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Abstract: The accumulation of uncollected fly ash from flue gas in post-combustion CO2 capture
processes is a significant concern in current coal-fired power plants due to its potential impact
on the performance of CO2 absorbent and absorption towers. In order to determine the effect of
fly ash on the mass transfer performance of CO2 absorption into monoethanolamine (MEA) and
diethanolamine (DEA) aqueous solutions, experimental studies were carried out using a small-sized
packed tower equipped with θ-ring random packing. These studies were conducted under various
operating parameters, including solution temperature, liquid/gas ratio (L/G), packing height, and
fly ash concentration. The results show that the effect of fly ash on the outlet CO2 concentration was
primarily observed during the initial stages of the experimental process. Moreover, the presence of fly
ash leads to a reduction in the volumetric overall mass transfer coefficient (KGav) when using MEA
and DEA solution, and increasing the fly ash concentration further exacerbates this negative impact.
However, the effect of fly ash on the reduction in KGav is not significantly related to its chemical
composition but rather depends on the operational parameters. With increasing solution temperature,
liquid/gas ratio (L/G), and packing height, the KGav values for different solutions exhibit an upward
trend. The negative effect of fly ash on KGav remains relatively stable for MEA as solution temperature
and packing height increase. Compared to MEA, fly ash has a greater negative effect on DEA solution
under the same experimental conditions. The analysis reveals that the detrimental effect of fly ash on
KGav primarily stems from its ability to alter the distribution state of the absorption liquid within the
packed tower.

Keywords: CO2 removal; effect; volumetric overall mass transfer coefficient (KGav); fly ash; MEA; DEA

1. Introduction

Undoubtedly, global warming has become a real problem we face today. The com-
bustion of fossil fuels, which results in the release of CO2, serves as the primary source of
greenhouse gases [1]. Global energy related to CO2 emissions reached a new high of over
36.8 Gt in 2022 [2]. In order to effectively control and reduce CO2 emissions, numerous
solutions have been proposed, such as enhancing energy efficiency, advancing energy
technologies, implementing CO2 capture and utilization, and developing new sustainable
energy solutions [3–5]. China’s energy structure is expected to continue to be dominated
by coal for a significant period of time in the future. In 2020, China’s CO2 emissions were
9.899 billion tons, with coal-fired power contributing to approximately half of this total [6].
Therefore, it is necessary to control CO2 emissions from coal-fired power plants in order
to achieve the goals of “carbon peaking and carbon neutrality” effectively. The chemical
absorption method has been a hot spot of research in CO2 capture due to its simplicity and
cost-effectiveness. Among the various absorbents, amine solutions such as MEA and DEA
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are widely used and considered the most common and popular choices for CO2 absorp-
tion [7–9]. Extensive research has been conducted on the kinetics of the absorption and
desorption of CO2 to evaluate the capture performance of amine-based absorbents [10,11].
Heidaryan E et al. [1] carried out experimental research to investigate the performance of
carbon dioxide absorption in alkanolamine systems in an oscillatory baffled reactor. Aghel
B et al. [12–14] investigated the process of CO2 desorption from aqueous solutions of MEA
and DEA in a microchannel reactor.

Coal-fired flue gas has a complex composition and contains certain amounts of im-
purities such as SO2, O2, water vapor, and fly ash. Several researchers have conducted
investigations on the effects of SO2 and O2 on the degradation of amine solvents used in
CO2 capture [11,15–18]. Liu et al. [11] studied the effect of SO2 on CO2 absorption using
an amine solution experimentally and theoretically. Results showed that the overall CO2
mass transfer coefficient decreased under exposure to SO2. Despite the high efficiency
of the currently used dust equipment, there is no guarantee that the uncollected fly ash
will not be carried over into the downstream CO2 capture system. Additionally, there is a
possibility of generating new desulfurization agent particles during the flue gas desulfur-
ization process [19,20]. As a result, the flue gas entering the CO2 removal tower and the
absorbent solution (due to recycling) will contain a certain number of particles, which can
potentially impact the performance of the CO2 absorbent. Chen et al. [19] found that fly ash
in flue gas can change the hydrodynamic performance, such as the flooding point, liquid
holdup, and pressure drop of CO2 absorption using K2CO3 solution and MEA solution in
a packed tower. Silva et al. [21] studied the effect of fly ash on MEA oxidative degradation,
and the results showed that, compared to MEA alone, the stability of MEA was lower
in the presence of fly ash under oxidative conditions. Huang et al. [22] investigated the
influence of flue gas contaminants on the thermal degradation of MEA solvent, and the
results revealed that the presence of fly ash significantly increased the activation energy
for MEA degradation. During the shutdown and maintenance of a power plant, it was
discovered that a significant accumulation of solid particles had deposited in the pipeline
at the bottom of the CO2 absorption tower. These deposits accelerated the degradation of
amine absorbents and increased the corrosion rate of the absorption equipment, particularly
under the high temperature and oxygen conditions within the system [23].

Currently, the packed tower is the preferred reactor for CO2 capture in coal-fired power
plants due to its advantages of low pressure, small liquid holdup, and high production
capacity [24,25]. Lydonrochelle’s research showed that CO2 absorption in packed towers
can be considered a typical gas–liquid reaction and mass transfer problem [26]. However,
the presence of solid particles carried by the flue gas can potentially lead to blockage of the
packing material in the tower. This blockage can have adverse effects on the wetting degree
and film formation rate of the packing surface, ultimately impacting the mass transfer
performance of the CO2 absorbent. So far, there is a lack of reports on the specific impact
of fly ash on the mass transfer performance of CO2 removal using MEA and DEA within
packed towers. Therefore, an experimental study was conducted to investigate the effect
of fly ash on KGav of CO2 absorption using MEA and DEA in a θ-ring packed tower. The
relationship between the KGav and the main process conditions was also studied.

2. Experimental Section
2.1. Experimental Setup

The experimental setup utilized in this study primarily comprises three components:
a simulated flue gas system, a CO2 reaction system, and an analysis system (see Figure 1
for details). The reaction system consists of a small-sized packed tower (inside diameter,
3.5 cm; height, 130 cm) that is filled with 3 mm × 3 mm stainless steel θ-ring packing. The
packing material was loaded into the tower by opening the top cover of the packed tower.
The packing specifications are given in Table 1. The simulated gas used in the experiments
is a mixture of N2 and CO2, which are supplied by steel cylinders. The concentration of CO2
in the flue gas emitted via coal-fired power plants is approximately 14% (volume fraction).
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Therefore, a fixed parameter of 14% CO2 concentration is used in the experiments. Two
glass rotor flowmeters are used to measure and regulate the flow rate of N2 and CO2 gases.
N2 and CO2 gases are fully mixed in a blending tank to create the simulated gas required
for the experiments. The concentration of CO2 at the outlet and inlet was analyzed using
a flue gas analyzer (MRU-VARIO PLUS, Neckarsulm, Germany), which has a minimum
resolution of 0.1%.
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Figure 1. Flow diagram of the experimental setup.

Table 1. Physical property and parameters of the packing materials.

Type Size
(mm × mm)

Bulk Density
(kg/m3)

Surface Area
(m2/m3) Void Fraction (%)

θ-ring 3 × 3 520 1800 93

To simplify the experimental process, fly ash is directly introduced into the liquid
phase. Additionally, a higher concentration of fly ash is used to reduce the duration of
the experiment. A magnetically heated stirrer is used to heat the solution to the desired
temperature and ensure thorough mixing of the solution and fly ash. Meanwhile, in order
to achieve uniform distribution of the liquid, a custom-made small liquid distributor is
installed at the top of the packing layer. This distributor helps ensure that the liquid
is evenly distributed throughout the packing material. The gas–liquid countercurrent
processes generate chemical absorption reactions, and the waste liquid produced as a result
of these reactions is directed into the waste liquid tank.

2.2. Properties and Principle of Absorbent

Absorbents used in experiments, MEA and DEA, were supplied by Aladdin Chemical
Reagents Co., Ltd. (Shanghai, China). These absorbents were of analytical purity. MEA
and DEA are widely used as CO2 absorbents in various industrial applications. Both of
them are strong organic bases that offer several advantages, such as a fast absorption speed,
strong absorption ability, and low levels of CO2 residue. However, MEA and DEA do have
some significant differences in terms of viscosity, absorption capacity, and other properties.
The comparison data for viscosity, absorption capacity, and reaction constant between MEA
and DEA are listed in Table 2.
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Table 2. Comparison of selected chemical properties between MEA and DEA.

Name Viscosity (298 K)/mPa·s Absorption Capacity
(CO2/amine)/mol·mol−1

Reaction Constan
(298 K)/m3·kmol−1·s−1

MEA 18.95 0.35 5400
DEA 351.9 0.4 3000–4000

Due to the complexity of the reaction between CO2 and ethanolamine, there is
no accurate and complete chemical equation currently. Generally, the reactions can be
roughly divided into two steps. First, CO2 and ethanolamine react to form the zwitterion
RR′NH+COO− [27], as shown in Equation (1):

RR′NH + CO2 ⇄ RR′NH+COO− (1)

The zwitterion RR’NH+COO− further reacts with MEA (DEA) to generate carbamate
ion RR’NCOO− (rate-controlling step) [28], as shown in Equation (2):

RR′NH+COO− + RR′NH ⇄ RR′COO− + RR′NH+
2 (2)

Equations (1) and (2) combine to form the total equation, as shown in Equation (3):

2RR′NH + CO2 ⇄ RR′NCOO− + RR′NH+
2 (3)

2.3. Fly Ash Used in Experiments

The fly ash particles used in experiments were directly collected from the fine ash of
the last two stages of the dust collector in a power plant in Yulin city. The pH value of fly
ash was measured using the method outlined by the US Environmental Protection Agency
(SW-846 Method 9045C), and the measurement result was approximately 13, indicating that
it is alkaline ash. The size distribution of fly ash was measured using an LS Particle Size
Analyzer, and the median/average particle size was determined to be 5.466/14.25 µm. The
chemical composition of fly ash was analyzed using EDXRF, and the results are presented
in Table 3.

Table 3. Mass fraction of fly ash components (%).

ω(Na2O) ω(MgO) ω(Al2O3) ω(SiO2)

1.3 1.33 23.2 56.6

ω(CaO) ω(K2O) ω(Fe2O3) ω(others)

6.1 2.4 7.3 1.77

2.4. Experimental Methods and Processes

Before the start of the experiments, 1000 mL of MEA (DEA) aqueous solution with
and without fly ash particles was prepared. To ensure that the influence of fly ash is not
weakened because of the rapid absorption of two absorbents, the solution concentrations
of MEA and DEA purchased for the experiment were set at 5% (mass fraction, similarly
hereinafter). The prepared solutions were heated to the desired temperature using a
magnetic stirrer. Subsequently, the flow rate of N2 and CO2 was adjusted in a specific
proportion to create a simulated gas. The simulated gas mixture consisted of approximately
86% volume of N2 and 14% volume of CO2. The simulated gas was introduced into the
bottom of the packed tower. Simultaneously, a counter-current flow of gas and liquid
was established, and the gas–liquid reaction took place after the aqueous solution was
dispensed onto the packed column using a peristaltic pump. After the chemical absorption
reaction, the reacting gas was dried using a silica gel desiccant. A flue gas analyzer was
used to measure the CO2 concentration in the exhaust flow. Following each group of
experiments, the reactor interior and “dirty” packing were rinsed before beginning the
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next group of experiments. Each experimental run was kept for about 30 min. The main
parameters of the experimental device are shown in Table 4. To reduce the changes in the
packing state caused by cleaning and improve the repeatability of the experiment, a smaller
packing with dimensions of 3 mm × 3 mm was selected for the experiment. In addition,
the packing state was verified using an ash-free solution under the same conditions each
time after refilling the packing, which ensured the errors in the outlet concentration of CO2
were limited to within 0.5%.

Table 4. The main parameters of experimental device.

Parameter Basic Conditions of Experiments

Packed tower
Inside diameter (mm) 35

Height (mm) 1300

MEA concentration 5% (mass fraction)

DEA concentration 5% (mass fraction)

CO2 initial concentration 14% (volume fraction)

Concentration of fly ash 1%

Solution temperature 40 ◦C

Packed height 70 cm

Flue gas flow 7 L/min

Liquid/gas ratio (L/G) 7 L/m3

2.5. The Establishment of KGav Mathematical Relationship

The differential method is a widely employed approach for determining the overall
mass transfer coefficient (KGav) of absorbents in a packed tower. Aroonwilas et al. [29]
and Maneeintr et al. [30] successfully employed this method to measure the KGav of CO2
absorbed using AMP and MEA aqueous solutions.

In steady-state, according to the two-film theory and the equation of single-phase
mass transfer rate, the overall mass transfer rate equation can be expressed using the gas
phase concentration difference as follows [31]:

NA = KGP(yA − y∗A) (4)

NA—the mass-flux of component A;
KG—the overall mass transfer coefficient for the gas phase;
P—the total pressure (which is the atmospheric pressure in this paper);
yA—the mole fraction of component A in the gas phase;
y∗A—the equilibrium mole fraction of component A in the gas phase.
For a packed tower, the effective gas–liquid interface area per unit volume (av) is

regarded as an important parameter in the mass transfer process. When designing packed
towers, the mass transfer coefficient per unit volume (KGav) is used to calculate the tower
height, as expressed in Equation (5) [32]:

KGaV =

(
NAaV[

P
(
yA − y∗A

)]) (5)

In a packed tower with continuous gas–liquid countercurrent contact, the differential
method is used to take the height dz of the microelement at any cross-section, based on
material balance principles. Therefore, the mass balance equation can be shown as follows:

NAaVdz = Gd
(

yA
1 − yA

)
(6)
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G—the inert gas molar flow rate;
av—the effective interfacial area per unit volume of packing.
The combination of Equations (5) and (6) infers the final expression of KGav, as shown

in Equation (7):

KGaV =

(
G

P
(
yA − y∗A

))(dYA
dz

)
(7)

During the absorption process, which involves chemical reactions, the KGav generally
exhibits a continuous variation with the height of the packing. A total of 5 sampling points
were established along the base of the packed tower, and a flue gas analyzer was used
to measure the fitting curve of CO2 concentration at various heights within the tower. A
Y-z diagram was constructed, and the derivative of z was calculated to determine dYA/dz
at different levels within the tower. In addition, the gas-phase CO2 concentration, which
reaches equilibrium with the liquid-phase CO2 concentration, tends to approach zero
during the continuous countercurrent gas–liquid absorption process. This is primarily
due to the fast reaction between MEA (or DEA) and CO2. In other words, y∗A ≈ 0 [26].
Therefore, y∗A is considered to be zero in this paper.

3. Result and Discussion
3.1. Effect of Fly Ash on CO2 Outlet Concentration

The variations in CO2 outlet concentration with different solvents are shown in
Figure 2. Figure 2 clearly demonstrates that the addition of fly ash to MEA and DEA
solutions leads to a significant increase in the outlet concentration of CO2, indicating that
the presence of fly ash has a detrimental effect on CO2 absorption.
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Figure 2. Effect of fly ash on CO2 outlet concentration using different solutions.

The pH value of the fly ash used in this study is approximately 13, indicating its
alkaline nature. In order to investigate the impact of fly ash properties on CO2 absorption,
further experiments on CO2 absorption were conducted using ash water alone, without the
presence of any additional absorbents. The ash water used had a fly ash mass concentration
of 1%. The results are presented in Figure 3. From Figure 3, it can be seen that the chemical
properties of fly ash have minimal influence on the outlet concentration of CO2 and can
even be disregarded.
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Based on the aforementioned results and analysis, it is evident that the ash water does
not possess a significant capacity for CO2 absorption. The negative effect of fly ash on
CO2 absorption primarily manifests during the early stages of experiments and does not
exhibit a substantial increase over time. In order to further explore the impact of fly ash
properties on CO2 absorption, experiments were conducted with longer operating times,
and the corresponding results are displayed in Figure 4. Figure 4 illustrates that the outlet
concentration of CO2 gradually increases in both ash-contained solutions within the range
of 30–120 min, and then the upward trend slows down. For the DEA solution, the outlet
concentration of CO2 exhibits a gradual increase over 30–180 min, followed by stabilization.
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The above experimental phenomena depicted in Figures 2–4 can be explained in two
aspects. Firstly, it was found that in the early stage of the experiment (within 0–15 min
in Figure 2), fly ash contained in the MEA/DEA solution was mainly deposited on the
upper end of the packing layer. This uneven distribution of the absorption liquid resulted
in a decrease in the effective gas–liquid contact area (av). Consequently, the significant
variation in the outlet concentration of CO2 occurred during the initial stage of the reaction.
Secondly, as the experimental process continued, the fluid carried the fly ash into the lower
packing layer. In the packing layer, the fluid flow channels may not be fully utilized; even
if certain channels are blocked by fly ash, the gas–liquid reaction can still take place in
channels that have less resistance. In other words, the deposition of fly ash in the packing
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layer will reduce the available surface area for gas–liquid contact. However, the impact
on the effective surface area (av) required for the absorption reaction is relatively limited.
Therefore, as the experiments continue over the long term, the increasing trend of CO2
outlet concentration becomes slower.

Based on the above analysis, we can conclude that the impact of fly ash on CO2
removal is mainly achieved by changing the distribution state of the absorption liquid
within the packed tower, leading to changes in the effective gas–liquid contact area (av).

3.2. Effect of the Solution Temperature on KGav

The effect of solution temperature on KGav using different solutions is shown in
Figure 5. As the solution temperature gradually increases from 40 ◦C to 60 ◦C, the KGav
values of all solutions exhibit a consistent upward trend. KGav can be affected by the
solution temperature through various mechanisms and factors. Firstly, the solution temper-
ature has a significant impact on thermochemical reactions. According to the Arrhenius
law, for every 10 ◦C increase in temperature, the chemical reaction rate is increased by
about 2–4 times [33]. Secondly, higher liquid temperatures can reduce the viscosity of
liquid and increase kinetic constants, CO2 diffusion coefficients, and Henry’s Constant (H),
allowing for more intense contact between the gas and liquid phases [34–36]. As a result,
the effective gas–liquid contact area (av) is increased, leading to higher KGav values. Lastly,
the increase in solution temperature also increases the partial pressure of CO2 at the surface,
which in turn provides more CO2 available in the solution for chemical reactions [1], thus
increasing KGav.
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Figure 5. Effect of solution temperature on KGav.

In addition, as the solution temperature increases, the negative impact of fly ash on
DEA shows an increasing trend. For a packed tower, the initial liquid distribution is one
of the important factors that affects its performance in actual operation [37]. In the experi-
ments, the fly ash was pumped into the packed tower along with the solution and primarily
accumulated in the upper section of the packing layer. This led to liquid maldistribution
and a decrease in the actual gas–liquid contact area, ultimately resulting in a reduction in
KGav. This is the main reason for the decrease in KGav caused by fly ash. Furthermore, the
viscosity of a solution can be decreased by increasing its temperature [34,35]. According
to Table 2, it can be observed that the viscosity of the DEA solution is considerably higher
than that of MEA. As the solution temperature increases, the viscosity of the DEA solution
experiences a significant decrease. This enhances the flowability of the DEA solution,
resulting in a more uneven distribution of the liquid at the upper inlet of the packing
material; thereby, the effective mass transfer area of the packing material is significantly
reduced. Therefore, the effect of increasing temperature on DEA is more pronounced in
terms of the influence of fly ash.
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3.3. Effect of the Liquid/Gas Ratio (L/G) on KGav

The effect of the liquid/gas ratio (L/G) on the KGav is illustrated in Figure 6. Figure 6
shows that the KGav exhibited a nearly proportional relationship with the liquid/gas ratio
(L/G), regardless of the presence or absence of fly ash in the solution. This suggests that
the liquid/gas ratio (L/G) has a very significant effect on KGav in terms of the mass transfer
performance for CO2 absorption into aqueous solutions of MEA and DEA. The reasons for
the observed relationship between KGav and the liquid/gas ratio (L/G) are that an increase
in the liquid/gas ratio (L/G) leads to a higher amount of solution being sprayed onto
the packing. This increased amount of solution enhances the wettability of the packing
material, resulting in improved mass transfer performance. Consequently, the effective
gas–liquid contact area (av) increases, and there is more thorough contact between the gas
and the liquid. Furthermore, increasing the liquid/gas ratio (L/G) not only results in an
increase in the liquid-side mass transfer coefficient (kL) but also leads to a decrease in the
thickness of the liquid film, particularly when the mass transfer is controlled by the liquid
phase [29,38,39]. As a result, KGav increases rapidly.
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Figure 6. Effect of liquid/gas ratio on KGav.

In Figure 6, it can also be seen that the addition of fly ash to MEA and DEA solutions
reduces the values of KGav. However, as the liquid/gas ratio (L/G) further increases, the
negative effect of fly ash on MEA becomes less pronounced compared to DEA. This is
because the increase in the liquid/gas ratio (L/G) significantly enhances the driving force
of gas–liquid mass transfer, effectively counteracting the negative effects of fly ash on CO2
absorption processes caused by altering the distribution state of the absorbent solution
and reducing the effective contact area between the two phases. In addition, DEA has a
lower absorption rate and higher viscosity compared to MEA. As a result, any alterations
in the initial distribution state of gas–liquid and the effective contact area have a more
pronounced impact on DEA.

3.4. Effect of the Packing Height on KGav

The effect of the packing height on the KGav is shown in Figure 7. As shown in Figure 7,
the values of KGav demonstrated an upward trend as the packing height increased. By
increasing the packing height, both the gas–liquid residence time and the surface area
of packing are increased, which can offer several benefits. First, this longer residence
time allows for more thorough gas–liquid contact, facilitating mass transfer and chemical
reactions. Second, the increased surface area provides more contact points for the gas and
liquid phases, enhancing their interaction and improving overall mass transfer efficiency.
Therefore, as the packing height increases, the KGav increases.



Separations 2024, 11, 20 10 of 13Separations 2024, 11, x FOR PEER REVIEW 10 of 13 
 

 

  
(a) MEA (b) DEA 

Figure 7. Effect of packing height on KGav. 

In Figure 7, it is evident that at the same packing height, particularly at low packing 
heights, the negative impact of fly ash on DEA is more significant compared to MEA. For 
instance, when the packing height is 50 cm, the addition of fly ash to the solution led to a 
reduction of 8.9% in KGav for the MEA solution, while the DEA solution experienced a 
larger reduction of 19% in KGav. This may be attributed to the higher viscosity of the DEA 
absorbent, resulting in its inferior flowability compared to MEA. However, the negative 
effect on the KGav gradually decreases as the packing height increases. This could be due 
to the opening of flow channels with relatively low resistance for gas and liquid, leading 
to an increased flow passage for the solution. Furthermore, the flow path of the absorption 
liquid is lengthened, leading to a certain degree of redistribution of the absorption liquid 
within the packing layer. This results in a reduction in the effective area caused by the 
uneven distribution of the inlet liquid.  

3.5. Effect of the Fly Ash Concentration on KGav 
The effect of a high concentration of fly ash on the KGav was investigated, and the 

results are shown in Figure 8. Figure 8 shows that increasing the concentration of fly ash 
in the solution leads to a significant decrease in KGav. Based on the experimental results 
and analysis presented in Section 3.1, it is evident that fly ash does not possess the capa-
bility to effectively remove CO2. The negative impact of fly ash on KGav primarily arises 
from the uneven distribution of the absorption solution and the reduction in the effective 
gas–liquid contact area (av) due to the deposition of fly ash on the packing surface. There-
fore, in industrial operations, it is crucial to implement effective measures to minimize the 
presence of solid grain impurities such as fly ash, carbon black, and desulfurizing agent 
particles in the solutions. This is necessary to mitigate their adverse effects on the CO2 
removal system. 

  
(a) MEA (b) DEA 

50 60 70 80 90
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

K G
a V

  / 
km

ol
·m

-3
·h

-1
·k

Pa
-1

Packing Height / cm

 5% MEA
 5% MEA−1% Fly ash

50 60 70 80 90
0.00

0.05

0.10

0.15

0.20

K
G
a V

  / 
km

ol
·m

-3
·h

-1
·k

Pa
-1

Packing Height / cm

 5% DEA
 5% DEA−1% Fly ash

0.4 0.6 0.8 1.0 1.2 1.4 1.60.00

0.05

0.10

0.15

0.20

0.25

0.30

K G
a V

  / 
km

ol
·m

-3
·h

-1
·k

Pa
-1

Fly ash concentration / ωt %

 5% MEA
 5% MEA−1% Fly ash

0.4 0.6 0.8 1.0 1.2 1.4 1.60.00

0.03

0.06

0.09

0.12

 5% DEA
 5% DEA−1% Fly ash

K
G
a V

  / 
km

ol
·m

-3
·h

-1
·k

Pa
-1

Fly ash concentration / ωt %

Figure 7. Effect of packing height on KGav.

In Figure 7, it is evident that at the same packing height, particularly at low packing
heights, the negative impact of fly ash on DEA is more significant compared to MEA. For
instance, when the packing height is 50 cm, the addition of fly ash to the solution led to
a reduction of 8.9% in KGav for the MEA solution, while the DEA solution experienced a
larger reduction of 19% in KGav. This may be attributed to the higher viscosity of the DEA
absorbent, resulting in its inferior flowability compared to MEA. However, the negative
effect on the KGav gradually decreases as the packing height increases. This could be due to
the opening of flow channels with relatively low resistance for gas and liquid, leading to an
increased flow passage for the solution. Furthermore, the flow path of the absorption liquid
is lengthened, leading to a certain degree of redistribution of the absorption liquid within
the packing layer. This results in a reduction in the effective area caused by the uneven
distribution of the inlet liquid.

3.5. Effect of the Fly Ash Concentration on KGav

The effect of a high concentration of fly ash on the KGav was investigated, and the
results are shown in Figure 8. Figure 8 shows that increasing the concentration of fly ash in
the solution leads to a significant decrease in KGav. Based on the experimental results and
analysis presented in Section 3.1, it is evident that fly ash does not possess the capability to
effectively remove CO2. The negative impact of fly ash on KGav primarily arises from the
uneven distribution of the absorption solution and the reduction in the effective gas–liquid
contact area (av) due to the deposition of fly ash on the packing surface. Therefore, in
industrial operations, it is crucial to implement effective measures to minimize the presence
of solid grain impurities such as fly ash, carbon black, and desulfurizing agent particles in
the solutions. This is necessary to mitigate their adverse effects on the CO2 removal system.
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Figure 8. Effect of fly ash concentration on KGav.
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4. Conclusions

In a self-designed packed tower filled with θ-ring stainless steel packing, the effect of
fly ash on KGav of CO2 absorption using MEA and DEA was studied, and the relationship
between KGav and main process conditions was also studied. The results indicate that the
effect of fly ash on the outlet CO2 concentration was primarily observed during the initial
stages of the experimental process. Moreover, the presence of fly ash leads to a reduction
in KGav when using MEA and DEA solutions, and increasing the fly ash concentration
further exacerbates this negative impact. However, the effect of fly ash on the reduction
in KGav is not significantly related to its chemical composition but rather depends on the
operational parameters. As the solution temperature, liquid/gas ratio (L/G), and packing
height increase, the KGav shows an increasing trend. With the increase in liquid/gas ratio
(L/G) and packing height, the negative impact of fly ash on MEA and DEA is weakened.
Analysis results revealed that the effect of fly ash on KGav was achieved by altering the
initial distribution of the absorption solution, resulting in a decrease in the effective gas–
liquid contact area (av). Therefore, under the most economical operating conditions, it
is desirable to maximize the liquid/gas ratio (L/G) and packing height. Increasing the
liquid/gas ratio (L/G) enhances the flushing force of the solution on the fly ash deposited
on the packing, effectively cleaning the packing. Meanwhile, increasing the packing height
provides more gas–liquid flow channels, aiming to mitigate the impact of fly ash on the
CO2 absorption process. Furthermore, in future research work, the flow behavior of ash-
contained fluid inside the packed tower can be explored by utilizing simulation software,
which will enable us to obtain the effect of fly ash on the mass transfer performance of CO2
absorbents from a microscopic perspective.
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