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Abstract: The presence of synthetic industrial dyes in the environment poses significant risks to
aquatic ecosystems, human health, and economies. This study aims to synthesize iron oxide nanopar-
ticles (IONPs) using a green method, analyze them using physicochemical techniques, and examine
the effectiveness with which they photocatalytically degrade crystal violet dye in sunlight. Fourier
transform infrared spectroscopy (FTIR) analysis revealed that the biogenic IONPs showed a UV peak
at a wavelength of 241 nm, with functional groups including phenols, alkynes, and alkenes. X-ray
diffraction (XRD) analysis confirmed the amorphous nature of the bioinspired IONPs. The mean
diameter of the biogenic IONPs was 49.63 ± 9.23 nm, and they had a surface charge of −5.69 mV.
The efficiency with which the synthesized IONPs removed the crystal violet dye was evaluated
under dark and sunlight conditions. The removal efficiency was found to be concentration and time
dependent, with a peak removal percentage of 99.23% being achieved when the IONPs were exposed
to sunlight for 210 min. The biogenic IONPs also demonstrated antioxidant activity, with a relative
IC50 value of 64.31 µg/mL. In conclusion, biogenic IONPs offer a viable and environmentally friendly
approach for eradicating industrial synthetic dyes and remediating contaminated environments and
aquatic ecosystems.

Keywords: green synthesis; Camellia sinensis; characterization; dye removal; antioxidant

1. Introduction

The presence of water is crucial for both biological and industrial processes as it plays
a vital role in sustaining life and facilitating various industrial activities [1]. However, the
limited availability of water in several regions has led to significant adverse consequences
in terms of health and economic burdens [2]. The non-utilization of water contaminated
with substances such as organic dyes is a contributing factor to water shortages [3]. The
primary source of wastewater pollution is believed to be the discharge of organic dyes
originating from several industrial sectors, such as the paper, textile, paint, plastic, and rub-
ber industries [4]. Approximately 15–20% of organic dyes are discharged into wastewater
during various synthesis or processing activities in the aforementioned sectors [5]. The exis-
tence of these substances in wastewater has significant implications for both human health
and the environment [6]. Certain dyes have been reported to be mutagenic and hazardous
substances and thus pose a potential danger to human health [7]. Moreover, trace dyes have
a high level of resistance to biodegradation by indigenous flora, and this may potentially
lead to the occurrence of allergic dermatitis or skin irritations [8]. A range of chemical,
physical, and biological processes have been investigated for the purpose of eliminating
organic dyes from wastewater [9]. These processes include precipitation, chemical oxida-
tion, coagulation, filtration, solvent extraction, electrochemical and membrane processes,
ultrasonic techniques, adsorption, reverse osmosis, and other biological processes [10]. The
adsorption technique was determined to be more effective than other wastewater treatment
technologies due to its cost-effectiveness, versatility, simplicity, ease of implementation,
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and resistance to detrimental pollutants [11]. Various materials, such as zeolites, industrial
byproducts, activated carbons, clays, agricultural wastes, biomass, and polymeric mate-
rials, have been employed for the synthesis of dye adsorbents [12]. Nevertheless, these
adsorbents possess restricted adsorption capacities and separation efficiencies, and these
impose limitations on their practical use [13]. Nanoparticles possess several advantageous
characteristics, including a substantial specific surface area, low diffusion resistance, en-
hanced adsorption capacity, and an ability to quickly attain adsorption equilibrium [14].
The use of magnetic nanoparticles facilitates convenient separation by the application of an
external magnetic field [15]. Nanotechnology has evolved as a dynamic and innovative
scientific field that seeks to develop nanosystems for addressing many challenges in the
realms of health and the environment [16]. Nanocrystalline materials are widely utilized
in several disciplines owing to their physiochemical characteristics, which are primar-
ily attributed to their higher surface area-to-volume ratio [17]. Iron oxide nanoparticles
are widely recognized as exceptional materials for many environmental and therapeutic
purposes due to their desirable attributes, such as their minimal band gaps, chemical
uniformity, magnetic capabilities, and other distinctive traits [18]. Various methods have
been employed for the synthesis of iron oxide nanoparticles, including co-precipitation,
the polyol technique, electrochemical synthesis, the sol-gel method, microwave irradiation,
chemical vapor deposition, and the pulsed laser method [19]. However, these techniques
have certain limitations as they often involve the use of highly toxic reducing agents such
as borohydride and sodium hydrazine [20]. Recently, researchers have developed environ-
mentally sustainable ways of producing of nanoparticles, such as biosynthesis (also known
as green synthesis). In recent years, comprehensive investigations have been conducted to
explore the biological production of nanoparticles using a diverse range of microorganisms,
including bacteria, fungi, actinomycetes, algae, and yeasts [21]. Nevertheless, the utilization
of microorganisms has certain drawbacks, such as (i) the sluggish rates of synthesis; (ii) the
requirement for several steps, including culture preparation and isolation; (iii) the factor of
time consumption; and (iv) the restricted ranges of sizes and forms [22]. In order to address
these constraints, researchers have devised a cost-effective and environmentally sustainable
approach known as the utilization of plant extracts for the synthesis of nanoparticles, which
involves a single-step process [23]. The presence of dyes in industrial effluent can have
significant adverse effects on the environment and pose risks to both human health and
aquatic organisms.

The degradation of the organic pollutants present in wastewater might be achieved
by the process of photocatalysis, which involves the use of metal oxide semiconductor
nanostructures [24]. Photocatalysts are a class of semiconductors that possess the ability
to enhance reaction rates upon exposure to photons while remaining unchanged in their
own chemical composition [25]. Common examples of semiconductor photocatalysts are
titanium dioxide (TiO2), zinc oxide (ZnO), iron(III) oxide (Fe2O3), zinc sulfide (ZnS), and
cadmium sulfide (CdS) [26]. These semiconductors exhibit a full valence band and an un-
filled conduction band [27]. Sunlight-driven catalysis has emerged as a promising method
for wastewater purification due to its environmentally friendly nature, cost-effectiveness,
simplicity of operation, and high efficacy [28]. An ideal photocatalyst should possess a very
broad absorption spectrum, ideally including the visible or near-ultraviolet regions of the
electromagnetic spectrum [29]. The presence of an adequate number of electron-unoccupied
states is necessary to impede the recombination of electron–hole pairs generated from the
bombardment of photons [30]. Several studies have reported different environmental
applications for photocatalysts. A previous study proposed a straightforward approach
for the controlled production of FeNiV oxides with high-valence Mo modifications, which
serve as effective catalysts for the oxygen evolution reaction (ORE). The investigation
determined that the incorporation of Mo has a notable impact on the valence state of Fe
species within the catalysts, resulting in adjustable OER performance [31]. In addition,
the utilization of Ta3N5/CdS nanofibers demonstrates exceptional efficacy in the break-
down and mineralization of tetracycline via photocatalytic processes. Furthermore, these
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nanofibers exhibit a high degree of efficiency in the reduction of hexavalent chromium
Cr(VI) via photocatalysis [32]. Another study has shown that BiOBr/ZIF-67 nanocompos-
ites on carbon fiber cloth (CFC) has been employed as a filter membrane for the purpose of
the photocatalytic elimination of contaminants in continuously running wastewater [33].
A previous study demonstrated a novel approach in the design of carbon dots involving
the creation of S-scheme heterostructures. This strategy aims to simultaneously enhance
the anti-photo-corrosion performance and strengthen the photocatalytic performance of
sulfides, therefore achieving two objectives with a single method [34]. Gadolinium-doped
two-dimensional bismuth molybdate nanosheets have been shown to exhibit photocat-
alytic activity for efficient nitrogen reduction in another study [35]. The present study
was conducted to examine the utilization of iron oxide nanoparticles synthesized using
environmentally friendly methods for the purpose of removing crystal violet dye. This
research aims to establish a cost-effective and environmentally sustainable approach for
the purification of polluted water. Furthermore, an assessment was conducted to evaluate
the antioxidant and antifungal properties of the biosynthesized IONPs.

2. Materials and Methods
2.1. Preparation of the Plant Extract

Camellia sinensis var. sinensis leaves were procured at a nearby marketplace in Riyadh,
Saudi Arabia. The identification of the plant specimens was confirmed by the herbarium
located within the department of Botany and Microbiology. The dried C. sinensis leaves
underwent a triple purification process involving the use of distilled water following an
initial washing with tap water. Subsequently, they were left in shade to achieve complete
dryness. Afterwards, the leaves were pulverized into a fine homogeneous powder using
a mechanical blender. A 500 mL flask was utilized to accommodate a quantity of 50 g
of plant powder together with 200 mL of distilled water. The flask was exposed to a
temperature of 60 ◦C for 30 min using a hot plate. The flask was thereafter subjected to
continuous agitation for a period of 24 h at 25 ◦C, assisted by the use of a magnetic stirrer.
Subsequently, the combination was subjected to purification using Whatman filter paper
(1) to acquire of a refined filtrate and eliminate any residual contaminants. Following this,
the extract was subjected to sterilization via filtration using a 0.45 µm Millipore membrane
filter. Following this, the produced extracts were refrigerated at 4 ◦C to preserve them for
future experiments.

2.2. Green Fabrication of the Phytosynthesized IONPs

For the process of synthesizing iron oxide nanoparticles (IONPs), a solution consisting
of 0.01 M ferric nitrate (Fe(NO3)3.9H2O) was combined with the aqueous C. sinensis leaf
extract in a 1:1 proportion. The formation of a black color indicated the potential develop-
ment of IONPs. The reaction mixture underwent centrifugation at 10,000 rpm for 10 min.
After the centrifugation procedure, the supernatant was extracted and then disposed of.
The pellets were subjected to a triple washing procedure with distilled water to effectively
remove any contaminants [36].

2.3. Characterization of the Biogenic IONPs
2.3.1. UV Optical Spectroscopy

The biogenic IONPs were first distributed in distilled water and their absorbance
within the wavelength range of 200–800 nm was then measured using a UV-VIS-NIR
spectrophotometer (UV-1601, Shimadzu, Kyoto, Japan). The blank solution used in the
experiment was composed of distilled water.

2.3.2. Transmission Electron Microscopy (TEM) Analysis

The biogenic IONPs underwent an initial triple washing process using deionized
water. The specimens were positioned on a copper grid that had been covered with a layer
of carbon, then removed and subjected to a drying process prior to analysis. A transmission
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electron microscope (JEOL, JEM1011, Tokyo, Japan) was used to conduct the analysis at
the Electron Microscope Unit of the College of Science at King Saud University. The TEM
test was used to observe and analyze the morphological characteristics and particle size
distributions of the IONPs. This technique generated high-resolution two-dimensional
pictures at a voltage of 100 kV.

2.3.3. Energy Dispersive X-ray (EDX) Analysis

The elemental composition of the biogenic IONPs was determined via the use of a
scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX)
analyzer (JEOL, JSM-6380 LA, Tokyo, Japan).

2.3.4. FTIR (Fourier Transform Infrared) Analysis

The surface chemistry of the produced IONPs was analyzed using FTIR spectroscopy.
The identification of the functional groups present on the surface of the nanoparticles was
accomplished by analyzing the infrared absorption frequencies. The sample preparation
process included the dispersion of IONPs inside a dry KBr matrix. Subsequently, the
mixture was compressed to create a visually clear disc. A KBr pellet was used as a reference
standard.

2.3.5. XRD Analysis

The X-ray powder diffraction (XRD) patterns were obtained using a Shimadzu XRD
model 6000 diffractometer (Shimadzu, Columbia, SC, USA) equipped with a graphite
monochromator and Cu-K radiation. A step-scanning program was used to conduct an
XRD analysis on a film composed of biosynthesized IONPs. The software (Version 5.921)
utilized a step size of 0.02 per step, and each step had an acquisition length of 5 s at a
2-theta angle. The crystalline phases were identified using the Joint Committee on Powder
Diffraction Standards (JCPDS).

2.3.6. Brunauer–Emmett–Teller (BET)/Barrett–Joyner–Halenda (BJH) Analysis

A combined BET and BJH analyzer (Automated Gas Sorption Analyzer, Model Nova
Station A, Quatachrome Instrument, Boynton Beach, FL, USA) was utilized for the determi-
nation of the specific surface area, pore size, and pore volume of the biogenic IONPs.

2.3.7. Zeta Potential Analysis

The biosynthesized IONPs were characterized by measuring their zeta potential and
dynamic light scattering (DLS) using a zeta sizer device (Malvern Instruments Ltd.; zs90,
Worcestershire, Malvern, UK).

2.4. Photoctalytic Degradation of Synthetic Dyes Using IONPs

The assessment of the crystal violet dye degradation was conducted by examining
different concentrations of iron oxide nanoparticles (0.125, 0.250, 0.5, and 1.0 mg mL−1)
and varying contact durations (30.0, 60.0, 90.0, 120.0, 150.0, 180.0, and 210.0 min). The
percentage of decolorization in response to sunlight was assessed at an average sunlight
irradiation of 1000 W/m2 at 38 ± 2 ◦C and also under dark conditions. In order to establish
the adsorption/desorption equilibrium state, a solution containing 10 mg L−1 of crystal
violet dye and a concentration the biogenic IONPs was subjected to continuous swirling
for a duration of 30 min prior to the commencement of the photocatalytic experiment.
The total volume of the solution used was 100 mL. The effectiveness of the decolorization
was assessed using the following methodology: A volume of 1.0 mL was extracted from
each treatment and subjected to centrifugation at 10,000 rpm for 3.0 min. The resulting
samples were then analyzed for optical density (OD) at a wavelength corresponding to
the maximum absorption band (λmax) of the crystal violet dye solution, namely 588 nm.
This measurement was performed using a spectrophotometer (model 721, manufactured
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by M-ETCAL). The decolorization percentage (%) of the crystal violet dye was calculated
using the following formula:

The decolorization percentage (D (%)): [dye (i) − dye (f)/dye (i)] × 100, where dye (i)
represents the initial absorbance and dye (f) represents the final absorbance observed at
various time intervals.

2.5. Determination of Photocatalysis Reaction at Different pH Values

The decolorization percentages of the crystal violet dye at pH values of 2, 3, 4, 5, 6,
7, 8, and 9 were evaluated to detect the optimum conditions for a photocatalysis reaction.
The biogenic IONPs (1.0 mg/mL) were investigated for their photocatalytic activity at
different pH values under sunlight irradiation of 1000 W/m2 for about 210 min at 38 ± 2 ◦C.
The reaction conditions were adjusted as described previously and the decolorization
percentages of the crystal violet dye were calculated at different pH values.

2.6. Cycling Test of the Biogenic IONPs

The biogenic IONPs were separated from the dye solution, dispersed in distilled water
for 2 h, and then removed, dried overnight, and reused in a second cycle for the adsorption
of the crystal violet dye. Thereafter, the adsorbents were utilized five additional times. A
UV-visible spectrophotometer was used to determine the remaining dye concentration at
580 nm. The adsorption percentage was determined according to the following equation:

Adsorption % =
C0 −Ct

C0

where C0 and Ct are the CV concentrations (mg/L) before and after adsorption, respectively.

2.7. Antioxidant Assay

The efficiency with which the biogenic IONPs scavenged free radicals was evaluated
via the implementation of a 1,1-diphenyl-2-picrylhydrazyl (DPPH) test. Various concentra-
tions (50, 100, 150, 200, and 250 mg/mL) of the biogenic IONPs were adjusted by dissolving
them in methanol. A 1 mM solution of DPPH was made by dissolving it in 100 mL of
methanol. A 2 mL DPPH solution was combined with biogenic iron oxide nanoparticles
of different concentrations. The solutions underwent incubation at room temperature for
30 min in the absence of light. In this study, ascorbic acid was employed as the positive
control, while an equal quantity of methanol and DPPH was used as the blank. The
measurement of absorbance at a specific wavelength of 517 nm was conducted using a
UV spectrophotometer to determine the extent of inhibition in the reaction mixtures. The
inhibition percentage was then determined using the following equation:

% DPPH scavenging = [(A − B)/A] × 100

The absorbance of the control is denoted as A, whereas the absorbance of the sample
is denoted as B.

2.8. Statistical Analysis

The data from the present investigation were subjected to analysis using GraphPad
Prism version 8.0 (GraphPad Software, Inc., La Jolla, CA, USA) via a Tukey test of one-way
ANOVA with a significance level of 0.05. The results are reported in the form of the mean
of triplicates ± standard error.

3. Results and Discussion
3.1. Green Synthesis of Bioinspired IONPs

The bioinspired IONPs were synthesized using a water extract derived from the C.
sinensis leaves. The results presented in Figure 1 demonstrate the utilization of the pre-
pared extract to reduce the ferric nitrate solution, resulting in the generation of bioinspired
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IONPs. The formation of a black color in the solution indicated the successful devel-
opment of the IONPs. The composition of the water extract from the C. sinensis leaves
was determined using gas chromatography–mass spectrometry (GC-MS) in a previous
investigation. The analysis revealed the presence of caffeine, catechol, 1,2,3-benzenetriol,
1,3,5-benzenetriol, 6-Hydroxy-4,4,7a-trimethyl-5,6,7a-tetrahydrobenzofuran, 1,1′-Biphenyl,
2-ethyl-, and methoxy resorcinol [37]. It was hypothesized that these phytoconstituents
found in the green tea extract functioned as reducing agents for the ferric nitrate solution,
and also as biostabilizing and capping agents. The bioprepared IONPs were characterized
using different physicochemical techniques to detect their different physical and chemical
features.
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3.2. UV Analysis of the Bioinspired IONPs

The emergence of a black-colored solution is attributed to the surface plasmon reso-
nance (SPR) vibrations of the bioinspired IONPs. The process by which the IONPs were
synthesized was observed using UV-visible spectroscopy. The UV-visible spectra of the
synthesized IONPs exhibited a distinct peak at 241 nm, which may be attributed to SPR
vibrations occurring inside the reaction mixture (Figure 2). The findings of our study align
with those of a previous publication that reported the presence of a UV peak at 254 nm,
which can be attributed to the SPR vibrations of the biogenic IONPs synthesized using
an extract derived from Solanum lycopersicum leaves [36]. According to a previous study
by Mirza et al. (2018), the presence of a distinctive absorbance peak at around 250 nm
in the UV spectrum is a distinguishing property of IONPs [38]. The diffuse reflectance
spectroscopy (DRS) technique can very efficiently determine the reflectance properties of
powdered samples [39]. In this context, the findings revealed a strong absorption band
within the visible light spectrum (400–800 nm), with a discernible peak seen at 475 nm
(Figure 3). This observation suggests that the biogenic IONPs can potentially be used in
photocatalytic reactions because their UV band falls between 400 and 800 nm in the visible
light range [35,40]. The band gap energy of the biogenic IONPs was found to be 2.6 eV
using Planck’s equation, Eg = hc/λ, where c is the speed of light = 3.0 × 108 m s−1, h is
the Planck constant (4.136 × 10−15 eV s), and λ is the wavelength (475 × 10−9 m). The
calculated band gap energy was matched with those of prior studies which reported the
photocatalytic activities of iron oxide nanoparticles [41,42].
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3.3. EDX Analysis of the Biogenic IONPs

The EDX analysis of the bioinspired IONPs demonstrated the presence of iron peaks
at energy levels of 0.8, 6.4, and 7.0 keV corresponding to the Fe La, Fe Ka, and Fe Kb signals,
respectively. The analysis revealed that the sample included an iron mass percentage of
86.51% (Figure 4). This finding suggests that the utilization of C. sinensis leaf extract in
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the biosynthesis process is highly efficient. The detected carbon peak at 0.3 keV could be
attributed to the carbon holder bearing the IONP sample [38].
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3.4. FTIR Analysis of the Biogenic IONPs

A FTIR analysis was conducted to detect the main functional groups of the bioinspired
IONPs. The FTIR spectra revealed the presence of eight diffraction peaks at 3308.89, 2182.76,
2142.54, 1989.87, and 1636.93 cm–1 (Figure 5). The broadband recorded at a wavenumber of
3308.89 cm–1 in the spectrum of the C. sinensis extract may be attributed to the stretching
of the O-H bonds in the alcohols and phenols [43]. Similarly, the wide band seen at a
wavenumber of 3344.26 cm–1 in the spectrum of the biogenic IONPs might be attributed to
the stretching of the O-H bonds in the phenolic compounds, suggesting the presence of
polyphenolic compounds that act as capping agents on the biosynthesized IONPs. The band
detected at 2182.76 cm–1 in the spectrum of the biogenic IONPs was shifted to 2205.74 cm–1

and attributed to C≡C stretching of alkynes (Table 1) [44]. Furthermore, the absorption
bands seen at a wavenumber of 1636 cm–1 in the spectrum of the biogenic IONPs and
the C. sinensis extract might be attributed to the bending motion of the C=C stretching in
the alkenes [45]. On the other hand, the bands detected at 2171.27 and 2023.52 cm–1 in
the spectrum of the biogenic IONPs might be attributed to the presence of thiocyanate
and isothiocyanate compounds [46]. However, the band detected at 1989.87 cm–1 in the
spectrum of the biogenic IONPs could be attributed to the C-H bending of the aromatic
compounds.
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Figure 5. FTIR spectra of C. sinensis extract and biogenic IONPs (Black line represent FTIR spectrum
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Table 1. Functional groups of biogenic IONPs and C. sinensis extract.

Functional Groups of C. sinensis Extract

No. Absorption Peak (cm−1) Appearance Functional Groups Molecular Motion

1 3308.89 Strong, broad Alcohols and phenols O-H stretching
2 2182.76 weak Alkynes C≡Cstretching
3 2142.54 weak Thiocyanate S-C≡N stretching
4 1989.87 weak Aromatic compound C-H bending
5 1636.93 Medium Alkenes C=C stretching

Functional groups of biogenic IONPs

1 3344.26 Strong, broad Alcohols and phenols O-H stretching
2 2330.51 Weak Carbon dioxide O=C=O stretching
3 2205.74 Weak Alkynes C≡Cstretching
4 2171.27 Weak Thiocyanate S-C≡N stretching
5 2023.52 Weak Isothiocyanate N=C=S stretching
6 1636.90 Medium Alkenes C=C stretching

3.5. TEM Investigation of the Bioinspired IONPs

To determine the size, form, and particle size distribution of the bioinspired IONPS, a
TEM examination was performed. As can be seen in Figure 6, the phytosynthesized IONPs
were found to be spherical in shape and enclosed inside a matrix-like structure that might
be attributed to the capping agents of the phytomolecules of the C. sinensis leaf extract used
in the biosynthesis process. Figure 7 shows that the average diameter of the FeONPs was
49.63 ± 9.23 nm.
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3.6. XRD Analysis of the Biogenic IONPs

The X-ray diffraction (XRD) pattern of the biogenic IONPs derived from the green tea
extract was examined in order to gain a deeper understanding of the crystalline structures
of the synthesized nanomaterials in their original state. As can be seen in Figure 8, the
XRD pattern lacks discernible diffraction peaks, indicating that the synthesized IONPs
possess an amorphous structure. Our findings align with those of prior reports that have



Separations 2023, 10, 513 11 of 20

demonstrated the amorphous forms of the biosynthesized IONPs [47,48]. Iron oxides
may be found in nature in either amorphous or crystalline states [49]. Among the several
crystalline forms, magnetite (Fe3O4), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) are the
most prevalent phases of iron oxides. Both the crystalline and amorphous forms of iron
oxides exhibit distinct characteristics that enable their use in many sectors [50].
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3.7. Specific Surface Area, Pore Size, and Pore Volume of the Biogenic IONPs

Advanced applications require amorphous IONPs that possess a very large surface
area as opposed to iron oxides with crystal structures that have well defined features [51].
Amorphous metal oxides have significance in several industrial fields, such as electronics,
solar energy conversion, catalysis, magnetic storage device manufacturing, and electro-
chemistry, as well as adsorption and decontamination procedures [52]. These applications
exclusively employ amorphous IONPs owing to their exceptional catalytic characteristics,
superparamagnetism, and larger surface area [53]. The biogenic IONPs were found to
have a specific surface area of 48.49 m2/g, as shown in Table 2. Additionally, the pore
size of these nanoparticles was found to be 1.74 nm, while the specific pore volume was
determined to be 0.031 cm3/g. Our results were in accordance with those of a prior study
which demonstrated the biosynthesis of magnetite nanoparticles of a specific surface area
measuring 47.07 m2/g synthesized using Peltophrorum pterocarpus extract [54]. Moreover,
the results of the present study are consistent with those of a previous study that showcased
the environmentally friendly production of amorphous IONPs with a precise surface area
of 46.6 m2/g produced using an extract derived from the leaves of Prosopis Africana [55]. A
previous study showed that the ability to adsorb CO2 can be significantly enhanced by us-
ing magnetite nanoparticles as a surface decoration on multiwalled carbon nanotubes. The
magnetite nanoparticles exhibited a pore size ranging from 1.7 to 2.5 nm, which aligns with
the results obtained in our study [56]. A prior investigation documented the 0.0222 cm3/g
pore volume of α-Fe2O3 nanoparticles which were synthesized utilizing a Spondias dulcis
leaf extract [57]. Collectively, the findings of the current study affirm that the biosynthesized
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IONPs possessed a high surface area and a microporous nature. These characteristics have
been reported to enhance the photocatalytic and adsorptive activities of biogenic IONPs
when used in dye removal and various environmental applications [58].

Table 2. Specific surface area, pore size, and pore volume of the biogenic IONPs.

Parameter Value

Specific surface area (m2/g) BET 48.3

pore size (nm) BJH 1.74

pore volume (cm3/g) BJH 0.022

3.8. Zeta Potential Analysis

A zeta potential analysis of the bioinspired IONPs was conducted to investigate their
surface charge, and the dynamic light scattering showed the average hydrodynamic di-
ameter of the colloidal nanoparticles. It was observed that the average hydrodynamic
diameter of the bioinspired IONPs was 655 nm (Figure 9), a value notably larger than that
obtained through the TEM analysis. This disparity can be attributed to the fact that the TEM
technique measures the diameter of both the biogenic IONPs and the capping molecules
surrounding them, as evidenced by the TEM micrographs, as well as the additional hy-
drate layers enveloping the bioinspired IONPs [59]. However, the surface charge of the
bioinspired IONPs was −5.69 mV (Figure 10). The observed negative surface charge of the
bioinspired IONPs might be attributed to the presence of capping biomolecules derived
from the extract used in the biosynthesis. The stability of nanoparticles is influenced by
many parameters, including the physicochemical properties of the solvent, the extract,
electrostatic interactions, and van der Waals forces [60]. The inclusion of hydroxyl (OH)
functional groups on the surface of the iron oxide nanoparticles was shown to be crucial
in generating negative charges on the nanoparticles [61]. The biogenic IONPs possessed
a negative surface charge, which we attribute to the presence of capping molecules from
the extract. This observation indicates that the biosynthesized nanoparticles exhibited
repulsive forces which contributed to their colloidal stability [62].
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3.9. Photocatalytic Degradation of Crystal Violet Dye Using IONPs

Nanoparticles are subjected to irradiation using a light source, and the degradation
process encompasses two approaches: the direct exposure of the nanomaterial surfaces
to high-energy light sources, or the implementation of a photosensitization method [63].
In the context of direct photocatalytic degradation, the phenomenon of photoexcitation
arises, in which electrons are transitioned from the valence band (occupied) to the con-
duction band via the absorption of light energy [64]. The decolorization of the crystal
violet dye was investigated using biogenic IONPs at different concentrations (0.25, 0.5, 0.75,
and 1.0 mg mL−1) and at different time intervals (30.0, 60.0, 90.0, 120.0, 150.0, 180.0, and
210.0 min) under sunlight and dark conditions. The photocatalytic activity of the bioin-
spired IONPs was time and concentration dependent. The bioinspired IONPs exhibited
their maximum photocatalytic activity at a concentration of 1 mg/mL, resulting in relative
decolorization percentages ranging from 36.17% to 99.23% at reaction durations of 30 and
210 min, respectively. Nevertheless, the biogenic IONPs exhibited their lowest levels of
decolorization when subjected to sunlight reactions at a concentration of 0.125 mg/mL.
The recorded decolorization percentages varied from 4.78% to 27.16% (Figure 11A). At a
concentration of 0.250 mg/mL of biogenic IONPs, the decolorization percentages ranged
from 12.52% to 61.53% over respective experimental periods of 30 to 210 min under sunlight
conditions (Figure 11B). Moreover, the biogenic IONPs at a concentration of 0.50 mg/mL
revealed decolorization percentages ranging from 31.56 to 82.68% at reaction times of 30
and 210 min, respectively, under sunlight conditions (Figure 11C). Under dark conditions,
the highest decolorization percentage of the crystal violet dye was detected at a concentra-
tion of 1.0 mg/mL, and a relative decolorization percentage of 64.23% was recorded at a
reaction time of 210 min (Figure 11D). In the presence of a photocatalyst, the generation
of surface plasmons by the nanoparticles occurred via echoing stimulation through the
molecular system [65]. Hence, the initiation of the dye degradation was facilitated by the
creation of photonic stimulation by the nanoparticles [66]. The increased surface area of the
IONPs facilitated the generation of hydroxyl radicals, which promoted the breakdown of
the crystal violet dye. The photocatalytic degradation of indigo carmine dye under sunlight
irradiation utilizing biogenic IONPs synthesized using Azadirachta indica leaf extract was
reported in a study conducted by Muthukumar et al. [67]. In a recent study conducted by
Bishnoi et al., the degradation of methylene blue dye utilizing IOPNs that were synthesized
using a fruit extract derived from Cynometra ramiflora was reported [68]. The findings of our
current investigation demonstrate that the biogenic IONPs synthesized using C. sinensis
leaf extract exhibit significant photocatalytic activity against crystal violet dye, which aligns
with previous reports.
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Figure 11. Decolorization percentages of crystal violet dye at different time intervals and differ-
ent biogenic IONP concentrations. (A) Decolorization percentages at an IONP concentration of
0.125 mg/mL; (B) decolorization percentages at an IONP concentration of 0.250 mg/mL; (C) decol-
orization percentages at an IONP concentration of 0.50 mg/mL; (D) decolorization percentages at an
IONP concentration of 1.0 mg/mL.

The adsorption percentages of the biogenic IONPs (1.0 mg/mL) under dark and
sunlight conditions at different time intervals are presented in Table 3. The decolorization
percentage was significantly increased from 36.17 to 99.23% under sunlight irradiation at 30
and 210 min, respectively. The results of the present study have confirmed the considerable
photocatalytic efficacy of the biogenic IONPs when exposed to sunlight, which enables the
efficient elimination of crystal violet dye. In contrast, the biogenic IONPs exhibited reduced
adsorption efficacy in the absence of light, under which conditions the relative adsorption
percentages varied from 16.24% to 64.23% after 30 and 210 min, respectively.

3.10. Detection of Photocatalytic Activity of the Biogenic IONPs at Different pH Values

The photocatalytic performance of the biogenic IONPs was assessed under several
pH values in order to identify the optimal parameters for the photocatalytic process. The
biogenic IONPs exhibited their maximum photocatalytic activity at pH values of 6, 8, and
9. This was shown by the respective relative decolorization percentages of 98%, 99.1%, and
99.6%, which are shown in Figure 12.
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Table 3. Decolorization percentages of crystal violet dye under sunlight and dark conditions at
different time intervals and an IONP concentration of 1.0 mg/mL.

Reaction Time (min.)
Decolorization Percentages (%)

Sunlight Dark

30 36.17 16.24

60 58.54 27.63

90 74.12 38.54

120 87.76 44.17

150 96.32 57.32

180 97.63 61.63

210 99.23 64.23
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3.11. Cycling Test of the Biogenic IONPs

A cycling test of the biogenic IONPs demonstrated that their adsorption percentage
slightly decreased from 91.05 to 77.41% after five cycles (Figure 13). This finding provides
clear evidence of the potential reusability of the biogenic IONPs. However, it is worth
noting that the slight decrease in observed adsorption percentages may be attributed to the
washing process, which has the potential to reduce adsorption efficiency [69]. Additionally,
it is possible that some of the adsorption sites may become denatured or covered by
pollutants, leading to a decrease in overall adsorption efficiency [70]. Figure 14 shows an
SEM image of the sample after the cycling test showed the presence of nanoparticles with
increased size due to the adsorption of the crystal violet dye by the biogenic IONPs, which
led to the clumping and aggregation of the nanoparticles together.
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3.12. Antioxidant Activity

The DPPH inhibition percentages of the biogenic IONPs synthesized using the C.
sinensis leaf extract were determined at concentrations ranging from 20 to 100 µg/mL. The
results showed that the inhibition percentages varied from 21.45% to 74.69%, respectively
(Figure 15). The DPPH inhibition percentages of the ascorbic acid varied from 26.14%
to 76.48% across doses ranging from 20 to 100 µg/mL, respectively. Furthermore, the
determined IC50 value of the biogenic IONPs was 64.31 µg/mL, while the standard ascorbic
acid exhibited an IC50 of 56.87 µg/mL.
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Figure 15. Antiradical efficiency of the biogenic IONPs compared with that of the standard ascor-
bic acid.

4. Conclusions

The aqueous Camellia sinensis leaf extract mediated the green synthesis of amorphous
IONPs with an average particle size diameter of 49.63 ± 9.23 nm and a surface charge
of –5.69 mV. The biogenic IONPs demonstrated the highest crystal violet dye removal
efficiency under sunlight illumination and a 210 min reaction duration. Therefore, the
application of biogenic IONPs that are synthesized using leaves from C. sinensis for the
purpose of removing synthetic dyes such as crystal violet is regarded as a secure, environ-
mentally friendly, and sustainable approach for the remediation of hazardous dyes and the
decontamination of the environment, thus promoting a sustainable, eco-friendly, and un-
contaminated ecosystem. In addition, the biogenic IONPs exhibited a notable antioxidant
activity in comparison with the ascorbic acid standard, suggesting their potential for use in
biomedical applications.
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