tumor
cells while displaying distinct patterns in normal cells. These findings underscore the
potential of compounds 7 and 8 as targeted anti-cancer agents, specifically effective against
breast cancer cells, showcasing their efficient and selective toxicity. However, there are also
certain limitations that must be addressed to enhance the understanding and significance of
these compounds. Therefore, further studies are required to investigate whether treatment
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with these compounds affects other types of cancer cells (e.g., Mc38, B16-f10, etc.), and
toxicity assessments should also be conducted on various normal cell lines such as 3T3
cells. Additionally, it is essential to validate the effectiveness of these compounds in killing
cancer cells through clonogenic assays, cell cycle progression analysis, and apoptotic assays.
These additional studies could significantly enhance the clinical relevance of the findings
in the future.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/separations11030065/s1, Table S1: The percentage ratio
of each isolated compound within the total macrocyclic trichothecenes; Table S2: Equipment used
for analyses.
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