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Abstract: Membrane distillation (MD) is proposed as an environmentally friendly technology of
emerging interest able to aid in the resolution of the worldwide water issue and brine processing by
producing distilled water and treating high-saline solutions up to their saturation with a view toward
reaching zero liquid discharge (ZLD) at relatively low temperature requirements and a low operating
hydrostatic pressure. Topic modeling (TM), which is a Machine Learning (ML) method combined with
Natural Language Processing (NLP), is a customizable approach that is ideal for researching massive
datasets with unknown themes. In this study, we used BERTopic, a new cutting-edge Python library
for topic modeling, to explore the global and local themes in the MD separation literature. By using
the BERTopic model, the words describing the collected dataset were detected together with over- and
underexplored research topics to guide MD researchers in planning their future works. The results
indicated that two global themes are widely discussed and are relevant to MD scientists abroad. In
brief, these topics are permeate flux, heat-energy recovery, surface modification, and polyvinylidene
fluoride hydrophobic membranes. BERTopic discovered 62 local concepts. The most researched
local topics were solar applications, membrane scaling, and electrospun membranes, while the least
investigated were boron removal, dairy effluent applications, and nickel wastewater treatment. In
addition, the topics were illustrated in a 2D plane to better understand the obtained results.

Keywords: membrane distillation; water treatment; machine learning; maximal marginal relevance;
all-mpnet-base-v2; c-TF-IDF; cosine similarity; CountVectorizer; dimensionality reduction; document
embedding; HDBSCAN; UMAP

1. Introduction

The demand for fresh water continues to increase due to the rapid growth in the
human population and other issues related to accelerated industrialization, environmental
impacts, climate change, altered consumption patterns, etc., which lead to water stress and
scarcity. Over the last century, the global water demand has expanded by 600%, and this
rate equates to an annual increase of 1.8%. As a result, there is an urgent need for effective
water management and conservation practices as well as for the development of developing
creative environmentally friendly methods and solutions to the said global water crisis [1–3].
Membrane distillation (MD), a non-isothermal separation technology, has been proposed
for clean water production and treatment of high-salinity waters up to their saturation,
thus allowing the management of brines discharged from other water-processing plants
and seeking to achieve zero liquid discharge, which represents an important environmental
benefit. The driving force in MD is the water vapor pressure difference established at both
sides of a hydrophobic porous membrane [4,5]. Among the various advantages of the
MD separation process, one can highlight its potential to overcome the osmotic pressure
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limitation of the aqueous solutions to be treated (i.e., this osmotic pressure limits the treat-
ment of aqueous solutions with other processes such as the pressure-driven membrane
separation process reverse osmosis (RO)), low temperature requirements (i.e., MD can
be applied at temperatures below the boiling point of the aqueous feed solutions, thus
low-temperature solar energy systems and industrial waste heat can be used), and low
operating pressures (i.e., MD can be used at atmospheric pressure), among others [6–9].
In addition, MD separation can reach a nearly 100% non-volatile solute rejection rate [10].
Furthermore, different types of hydrophobic membranes (polyvinylidene fluoride (PVDF),
polytetrafluoroethylene (PTFE), or polypropylene (PP); single-layer or multi-layered flat
sheet, hollow fiber, or nanofibrous membranes; etc.) were employed [11]. In general,
other than membrane engineering, this technology has been studied by researchers follow-
ing different theoretical and experimental aspects, like the effects of all involved operat-
ing parameters on the MD performance, the application of different MD configurations
(i.e., direct contact MD (DCMD), air gap MD (AGMD), sweeping gas MD (SGMD), vacuum
MD (VMD), etc.), the treatment of different water sources such as sea and brackish waters
and industrial wastewaters (food, pharmaceutical, radioactive, municipal, dyes, acids,
heavy metals, oils, etc.), the development of different theoretical models and simulations
(e.g., computational fluid dynamics (CFD), Artificial Neural Networks (ANNs), numerical
analysis, etc.) and Machine Learning (ML), among others [12–19].

Artificial intelligence (AI) is the computer science sub-branch that can provide comput-
ers and machines with cognitive abilities to learn, draw conclusions, and make decisions
based on a collection of data [20,21]. The transformational power of AI may be found
in a variety of industries with different applications [22]. Although classically it is very
difficult to define the coverage of AI, Natural Language Processing (NLP), Text Mining
(TM), Robotics, Machine Learning (ML), Rule-based or Knowledge-Based Systems, Case-
Based Reasoning, Neural Networks (NNs), and Computer Game Playing are located under
its heading. ML, a sub-branch of AI, is the process of extracting meaningful information
from data and encompasses computers that can be trained to help people with little or
no sustained effort [23]. The last decade has witnessed an increase and success in the use
of ML in various fields; for instance, forecasting the future, making movie suggestions,
recommending products to buy, deciding on loan applications, affecting hiring decisions,
etc. [24,25]. ML algorithms are broadly classified into three types: supervised learning,
unsupervised learning, and reinforcement learning [26]. Supervised methods like classifica-
tion or regression can train a classifier to predict new information using a defined input and
output. Unsupervised learning techniques like clustering and dimension reduction (DR)
can uncover hidden patterns in data. Reinforcement ML can learn from past experiences
and find the best actions to take in an unfamiliar environment to achieve the ideal state
transition for achieving a specific goal [27].

Topic modeling (TM), a combination of Natural Language Processing (NLP) and
Machine Learning (ML), is generally used to identify and extract the main concepts that
are discussed in a collection of text documents. TM can find hidden patterns (i.e., that
cannot be identified directly by humans) and forms in large collections of unstructured
text data. Topic modeling is also very adaptable, as it can be applied to various types
of text data. The number of topics, for example, can be changed to make the themes
more or less specific or accurate, and the model can be fine-tuned to better suit specific
characteristics of the data. It has received a lot of attention since it was first introduced
by Blei in 2003 [28–30]. When it is employed as an unsupervised learning method, it
does not require labeled data or prior knowledge of the topics in the data. This makes
it useful for exploring and comprehending large datasets when the concepts are initially
unknown [31,32]. Unsupervised learning methods are data-driven approaches that reveal
internal data characteristics and laws through the learning of unlabeled data sets. These
approaches excavate the internal features of the data in greater depth, making it more
conducive to extracting discriminative features [33,34].
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Many methods have been developed to find existent latent topics in a given dataset.
Non-Negative Matrix Factorization (NMF), Latent Semantic Analysis (LSA), probabilistic
LSA, and Latent Dirichlet Allocation (LDA) are among these techniques [35]. In 2022, a
new state-of-the-art model—BERTopic—was introduced by Maarten Grootendorst [36]
for topic modeling as a Python library. This generalized model for pretrained sentence
transformers has yielded promising results for topic modeling in a variety of domains [37].
The BERTopic model assigns only one topic per document and aids in the identification
of outlier documents that are difficult to classify, resulting in an improved classification
accuracy [38]. The BERTopic model is based on six phases (the first five steps are mandatory,
while the last step is optional). A related illustration can be seen in Figure 1 [39].
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As can be seen in Figure 1, the first step of the procedure is document embedding,
which is the core of the sequence in a text-based intelligent system. It is the process of
converting a textual input into a numerical array (vector) form for applying ML models,
and it uses structure-preserving maps to capture informative representations from high-
dimensional observations [40–42]. BERTopic makes use of any transformer-based language
models that have been previously trained. The following second step is a Dimensionality
Reduction (DR) approach [37]. DR techniques are applied to reduce the number of input
features in a set of data, which becomes more compact, improving the efficiency of the
learning algorithm [43]. DR can help users reduce the data storage space, decrease the
computational time of ML algorithms, and help visualize multidimensional data in lower
dimensions such as 2D or 3D [44,45]. Many unsupervised Dimensionality Reduction meth-
ods, such as Multiple Dimensional Scaling (MDS), Principal Component Analysis (PCA),
Locally Linear Embedding (LLE), Isometric Mapping (ISOMAP), and Uniform Manifold
Approximation and Projection (UMAP), have been proposed in the literature [46]. The
third step includes the algorithm clusters of the reduced embeddings [47]. Clustering in
ML is a dynamic technique of categorizing data into numerous collections or clusters based
on the similarities of the data points’ characteristics and features [48,49]. Conventional
clustering techniques are known as “unsupervised”, indicating that no information about
data point partitioning or outcome variables is available [50]. Clustering approaches are
categorized into two types: hierarchical and partitional. Hierarchical clustering attempts
to form a tree-like layout of classes and partition occurrences in each node of the tree,
whereas partitioning clustering categorizes occurrences effectively into k clusters [51]. The
algorithms used for clustering can be k-means, spectral, Density-Based Spatial Clustering
of Applications with Noise (DBSCAN), Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN), and Ordering Points to Identify the Clustering
Structure (OPTICS). These algorithms can detect the underlying structures in image, text,
or video [48,52]. Subsequently, in step 4, the BERTopic model will tokenize and vectorize
documents. The quality of topic representations is critical in topic modeling for interpreting
topics, communicating results, and understanding patterns. It is critical to ensure that the
topic representations are appropriate for a given case [39]. Tokenization is the process of
breaking down text strings into small chunks such as words and phrases [53]. Because
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ML models only accept matrices as inputs, the unstructured data must be converted to
vectors. The technique of translating text into numerical form is known as “text vector-
ization”. In this case, Term Frequency—Inverse Document Frequency (TF-IDF), Doc2Vec,
and CountVectorizers are commonly used vectorizers for textual data [54,55]. The fifth step
is necessary to obtain an accurate representation of the discovered themes and to reflect
the important words in the clusters. A Combined Term Frequency–Inverse Document
Frequency (c-TF-IDF) method is used. c-TF-IDF, a modified version of TF-IDF, considers
what distinguishes documents in one cluster from documents in another. Finally, in the
last step, the representation of the topics is the fine-tuning. This optional step allows users
to represent the concepts with more unique keywords. The BERTopic architecture offers a
wide spectrum of options for fine-tuning that ranges from KeyBERT-like models to GPT-like
models [39].

MD research started in 1967 when the first paper, “Vaporization through Porous
Membrane”, was published by Findley, M. E. [56]. It has a widespread 56-year history with
thousands of manuscripts written by many worldwide researchers. This non-isothermal
separation process has been discussed from numerous perspectives, such as laboratory
experiments, the production of innovative membranes, system improvement, theoretical
modeling, and optimizations, among others. In our previous study, trending topics in MD
literature were identified via bibliometric methods, Text Mining approaches, and manual
searching [14], but none of the published papers revealed the research concepts in MD
with a recently developed, state-of-the-art AI model. This paper employed the BERTopic
algorithm to discover the most attractive and interesting MD research subjects based on the
provided abstracts of the articles downloaded from the Scopus database. Several insights
about MD can be revealed using the topic modeling approach: (i) the predominantly
handled and the less discussed topics by MD researchers; (ii) not only the information on
MD topics can be provided, but also information regarding the prominent or lagging MD
configurations, membrane types, and modeling approaches, among others, on any given
topic (thanks to the list of topic terms created to enable in-depth exploration of the topic
terms; and (iii) a topic modeling of MD literature can reveal new perspectives or insights
that might not have been noticed before by identifying the gaps. One can easily identify
the relationships between different techniques and applications by looking to the BERTopic
results. In addition, this kind of approach to MD helps to guide scientists to carry out
pioneering and cutting-edge MD research studies. As a result, topic modeling is a valuable
and effective tool for improving knowledge and innovation in MD. This study also includes
a detailed description and application of the BERTopic procedure, which we believe will
inspire further studies on MD or in any other scientific domain.

2. Data and Methods
2.1. Data

In this research, we used an MD dataset downloaded 23 January 2023 from the Scopus
database. This database was chosen because it is well known in the academic community
for its broad, inclusive, and comprehensive content coverage [57,58]. The search criteria
and the keywords can be seen in Tables 1 and 2, respectively.

Table 1. Search criteria followed to download the MD dataset.

Criteria Description

Title–Abstract–Keyword Limit to Keyword List (Table 2)
Source Type Limit to Journal

Document Type Limit to Article
Publication Stage Limit to Final

Language Limit to English
Publication Year Exclude 2023
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Table 2. Keywords considered in collecting the MD dataset.

Keyword Keyword

membrane distillation MD
air gap membrane distillation AGMD

direct contact membrane distillation DCMD
vacuum membrane distillation VMD

vacuum enhanced membrane distillation VEMD
Sweeping/sweep gas membrane distillation SGMD

membrane air stripping MAS
thermostatic sweeping gas membrane distillation TSGMD

permeate gap membrane distillation PGMD
liquid gap membrane distillation LGMD
water gap membrane distillation WGMD

conductive gap membrane distillation CGMD
material gap membrane distillation MGMD

In addition, those articles that were not found in the search results were manually
added to the dataset. The collection was then manually screened to remove irrelevant
documents and articles that did not have abstracts. The final dataset included 3684 articles.

2.2. Methods

The BERTopic architecture was used to reveal the hidden themes in the MD domain.
BERTopic used 5 consecutive ML approaches to uncover the topics in the collection. The
first approach was to transform the textual data into numerical representations (text em-
bedding). The BERTopic architecture has a structure that allows many different pretrained
embedding models. In this study, the selected embedding model was all-mpnet-base-v2
because it was the highest-quality model at the time of the research (i.e., the highest
performance on sentence embedding for 14 different datasets with the highest average
performance). all-mpnet-base-v2 is an all-around model optimized for a wide range of appli-
cations. Over 1 billion training pairs were used to train this model on a huge and diverse
dataset. all-mpnet-base-v2 uses a mean pooling approach with normalized embeddings, and
it converts a data instance into a 768-dimension (feature) numerical array [59].

As stated earlier, after the conversion of the dataset to numerical representations,
the BERTopic library applied a DR technique. For this step, UMAP was used. This is a
non-linear method that reduces dimensionality using manifold learning and topological
data analysis. When reducing dimensionality, UMAP preserves the data’s local and global
structure, which is critical for capturing the semantics of textual data. The data is com-
pressed to low dimensions (mostly 2D or 3D) by attempting to minimize the cross-entropy
(CE). The basic calculation of CE is as follows (Equation (1)) [60]:

CE = ∑
a∈A

µ(a)log
(

µ(a)
υ(a)

)
+ (1− µ(a)) log

(
1− µ(a)
1− υ(a)

)
(1)

where A is the weighted adjacency matrix derivation of z, and µ and υ represent two types
of probabilities. Here, z ( z = {z1, z2, . . . . . . , zn}, zn ∈ RM) is the lower-dimensional
representation of the high-dimensional dataset x. The details of the UMAP calculations can
be found elsewhere (McInnes et al. [61]).

The data were then fed to a clustering algorithm for segmentation. The HDBSCAN
method was used for the data clustering. HDBSCAN is an updated version of DBSCAN
with varying epsilon values (ε) that integrates the results to identify the optimal clustering
for stability across the epsilon. This enables HDBSCAN to detect clusters of various
densities and to be more resilient in parameter selection. The HDBSCAN clustering
algorithm exhibits important advantages over other clustering algorithms, as it produces a
separate cluster for outliers, reduces the amount of noise in the clusters, and determines
the number of clusters automatically [62]. The computational path of HDBSCAN starts
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with the two hyperparameters that the algorithm needs for clustering: ε, the distance scale;
and k, the minimum number of points. X = {X1, . . . . . . , Xn} is a set of points in a metric
space with the Euclidian distance d and Xi ∈ X. Xi, the core point of cluster i within ε, is at
least equal to k, as indicated in Equation (2) [63,64]:

|B(Xi, ε) ∩ X| ≥ k (2)

where B is the open ball radius.
In addition to Xi and Xj, the two arbitrary points are considered as ε − reachable,

depending on ε and k (Equations (3) and (4)):

Xi ∈ B
(
Xj, ε

)
(3)

Xj ∈ B(Xi, ε) (4)

When all the data instances in a cluster are connected, a cluster is formed. The
HDBSCAN algorithm uses a modified distance metric. The core-distance (κ(Xi)) is the
distance of Xi to its kth nearest neighbors, and the equation that describes the mutual
reachability distance between Xi and Xj

(
dmreach

(
Xi, Xj

))
is as follows:

dmreach
(
Xi, Xj

)
=

{
max

{
κ(Xi), κ

(
Xj
)
, d
(
Xi, Xj

)}
Xi 6= Xj

0 Xi = Xj

}
(5)

The detected outliers are moved further away from clusters by the mutual reachability
distance. By applying the traditional Single Linkage Clustering algorithm to the discrete
metric space, the hierarchical clustering of X is established. A clustering on density
variation can be used to discover regions with the highest density inside a point cloud,
where the local density at each point is calculated by estimating the core-distance value
associated with each point (Equation (6)):

λ =
1
ε

(6)

The cluster tree’s hierarchy can be reduced by recursively merging some of the clusters.
The cluster tree is condensed by taking the minimum permissible cluster size (m) and
only admitting the pruning of a cluster that would not endure against the increment in the
λ value into at least two subsets with sizes greater than m. According to this method, the
stability (σ) of an individual cluster is defined by adding the range of λ values for each
point in the cluster, as written in Equation (7):

σ(Ci) = ∑
Xj∈Ci

(
λmax,Ci

(
Xj
)
− λmin,Ci

(
Xj
))

(7)

In this case, λmax,Ci

(
Xj
)

and λmin,Ci

(
Xj
)

are the bounds of λ over the point Xj in the
cluster Ci. To obtain the best clustering attribution among all conceivable clustering results,
the overall persistence score in all selected clusters should be maximized while considering
the constraint of no cluster overlap. Clusters with the highest total persistency were chosen
for this purpose as indicated by the following equation:

∑
i∈I

σ(Ci) (8)

where I is the subset of the total number of clusters (n). For all i, j ∈ I and i 6= j,
Equation (8) is limited by Equation (9):

Ci ∩ Cj = ∅ (9)
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In the next step, the data were tokenized and vectorized. BERTopic uses CountVector-
izer as the default for these purposes. First, each textual data instance is tokenized, and
then the text is converted into features (F). If there are (D) documents and (F) features,
CountVectorize will convert them into a D x F matrix. The values in the matrix represent
the frequency of each feature [65].

In the fifth step, the BERTopic method allowed the representation of topics of the
clusters based on the c-TF-IDF approach. Equation (1) was used to calculate the c-TF-IDF

(W x,c

)
of a single word. For the term x within class c, the c-TF-IDF score can be calculated

using Equation (10) [36]:

Wx,c =
∥∥∥t f x,c

∥∥∥ x log
(

1 +
A
fx

)
(10)

where t f x,c is the frequency of the word x in a class c, fx is the frequency of the word x
across all classes, and A is the average number of words per class.

In the last step, which is optional, the researcher can apply a technique called Maximal
Marginal Relevance (MMR) to reduce the word repetition and increase keyword diversity
(fine-tuning of topic representations). MMR, a good approach to present non-redundant
information, considers the similarity of key words within the document as well as the
similarity of previously picked phrases. MMR is defined as follows (Equation (11)) [66]:

MMR = Arg max
Di∈R/S

[
λSim1(Di, F)− (1− λ)max

dj∈S
Sim2

(
Di, Dj

)]
(11)

where D represents the sentence collection, F is the feature set, and S is the subset of sen-
tences in D that have already been chosen. In D, R/S is the set of unselected sentences and
λ is the diversification constant, which is a float (0–1). Sim1 measures the similarity between
a sentence and a feature, whereas Sim2 measures the similarity between two phrases.

Apart from the 6 steps mentioned above, BERTopic can create different plots to inter-
pret the obtained results. The most important of these plots is the heatmap of the topic’s
similarity. The heatmap created by the model is based on cosine similarity (CS). The basic
idea behind cosine similarity is to compute the cosine value of the angle between two
vectors to demonstrate their similarity. CS ranges between −1 and 1. The cosine similarity
value is equal to 1 when two vectors point in the same direction and −1 when they point in
opposite directions. For two vectors

(
XV = {x1, . . . . . . , xn} , YV = {y1, . . . . . . , yn}

)
, the

CS can be computed as follows (Equation (12)) [67]:

CS (X, Y) =
∑n

i=1xiyi

∑n
i=1x2

i ∑n
i=1y2

i
(12)

3. Results and Discussion
3.1. Outline of the MD Dataset

Before diving in the MD topic modeling results, it is critical to provide key information
about the dataset, since it helps to comprehend the nature and quality. MD separation is a
promising non-isothermal technology in the field of desalination and water treatment. It
is a subject of increasing interest worldwide for numerous research groups. The annual
publication count can provide an indication of the degree of research activity in a specific
collection and can be used to track its growth and advancement over time. The evidence of
this rising attention is shown in Figure 2.

As shown in Figure 2, the number of MD publications has increased exponentially,
particularly since 2012. A total of 473 articles were published in 2022, the last year of the
dataset. The total number of articles (3684) indicates that membranologists are making
active efforts to produce appropriate MD membranes with improved performance and
high thermal efficiency to optimize MD systems. However, as the number of publications
increases, the question regarding which topics are being covered more and which are being
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ignored becomes more important. For this reason, it is extremely informative to determine
those MD topics of great interest for future studies using the BERTopic architecture.

Separations 2023, 10, x FOR PEER REVIEW 8 of 24 
 

 

in a specific collection and can be used to track its growth and advancement over time. 
The evidence of this rising attention is shown in Figure 2. 

 
Figure 2. Yearly MD article publications. 

As shown in Figure 2, the number of MD publications has increased exponentially, 
particularly since 2012. A total of 473 articles were published in 2022, the last year of the 
dataset. The total number of articles (3684) indicates that membranologists are making 
active efforts to produce appropriate MD membranes with improved performance and 
high thermal efficiency to optimize MD systems. However, as the number of publications 
increases, the question regarding which topics are being covered more and which are be-
ing ignored becomes more important. For this reason, it is extremely informative to deter-
mine those MD topics of great interest for future studies using the BERTopic architecture.  

The distribution of some significant metrics of the domain was revealed. The ad-
vantage of using a violin plot to visualize the distribution of numerical values is that it 
can help to summarize the basic statistics as well as to show the density of each variable. 
Figure 3 illustrates the violin plots of the MD publication year, citation, page count, and 
reference count values of the domain; the main statistical values (min, max, mean, median, 
outliers, first quartile, and third quartile) are presented. The wide areas in the figures re-
flect more frequent data points, while the thin sections represent the less frequent data 
points. 

Figure 2. Yearly MD article publications.

The distribution of some significant metrics of the domain was revealed. The advan-
tage of using a violin plot to visualize the distribution of numerical values is that it can help
to summarize the basic statistics as well as to show the density of each variable. Figure 3
illustrates the violin plots of the MD publication year, citation, page count, and reference
count values of the domain; the main statistical values (min, max, mean, median, outliers,
first quartile, and third quartile) are presented. The wide areas in the figures reflect more
frequent data points, while the thin sections represent the less frequent data points.
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Figure 3a contains information about the years of publication of the MD articles in the
dataset. The oldest published article on MD was dated 1967 [56]. However, since then MD
did not gain much attention in the scientific community until 2012, when an exponential
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increase in MD studies was initiated. The mean (2015.85) and median (2018) values of
the publication years are also evidence of this interest. When the dataset was divided in
half using the median value, the sum of the studies conducted before 2018 was equal to
the number of studies conducted during the last 4 years. When the number of citations
received by MD articles was analyzed (Figure 3b), it could be seen that an article received
~33 citations on average, which is reasonably good. There are articles in the collection that
had not been cited at all (i.e., zero citations), but it should be noted that this was to be
expected for those articles published in the last months of 2022. It is clear that Figure 3b
is left-skewed (which is the same as right-tailed), indicating that there were articles with
more than 150 citations, and these publications were seen as outliers (i.e., very impactful
papers with more citations than expected) in the dataset. Figure 3c shows the violin plot of
the number of pages and page distributions of the articles in the MD domain. In Figure 3c,
it can be seen that the articles with more than 30 pages protrude to the right in the graph.
While most of the publications contained between 8–12 pages, the average value was ~11.
Finally, when the violin plot of the reference count was examined (Figure 3d), the data
were better distributed than the other features when looking at the width of the green
region. While the average reference value was ~42, the median value (40) indicated that
the number of articles using more than 40 references was equal to the number of articles
using less than 40 references.

3.2. Terms Defining the MD Domain

In the BERTopic model, analysts can find the themes that define global topics and indi-
cate specialized themes (i.e., local topics). The most important parameter in the BERTopic
architecture to create this variance is min_cluster_size (in HDBSCAN algorithm), which is
the primary parameter that affects the resulted clustering. Ideally, this is a simple option to
configure the lowest-sized grouping (i.e., the number of clusters that will be generated) for
which researchers want to consider a cluster. Increasing this parameter results in fewer but
larger clusters, whilst reducing this value results in more microclusters [68,69].

To find the words that describes the MD domain, the min_cluster_size parameter was
set to 3684, which naturally resulted in one cluster. The indicated cluster was described
with the following words (Table 3) that also defined the collection. Furthermore, the dataset
was illustrated in a two-dimensional space (Figure 4).

Table 3. The resulting top 10 terms that defined the collection (min_cluster_size = 3684).

Rank Term

1 membrane
2 water
3 distillation
4 flux
5 membranes
6 MD
7 feed
8 process
9 temperature
10 performance

Table 3 shows the terms mostly used by MD community (i.e., words describing the
published research studies) and the related improvement efforts to make this technology
a worldwide separation process. The term “dimension” in this figure depicts a feature
that describes an aspect of the data. Dimensions 1 and 2 represent the most important
features of 768 dimensions created in the first step of the algorithm (text embedding) with
the all-mpnet-base-v2 model and then reduced to two in the second step with the UMAP
algorithm. In fact, researchers involved in MD are already familiar with these terms. A
typical MD system consists of a high-temperature feed channel and a low-temperature
permeate channel in which the vapor flux is driven by a temperature difference across
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a hydrophobic and microporous membrane. The vapor flux is collected in the permeate
side of the membrane. The permeate flux is an essential indicator of a given MD system’s
performance, since it reveals how efficiently the system produces distilled water [70,71].
In addition to the very high rejection factor, MD researchers pay special attention to the
permeate flux enhancement. In a typical MD configuration, there is the feed side where
the aqueous solution to be treated is heated; then the permeate (i.e., distillate) is collected
either at the permeate side of the membrane inside the membrane module (e.g., DCMD),
on a condensation cold plate (e.g., AGMD), or outside the membrane module (e.g., VMD,
SGMD); while the non-volatile components are retained by the membrane [72]. MD research
studies are mostly conducted for desalination of seawater or brackish water, although
other aqueous feed solutions such as pharmaceutical, radioactive, etc., have also been
considered [14]. The flow rate, chemical composition, temperature, and other properties of
feed solutions are the most studied parameters in MD because of their important effects
on MD performance [73,74]. In fact, the temperature of both the feed and permeate
solutions are the main parameters affecting MD performance, especially the MD permeate
flux and the thermal efficiency [75]. The rate of water vapor transport through the MD
membrane is directly related to the transmembrane temperature, since the water vapor
partial pressure difference (the driving force) is caused by the temperature difference at
both sides of the membrane [76]. In addition, this driving force is also affected by both the
temperature and feed concentration polarization effects, which are important phenomena
that negatively affect the performance of MD systems. The induced concentration and
temperature boundary layers at both membrane surfaces reduce the water vapor transfer
by decreasing the temperature difference between the two sides of the membrane and
increasing the energy consumption [77]. The fact that MD scientists frequently employ the
word “performance” is proof that their main goal is to improve this parameter, as they refer
to both the permeate flux and rejection factor. The improvement in MD performance over
the years is also an indicator of the considerable efforts made to render this technology
one of the leading membrane technologies for water production in the near future.
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As can be seen in Figure 4, the documents occupied a large area in width in the
two-dimensional plane, and the presence of different clusters in the form of islets was
evident. Even this illustration can allow researchers to manually interpret that there may
be quite many topics in the domain.
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3.3. Global MD Subjects

In a second analysis, the min_cluster_size parameter was set to 1000, and the global
concepts and their descriptive words were depicted. The resulting number of topics was
two. The top 10 words for the topics and the distribution of the global themes in a 2D
plane can be seen in Table 4 and Figure S1, respectively. Note that the typical behavior
of the HDBSCAN approach is that it creates outliers (data points that do not fit into any
topic). The HDBSCAN model creates outliers in clustering because forcing outliers into a
cluster reduces the intercluster homogeneity and consistency (the BERTopic architecture
aggregated the outliers together as Cluster -1). The outlier’s cluster is also specified in
Table 4 and highlighted in light grey in Figure S1.

Table 4. Global topics in MD domain (min_cluster_size = 1000).

Topic No. Number of Papers Topic Name

T-1 (Outliers) 410
membrane—water—distillation—process—

concentration—membranes—flux—
temperature—feed—using

T1 2121 membrane—water—distillation—feed—md—
flux—temperature—process—heat—energy

T2 1153
membrane—membranes—surface—water—

distillation—flux—PVDF—contact—
MD—hydrophobic

In Table 4, one can easily understand the global subjects (i.e., the main research topics)
of MD. The MD studies in Cluster 1 (T1) included efforts to reach global goals and solve
the main problems of MD. The number of articles in this cluster (2121) represents the main
objectives of MD researchers to increase the permeate flux, reduce the energy requirements,
and prevent the temperature polarization effect. These T1 topics were already discussed
above in relation to Table 3. Although the topics in the T2 set (1153 articles) were handled
relatively less than T1, still they were the basic subject of MD studies. Membranes are an
essential part of MD systems; thus, membrane engineering is a hot topic. MD membranes
can be classified according to the membrane material (e.g., polymer or ceramic), membrane
preparation technique (phase inversion or electrospinning), polymer type (polyvinyli-
dene fluoride (PVDF), polypropylene (PP), poly(vinylidene fluoride-hexaflouropropylene)
(PVDF-HFP), or polytetrafluoroethylene (PTFE)), and membrane type (flat sheet, hollow
fiber, or nanofiber). Various researchers have carried out progressive studies on the prepa-
ration and modification of membranes specifically for MD [78–82]. The membrane surface
modification topic can be revealed by the word surface in the T2 cluster. This is an effective
method used to customize the surface of membranes for a specific application, to increase
the MD performance, to minimize the wetting of membrane pores, and to reduce fouling
problems, among other uses [83,84]. Thanks to the studies performed on membrane surface
modification, MD applications have been extended to many wastewater types [85–88].
The term PVDF was included in the T2 cluster since this polymer, which is formed by
-(CH2CF2)n- repeating units, exhibits excellent thermal stability, good processability, a high
degree of mechanical strength, and robust chemical resistance, among other properties.
In addition, PVDF can be dissolved in a variety of solvents, including N,N-dimethyl ac-
etamide (DMAc), dimethyl formamide (DMF), and N-methyl-2-pyrrolidone (NMP) [89].
The word “contact” that appeared in T2 could refer to the MD configuration of direct
contact membrane distillation and the contact angle of the membrane surface. The contact
angle (θ) is a macroscopic expression of the complex interaction between a liquid and a
solid surface that can provide information about the hydrophobic character and wetting of
the membrane surface along with its chemistry and topography [90–92]. In this context,
the water contact angle of the prepared membranes also sheds light on its rejection factor
(i.e., performance). Membrane pore wetting in MD results in a decrease in the produced
water quality, affecting the overall long-term stability of the membrane and its lifetime.
The term “contact” may also refer to DCMD, which is the most used MD configura-
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tion [14,72,93,94]. Although MD exhibits more selectivity than other membrane separation
processes, the wetting phenomena is one of the drawbacks hindering the industrial poten-
tial implementation of MD technology [95,96]. Therefore, the efforts made in preparing
hydrophobic or super-hydrophobic membranes are quite high, and this is the reason why
the term “hydrophobic” appeared in T2. In general, as can be understood from all words
appearing in the T2 clusters (such as surface, PVDF, hydrophobic, and contact), it can be
confirmed that the second main hot topic of MD was membrane engineering.

3.4. Local MD Subjects

To find local clusters in the domain, the min_cluster_size value was set to 10, which
meant creating a cluster if 10 or more articles contained the same topic. With this value,
we aimed to maintain the stability of clusters containing very few articles at a certain level
and to provide convenience in terms of interpretability. The created cluster number was
63. Note that 1173 documents were marked as outliers and did not belong to any cluster.
Before proceeding to the presentation and interpretation of the generated themes, the
BERTopic model provided the opportunity to fine-tune the results by revealing a similarity
of concepts. The similarity matrix can be seen in Figure 5.
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As can be seen in Figure 5, there was a high similarity between Topic 5 (electrospun-
nanofibrous—nanofiber—membranes) and Topic 14 (superhydrophobic—nanofibrous—
electrospun—electrospinning), with a value of ~0.76. Therefore, the results were adjusted
by combining the 5th and 14th topics, and the number of clusters was reduced to 62. The
resulting topics with their descriptive terms and the distribution of the topics in a 2D plane
can be seen in Table 5 and Figure 6, respectively.
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Table 5. Local topics in the MD domain (min_cluster_size = 10).

Topic No Number of Papers Topic Name

T1 224 solar—energy—water—desalination—production—
collector—thermal—unit—plant—collectors

T2 175 scaling—crystallization—brine—crystals—scale—MD—
membrane—gypsum—recovery—RO

T3 159
electrospun—nanofibrous—nanofiber—electrospinning—

membranes—ENMs–
superhydrophobic—layer—membrane—fabricated

T4 121 heat—transfer—module—model—mass—temperature—
DCMD–flow—feed—thermal

T5 119 gap—AGMD—air—temperature—feed—flow—flux—
coolant—module—permeate

T6 90 hollow—fiber—PVDF—spinning—fibers—membranes—
dope—polyvinylidene—outer—inner

T7 87 gas—model—mass—vapor—flow—transport—transfer—
diffusion—membrane—flux

T8 80 PVDF—membranes—phase—pore—polymer—prepared—
casting—structure—porosity—properties

T9 77
superhydrophobic—surface—angle—membrane—PVDF–

membranes—contact—super-hydrophobicity—
modified—sliding

T10 70 carbon—CNTs—CNT—nanotube—nanotubes—CNIM—
immobilized—membranes—membrane—MWCNTs

T11 67
ceramic—grafting—hydrophobic—membranes—

alumina—modified—sintering—angle—
contact—membrane

T12 60 juice—aroma—concentration—osmotic—fruit—
compounds—apple—OMD—juices—OD

T13 59
membranes—plasma—composite—hydrophobic—

membrane—hydrophilic—surface—pore—
porous—prepared

T14 52 janus—oil—fouling—underwater—surface—hydrophilic—
wetting—membrane—composite—hydrophobic

T15 48 dye—textile—dyeing—dyes—wastewater—disperse—
reactive—permeate—color—process

T16 47 graphene—oxide—membranes—membrane—RGO—
water—PVDF—surface—rejection—composite

T17 45 ammonia—pH—biogas—removal—slurry—nitrogen—
NH3

+—CO2—recovery—ammonium

T18 45 bioreactor—anaerobic—MDBR—draw—sludge—
wastewater—removal—organic—OMBR/MD—OMBR

T19 41 fermentation—ethanol—broth—butanol—glucose—
sugar—separation—yeast—broths—production

T20 35
photocatalytic—TiO2—photocatalysis—photocatalyst—

dye—degradation—PMR—catalyst—
photodegradation—reactor

T21 34 acid—metals—AMD—extraction—processes—recovery—
mining—treatment—pickling—pH

T22 29 FO—draw—DS—solute—FO/MD–
solutes—forward—reverse—solution—hybrid

T23 29 photothermal—solar—PMD—conversion—solar-driven—
efficient—light—energy—desalination—SMD

T24 28 separators—experimental—transfer—temperature—
membrane—thermal—mass—PTFE—results—polarization

T25 28 fiber—water—hollow—desalination—feed—module—
model—flow—rate—temperature
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Table 5. Cont.

Topic No Number of Papers Topic Name

T26 28
omniphobic—surface—wetting—SiNPs—SDS—

reentrant—tension—membrane—
membranes—nanoparticles

T27 27 VMD—vacuum—feed—energy—heat—consumption—
exergy—MVR—temperature—pump

T28 26 heat—cost—energy—dehumidification—pump—
efficiency—cooling—MD—GOR—DCMD

T29 26
desalination—energy—technologies—RO—

environmental—entropy—hybrid—generation—
cost—heat

T30 25 fouling—HA—humic—vapor-pressure—layer—decline—
BSA—silica—organic—flux

T31 25 fiber—module—modules—hollow—transfer—mass—
CFD—baffles—flow—promoters

T32 25
ethanol—selectivity—Stefan-Maxwell—ethanol-water—

feed—concentration—temperature—model—
mixture—solutions

T33 24
shale—electrocoagulation—pretreatment—gas—

produced—wastewater—CSG—treatment—
fracking—fracturing

T34 23 spacer—spacer-filled—channels—spacers—filament—
transfer—channel—CFD—heat—Reynolds

T35 22 biofilm—bacteria—biofouling—microbial—community—
micropollutants—biofilms—compounds—MD—fouling

T36 22 leachate—landfill—treatment—concentrate—MD—NF—
organic—wastewater—H2O2—AQP

T37 21 arsenic—removal—As(III)—As(V)—rejection—ppb—
groundwater—contaminated—pH—Hg+

T38 20 field—permeate—VMD—water—vacuum—flux—
electromagnetic—feed—magnetic—salt

T39 20 OHE—power—PRMD—PRO—electricity—low-grade—
exergy—heat—energy—efficiency

T40 20 radioactive—decontamination—wastes—nuclear—low-
level—liquid—TeMs—waste—PET—LLRW

T41 19 process—distillation—SGMD—MD—membrane—
processes—technology—sodium—review—separation

T42 19
regeneration—desiccant—regenerator—LiCl—liquid—

solution—LDAC—concentration—
polarisation—temperature

T43 18 feed—vacuum—VMD—temperature—flow—operating—
rate—desalination—pressure—velocity

T44 17 acid—hydrochloric—concentration—HCl—sulfuric—
HCl—solutions—rare—feed—earth

T45 16 ANN—neural—model—artificial—data—network—
learning—accuracy—index—error

T46 16
column—separation—hybrid—membrane-distillation—

processes—shortcut—design—area—
propylene—optimisation

T47 15 fouling—MF—foulants—colloidal—cleaning—MD—
silica—model—vibration—cake

T48 15 photothermal—NPs—plasmonic—NESMD—Ag+—NiSe—
light—CoSe—conversion—solar

T49 15 urine—human—urea—diversion—nutrients—FO—
nitrogen—recovery—sanitation—nutrient

T50 15 surfactant—wetting—SDS—surfactants—wetted—
membrane—PAM—surface—omniphobic—Ca2+
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Table 5. Cont.

Topic No Number of Papers Topic Name

T51 15 wetting—detection—pore—intrusion—wetted—liquid—
pressure—sucrose—distillate—Tf

T52 15 oil—oily—bilge—hexane—water—emulsion—SDS—
wastewaters—nylon—produced

T53 13 chloroform—MAS—mass—VOCs—air-stripping—
transfer—removal—VOC—volatile—regime

T54 12 shale—gas—fracturing—cost—management—treatment—
produced—wastewater—energy—model

T55 12 OMW—olive—polyphenols—phenolic—TF200—DCMD—
activity—TOW—TF1000—antioxidant

T56 12 TMD—cost—design—heat—district—optimization—
MD—HEN—optimal—network

T57 11 benzene—volatile—aqueous—separation—vacuum—
organic—VMD—compounds—HOVs–VOC

T58 11 lithium—Li+—extraction—brine—HMO—brines—NF—
Na+—Mg2+—recovery

T59 11 PES—SMMs—blended—spectroscopy—nSMM—PET—
TeMs—membranes—synthesized—contact

T60 11 boron—boric—removal—permeate—020—acid—VA-
AGMD—concentration—AGMD—feed

T61 10 whey—milk—skim—lactose—dairy—IW—fouling—
components—beverage—concentration

T62 10 nickel—FGDW—FGD—retentate—fouling—wastewater—
desulfurization—PRO—Mg-Si—electroplating

As indicated in Table 5, there were 62 specific topics in the MD literature. Although
it was not possible to interpret each topic individually in the present study, local studies
of MD were most notable as solar applications (224 articles). Since MD is a thermally
driven technology, interest in adopting solar-powered MD systems for desalination is
expanding globally. Different types of solar systems have been successfully combined
with MD, including heating with flat-plate solar collectors, heating with evacuated-tube
solar collectors, heating with solar concentrators, powering with a solar pond, and pho-
tothermal collectors, among others [1,97,98]. Scaling, which is a phenomenon in which
crystallization and/or precipitation of soluble salts occurs on the membrane surface [99],
was included within the T2 topic of MD. Some ions in feed solutions, such as calcium and
magnesium, may undergo chemical reactions to create carbonates or hydroxides, which
then induce membrane scaling [100]. During a long-term MD operation, these scalants may
obstruct membrane pores and eventually induce wetting, reducing the permeate flux and
rejection factor as a consequence. Surface and bulk crystallization are the two processes
through which mineral scalants deposit and develop on membrane surfaces [101]. Efforts
have been made to overcome this important problem (175 articles). The third topic in
Table 5 is nanofiber membrane fabrication via the electrospinning technique (159 articles).
Electrospun nanofibrous membranes (ENMs) exhibit various advantages compared to
phase-inversion membranes, such as their very high void volume fraction, high surface-
to-volume ratio and hydrophobic character, and energy efficiency, among others [102,103].
Heat and mass transfer in MD are two important mechanisms affecting the produced vapor
flux and thermal efficiency. Both occur simultaneously in MD systems [74,104–108]. Since
DCMD is the commonly used configuration, it is expected that heat and mass transfer
mechanisms are mostly investigated for this MD variant. In Table 5, it can be seen that
119 articles were grouped in the T5 topic that included AGMD, which was the second
most used MD configuration, since condensation is carried out inside membrane modules
over a condensing cold surface. However, due to the localized air resistance between
the membrane and the condensing surface, the resulting AGMD permeate vapor flux is
often minimal, although the proposed module designs with heat recovery allow a high
energy efficiency [109]. The low heat transfer via conduction through the membrane fol-
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lowing Fourier’s law results in a low conductive heat loss through the membrane and a
high thermal efficiency [110]. Polymeric hollow-fiber membranes have been used widely
in most MD separation applications [111] because of their higher mechanical stability
and packing density [112]. This is why this type of membrane was included in the sixth
topic, with 90 articles. The two major methods considered for hollow-fiber membrane
preparation were non-solvent-induced phase separation (NIPS) and thermally induced
phase separation (TIPS). Because hollow-fiber membranes exhibit some unique advantages,
including self-supporting (i.e., they do not require any support to withstand operation
conditions) and their variety of possible arrangements in modules to achieve a high packing
density and optimal fluid dynamics, reducing both the temperature and the concentration
polarization effect, they attract much interest in the MD research field [113]. In general,
Table 5 exhibits very useful information related to hot MD topics. This information includes
polymer types (PVDF, PP, PS, and PTFE), polymer additives (carbon nanotubes (CNTs) and
surface-modifying macromolecules (SMMs)), membrane configurations (VMD and SGMD),
fields of application (urine, leachate, and arsenic removal), module geometry (spacer and
channel), theorical modeling (Stefan–Maxwell and CFD), artificial intelligence applications
(Neural Networks and modeling), and hybridization with other separation systems (MBR
and FO) investigated in MD. With the information obtained in the BERTopic modeling, MD
researchers may be aware of the current status of the subject on which to work. In addition,
the local topics identified through the BERTopic approach listed at the end of Table 3 can
be developed in the future. Unexplored subjects should be tackled. Identifying the MD
research gaps will further boost MD knowledge and advance MD technology, keeping re-
searchers away from centralized topics. Among the research topics registered and with few
published articles are heavy metals, toxic gases, and acids in wastewaters, which are major
problems in industries. These topics offer great opportunities to promote and prove the
versatility of MD for its industrial implementation. Topic modeling revealed the methods
applied in research development (membrane type, configuration, modeling approach, etc.).
For instance, DCMD is predominantly used in olive oil, polyphenols, olive mill wastewater
processes (T55), while other MD configurations were not identified. In the T58 topic, the
nanofiltration (NF) separation process was also involved in Li+ recovery from brines. In
this case, is it possible that any other combination with other more effective membrane
separation processes such as reverse osmosis (RO), forward osmosis (FO), electrodialysis
(ED), etc., will result in a better treatment efficiency or energy consumption?

Another point to be mentioned regarding Figure 6 and Table 5 is that 2511 papers
were assigned to topics, but 1173 papers were highlighted as outliers and did not belong
to any topic. The BERTopic architecture contains methods for reducing the number of
outliers. The first approach was to adjust the min_samples parameter in HDBSCAN. This
value was automatically set to the same value as the min_cluster_size. In addition, the
reduce_outliers function in the BERTopic algorithm attempted to reduce the outliers by
forcing them into a cluster. If an analyst would like to allocate every data instance to a
cluster (generating no outliers), k-means can be used instead of HDBSCAN in the third step.
In this study, we optimized the number of clusters. However, extra forcing of the outliers
into a cluster was a bad option, since it changed the underlying structure of the data and
decreased the clustering’s quality. As a result, assigning them to a cluster could alter the
cluster’s center, shape, and size. In addition, decreasing the similarity within the clus-
ter while increasing the similarity across clusters could lead to misleading or erroneous
topics. Another approach may be to reduce the min_cluster_size to a value lower than
10. However, the issue in this last case is that tiny subjects were created and were so
irrelevant that they could be ignored. Furthermore, a higher number of clusters could result
in more complicated and less informative graphs. As a consequence, the min_cluster_size
was kept at its optimal value. The outliers were defined with the following words:
membrane—water—flux—distillation—membranes—md—feed—process—temperature—heat.
These terms were similar to those in Table 3 that defined the collection but with a minor
change. Instead of “performance”, the term “heat” was considered. This indicated that the
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62 topics in the local topics covered more regarding the performance and ignored heat in
MD applications.
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Each theme encountered in the dataset was represented by a set of words, but not all
these words represented the topic equally. With the help of a bar chart, the importance of
the words based on c-TF-IDF score was visualized. The topic term scores can be seen in
Figure S2 for each concept.

Naturally, the first word of each topic had the highest value in terms of representing
the concept. The highest term score belonged to the word “boron” in the 60th cluster
(~0.177), which was about 3 times more impactful than the other words in the same topic
and alone could express the definition of the topic. Again, the term “urine”, with a c-TF-IDF
score of ~0.169, could by itself identify what Topic 49 dealt with. Clusters 58, 42, 37, and
17 were examples of themes in which the importance of a single word was high in defining
these topics. However, as shown in Figure S2, there were cases in which all words in a topic
had an equal effect in defining that concept. For example, it was observed that the c-TF-IDF
scores of all 10 words in Topic 25 were close to each other (between ~0.015 and ~0.023).
Again, in Topic 24, while the lowest term score was ~0.019, the highest term score was not
far from this value (~0.024). The 4th, 38th, and 3rd topics can be given as examples of such
clusters. As can be seen in the term-score bar graph (Figure S2), the choice of the quantity of
the words that are needed to represent a theme is important in topic modeling approaches.
Since the dataset in this study contained results in which both a single word could describe
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the topic and the effect of all terms in the cluster was equal, it was understood that keeping
the number of descriptive terms high was more useful.

Topics over time is a statistical procedure applied to identify how a given subject in a
set of documents evolves with time. It is a useful approach that helps to understand the
evolution of ideas, trends, and interests. Figure S3 shows the evolution (topics over time)
of the 62 local topics detected in the MD domain. The most notable situation shown in
Figure S3 is that some subjects were studied with greater momentum in recent years, while
others were not. By employing a simple linear regression, it was found that the top five
subjects with the highest slope were T1, T2, T3, T4, and T5, with ~0.339, ~0.254, ~0.260,
~0.171, and ~0.170 values, respectively. Although these topics were the most researched, it
was evident that interest in this research is also increasing every year. The topics with the
lowest slope were T44, T53, T57, T59, and T61, with values of ~0.010, ~0.008, ~0.009, ~0.015,
and ~0.014, respectively. This result showed that the popularity of the last five topics has
remained stable and have been studied by limited research groups over the years. T1,
T6, and T23 were the earliest topics investigated in 1967, when MD was first introduced.
Considering the last 5 years may be a useful way to explore the distribution and density of
the topics. T1, T2, T3, T4, and T9 were the most emphasized subjects, with 115, 89, 103, 57,
and 58 reported studies, respectively. The topics T44 and T53 have been ignored, since only
one study corresponded to each one during the last 5 years. The number of topics with
more than 25 papers published during the last 5 years was 16, while the number of topics
with less than 10 papers published during the last 5 years was 23. Figure S3 also indicates
that there were topics that exhibited similar patterns over time. In terms of similarity, the
pairs T59–T60 and T48–T58 could be considered the closest to each other. This indicated
that MD researchers sometimes have increasing or decreasing interests in different topics
during the same period of time.

4. Conclusions

Membrane distillation (MD) is a promising separation technology offering appropriate
solutions to the worldwide water issue by treating saline waters. This membrane process
has received substantial investigation, progressing from laboratory tests and novel mem-
brane fabrication to systems development, theoretical modeling, and optimization, making
it a highly promising separation method. The present study used a state-of-the-art artificial
intelligence approach—topic modeling—to uncover the main and refined topics in the MD
literature. The topic modeling method has the power to provide detailed insights into a
corpus by finding the themes in a very short time with substantially less effort. In this study,
a dataset that included 3684 articles downloaded from the Scopus database on 23 January
2023 was analyzed using the recently developed BERTopic architecture. Depending on the
results, when there was only a single cluster, the membrane research was mainly defined
with the following words: “membrane”, “water”, “distillation”, “flux”, “membranes”,
“MD”, “feed”, “process”, “temperature”, and “performance”. When the min_cluster_size
parameter was set to 1000, the dataset could be divided in two clusters. Thus, two global
topics together with their descriptive words could also be revealed. In one cluster, the
most globally researched MD topics (2121 documents) regarded feed wastewater content,
permeate flux enhancement, temperature polarization, heat, and energy requirements.
The other cluster (1153 studies) was mostly focused on surface modification, PVDF poly-
mer applications, hydrophobic membrane production, and the direct contact membrane
distillation (DCMD) configuration.

The local topics were also revealed in the present study. When the min_cluster_size
parameter was set to 10 (i.e., to create a cluster if 10 or more articles contained the same
topic), 62 specialized topics were found to be investigated by researchers. Among these
local topics, the most emphasized one was MD solar applications (224 research articles).
The second most researched local topic regarded the membrane scaling problem and
membrane crystallization applications, with 175 articles. Among the local topics, boron
and boric acid removal via the air gap membrane distillation (AGMD) configuration
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(11 articles), lactose removal from diary effluents (10 articles), and elimination of some
heavy metals and sulfur from electroplating wastewater (10 articles) were the least covered
themes. Through the method followed in this research study, attempts were made to guide
scientists who are performing research studies on MD by alerting them to the topics that
have been overemphasized and/or ignored. The results of the present research may help
MD researchers to have an idea regarding the topic on which they are working today
and to choose the topic of their future MD scientific studies. It should be noted that since
the number of scientific publications on MD is increasing exponentially every year, it is
important to update the MD topic modeling analyses in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations10090482/s1, Figure S1: Global topics of MD domain
(min_cluster_size = 1000); Figure S2: Topic term scores; Figure S3: Topics over time.
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