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Abstract: Fluoride is present in several groundwaters due to natural or anthropogenic origins. Al-
though it is necessary for physiological human functions (in small amounts, i.e., 0.5–1.2 mg/L), it
could be very harmful when it exceeds the maximum permissible concentration limit of 1.5 mg/L
(according to WHO). Among the numerous technologies for removing fluoride from waters, metal–
organic framework (MOF) materials are considered to be promising adsorbents due to their ad-
vantages of high porosity, high specific surface area, diverse functions and easy modification. In
this study, the synthesis of MOFs and the progress of their application to the removal of fluoride
from contaminated water, as published in the recent literature mainly over the past five years, are
reviewed. The adsorption mechanism(s) and its main characteristics, such as effect of initial fluoride
concentration, adsorbent dosage, solution pH, contact time, adsorption capacity, thermodynamic
and regeneration studies, etc., for the removal of fluoride with the addition of different MOFs are
compared. According to these comparisons, the hydrothermal/solvothermal synthesis method is
most commonly used for the preparation of MOFs, whereas higher BET surface areas are shown by
specific MOFs based on aluminum metal ions. The main fluoride adsorption mechanisms were found
to be electrostatic attraction and/or complexation. The most common pH for conducting experiments
was 7.0, but several examined materials were found to be effective over a wide pH range. Four to six
regeneration cycles were successfully applied on average, regarding the MOFs under review, whereas
in the majority of these cases, the sorption process was found to be endothermic.

Keywords: MOFs; fluoride ions removal; adsorption

1. Introduction

Common pollutants in wastewaters mainly consist of heavy metal ions (HMIs),
radioactive constituents, pharmaceuticals, poly-aromatic hydrocarbons, pesticides and
dyes [1] and can be characterized in some cases as high-strength industrial
wastewaters [2]. Regarding their chemical composition, these pollutants can be gener-
ally categorized into organic and inorganic (IOCs), such as ammonia, nitrogen, phosphorus,
sulfide and fluoride [1,2]. Particularly, fluoride is among the most common anions present
in ground or surface waters, and several industries, such as metallurgies or even cement pro-
duction, may release excessive amounts of wastewaters containing fluoride [3]. Depending
on the concentration of fluoride in water sources, it may have either harmful or benefi-
cial effects on human health; in lower concentrations, it is considered as a fundamental
micro-nutrient for humans, preventing caries, but the excessive fluoride ion concentrations
can cause bone inactivation, brain damage and infertility [4]. The World Health Organi-
zation (WHO) and the EU Directive 98/83/EC [5,6] have established the guideline/max
permissible concentration value for fluoride in drinking water to be 1.5 mg/L.

Several treatment methods, such as precipitation [7–9], reverse osmosis [10], mem-
brane separation [11–13], coagulation [14], etc., are commonly used to remove fluoride
anions from water. However, the disadvantages of these technologies are that they have
high costs and require expensive operational and labor costs and advanced technologies.
On the other hand, adsorption [15–17] is the most widely used technique, not only because

Separations 2023, 10, 467. https://doi.org/10.3390/separations10090467 https://www.mdpi.com/journal/separations

https://doi.org/10.3390/separations10090467
https://doi.org/10.3390/separations10090467
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/separations
https://www.mdpi.com
https://orcid.org/0000-0002-0871-4564
https://orcid.org/0000-0003-1120-3105
https://doi.org/10.3390/separations10090467
https://www.mdpi.com/journal/separations
https://www.mdpi.com/article/10.3390/separations10090467?type=check_update&version=1


Separations 2023, 10, 467 2 of 22

of its simplicity in design and operation but also because it is an economical and environ-
mentally friendly method and provides high efficiency [18]. Consequently, this review is
mostly focusing on the removal of excess fluoride anions from water sources by adsorption.

Diverse sorbent materials, such as activated carbons [15,19], hydroxide-based
materials [20], biochar [21–23], graphene oxide [15,24,25], fly ash [26,27], zeolite [26], etc.,
have been used lately for examining the removal of fluoride. Nevertheless, these adsorbents
still present certain limitations, such as rather small specific surface area, leading to lower
adsorption capacity, poor selectivity, etc. [3]. To address this problem, especially during
recent years, novel materials showing adaptable porosity, high BET (Brunauer–Emmett–
Teller) surface area, diverse functionality and easy modification, known as metal–organic
frameworks (MOFs), have proven to be efficient adsorbents for water treatment [2]. Fur-
thermore, MOFs are therefore the most broadly developed porous materials due to their
outstanding properties, besides the large surface area, such as their low density, high crys-
tallinity and easily tunable surface chemistry [28–31]. Accordingly, in this review, the recent
advances regarding fluoride removal over the past five years are briefly discussed and
compared, considering also the synthesis and specific applications of MOFs. The purpose
of this review is to keep MOF researchers abreast of the latest trends in the literature so that
they can properly organize and structure their future innovation-oriented research.

2. Metal–Organic Frameworks (MOFs)

MOFs constitute a rather new category of porous polymers made by linking several
inorganic metal ions or clusters with organic ligands as bridging elements [3,32,33]. Re-
garding the synthesis of MOFs, a variety of metal ions, organic ligands and the subsequent
structures have produced several combinations, leading to a wide variety of MOFs [34].
Main metals generally used for the synthesis of MOFs may be (among others) Al3+, Zr4+,
Fe3+, Ca2+, La3+, Ce3+, Cd2+ and Ti3+ [3,34].

In Figure 1, the several properties, applications and synthetical methods for MOFs
are illustrated [32]. As can be seen, MOFs are expected to be promising materials for
removing pollutants in water treatment, especially by sorption, because they present several
relevant advantages, such as high porosity, specific surface area, high pore volume and
abundant active sites, and in some cases, they are also highly stable in water matrices [3,32].
Furthermore, MOFs have found diverse applications, used, e.g., as carriers for drug delivery,
for gas or energy storage, for the safe disposal of wastes, in the field of catalysis [35–37] and
in environmental science, where they can be used for the adsorptive removal of pollutants
from wastewaters [3]. The applications of MOFs in water treatment are mainly described in
the respective literature as being for the elimination of dyes or other organic pollutants [38].
Recently, the UiO-66 MOFs (Universitet i Oslo family), which are highly stable in water,
have been found to have several applications, e.g., for the removal of organic dyes, heavy
metals, pharmaceuticals, phosphates, fluoride, etc., as represented in Figure 2 [39].

During recent years, some reviews have examined the use of MOFs as adsorbents for
the removal of fluoride (Figure 3) by using alternative MOFs based on different central metal
ions. These reviews summarize the recent trends, regarding MOFs and their defluorination
capability, focusing initially on the detection and then on the aspects of removal of fluoride
ions from aqueous solutions [28,32,39,40]. Table 1 describes the several categories of
relevant MOFs and their various characteristics, focusing on fluoride removal. In another
review, the specific use of zirconium, iron, aluminum, lanthanum and cesium-based MOFs
is also summarized [4]. The developments and progress of MOFs for the removal of fluoride
from water, especially during the last five years, are mainly reported in the current review.
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Moreover, most of the MOFs studied in the literature are homometallic, i.e., composed
of one type of metal. On the other hand, MOFs that contain more than one metal in their
structure are called heterometallic, and their main advantages are their multifunctional-
ity and that they combine the properties of the materials in a given application [41,42].
Heterometallic MOF chemistry provides potentials to modify the properties of already
known homometallic MOFs and also enables the preparation of a new unique series of
compounds with remarkable sorption properties [41]. Although heterometallic MOFs
can offer significant advantages over their homometallic counterparts, offering excellent
chemical stability and synergistic cooperation to modify adsorption properties, controlling
the distribution of metals in them remains a challenge [43]. MOF-5 (divalent metal ions)
and UiO-66 (tetravalent metal ions) are the two best known heterometallic MOF families.
It is observed that bimetallicity is generally more favorable for cation pairs with adjacent
sizes, due to a charge transfer mechanism within secondary building units. For particu-
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larly dissimilar size cation pairs, such as the UiO-66 family, metal mixing is globally less
favorable due to the high cluster coordination number [44].

Figure 3. Removal of fluoride by the addition of MOFs. It is reprinted with the permission from [45].

Table 1. Main categories of MOFs and their different features, focusing on fluoride removal; it is
reprinted with permission from [32].

Types of MOFs Characteristics

The MILs Family (Materiaux de I’
Institut Lavoisier)

The MIL-53(Fe) and MIL-53(Cr) materials have shown lower adsorption capacity than the
MIL-96 (Al).

The UiO-66 family
(University of Oslo)

Have a basic framework of zirconium cluster that can attract the fluoride ions. They are best
matched with the amine functional group for improving the adsorption of fluoride.

The MOF-801 family They have a basic framework of an octahedral zirconium cluster that can attract fluoride
ions together with the ion-exchange mechanism of the cluster’s hydroxyl groups.

The Metal-ion seeded MOFs

Used metals can be, e.g., cerium, zirconium, hafnium, etc.; as zirconium and hafnium
present a similar electronic structure, UiO-66(Zr) and UiO-66(Hf) show related removal
mechanisms. Aluminum can be also inserted inside the MOF, as this metal ion will attract
the fluoride ions via electrostatic interactions due to the high electronegativity of
fluoride anions.

The ZIFs Family The zeolite imidazolate frameworks-7,8,9 show good fluoride adsorption, while not
presenting higher efficiency, than the other adsorbents.

The removal mechanisms of fluoride by MOFs can be mainly attributed to physio-
sorption and chemi-sorption [32]. As shown in Figure 4, chemi-sorption mainly includes
chemical bonding, acid-base interactions, π–π interactions and ion exchange, which are
strongly electrostatic in nature. Physio-sorption includes Van der Waals interactions and
diffusion [46]. Among the unique characteristics of MOF materials is that they can act as
either electron donors or electron acceptors [28,39].
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3. Main Synthesis Methods for MOFs
3.1. Typical Synthesis Methods

There are different methods and conditions that are commonly used for the synthesis
of MOFs, as detected in the relevant literature, which are shown in Figure 5 [47]. The overall
synthesis method for MOFs is analogous to molecular sieve synthesis [48]. The reaction
temperature is one of the main parameters influencing and directing the synthesis of MOFs.
Thus, conventional synthesis is usually used in reactions carried out with conventional
electric heating [49]. Regarding the adsorption of anions, the respective typical synthesis
methods mainly include the hydrothermal/solvothermal method and additionally the
microwave, the electrochemical, the mechanochemical and the sonochemical methods. The
advantages and disadvantages of each method are varied; however, the most suitable one
can be selected, according to the specific needs of synthesis conditions and the properties
of produced material and considering the most efficient adsorption/removal of fluoride
ions [41,42]. During the synthesis of MOFs, the main goal is the formation of defined inor-
ganic building blocks preventing the decomposition of the organic linker. A facile synthesis
of MOFs is important, as it contributes to cost reduction and also to achieving fundamental
knowledge and practical applications [48]. Moreover, according to the literature [50,51], the
synthesis method affects the physicochemical properties of MOFs. In addition, agitation of
the reaction mixture during the synthesis (stirring or sonication) enhances the formation of
more developed surfaces leading to the development of smaller crystals than those formed
when the synthesis is carried out without stirring under static conditions [52].

The conventional method most commonly used for MOF synthesis involves the mixing
of organic ligand, of metal (possibly in the form of metal salt solution), and of the proper
solvent in an appropriate liquid phase, followed by the reaction, the subsequent filtration of
the obtained product and finally drying (usually by evaporation) to obtain the purified MOF
material [40,41]. Table 2 summarizes the main synthetic methods used and the respective
physical properties of obtained MOFs, as analyzed in this review; it can be observed that the
method mostly applied for the synthesis of MOFs is the hydrothermal/solvothermal method,
which is usually achieved under conventional electrical heating at a controlled temperature.



Separations 2023, 10, 467 6 of 22
Separations 2023, 10, x FOR PEER REVIEW 6 of 23 
 

 

 
Figure 5. Synthetical methods and conditions commonly used for the preparation of MOFs; it is 
reprinted with permission from [47]. 

The conventional method most commonly used for MOF synthesis involves the mix-
ing of organic ligand, of metal (possibly in the form of metal salt solution), and of the 
proper solvent in an appropriate liquid phase, followed by the reaction, the subsequent 
filtration of the obtained product and finally drying (usually by evaporation) to obtain the 
purified MOF material [40,41]. Table 2 summarizes the main synthetic methods used and 
the respective physical properties of obtained MOFs, as analyzed in this review; it can be 
observed that the method mostly applied for the synthesis of MOFs is the hydrother-
mal/solvothermal method, which is usually achieved under conventional electrical heat-
ing at a controlled temperature. 

Table 2. Summarizing the synthetic methods and the main physical properties of MOF materials 
used as adsorbents, as discussed in this review. 

MOFs 
Synthetic 
Method 

BET Surface Area, 
SBET (m2/g) 

Average Pore 
Size (nm) 

Total Pore Vol-
ume, VT (cm3/g) Ref. 

AlFu Hydrothermal 1156.0 1.7 NR 1 [38]  
b-CD@AlFuMoF Hydrothermal 779.2 5.6 0.36 [53]  

Al-MOF-5 Hydrothermal 1264.0 3.1 NR 1 [54]  
Zr@Fu Hydrothermal  NR 1 NR 1 NR 1 

[45]  La@Fu Hydrothermal  NR 1 NR 1 NR 1 
Fe@Fu Hydrothermal  NR 1 NR 1 NR 1 

[Ce(L1)0.5(NO3)(H2O)2]·2DMF NR 1 NR 1 NR 1 NR 1 
[29]  [Eu3(L2)2(OH)(DMF)0.22(H2O)5.78]·gues

t NR 1 NR 1 NR 1 NR 1 

MOF1 ({[Zn3L3(BPE)1.5]·4.5DMF}n) Solvothermal  270.3 NR 1 0.15 [55]  
MOF1 NR 1 NR 1 10–20 NR 1 [56]  

Sn(II)-TMA Solvothermal 360.8 4.0 0.46 [57]  
Fe@BDC Hydrothermal 53.7 9.0 0.14 [58]  Fe@ABDC Hydrothermal 68.8 4.2 0.42 
Ce@BDC Hydrothermal  NR 1 NR 1 NR 1 

[59]  Ce@ABDC Hydrothermal  NR 1 NR 1 NR 1 
La@BTC Hydrothermal NR 1 NR 1 NR 1 [60]  

Figure 5. Synthetical methods and conditions commonly used for the preparation of MOFs; it is
reprinted with permission from [47].

Table 2. Summarizing the synthetic methods and the main physical properties of MOF materials
used as adsorbents, as discussed in this review.

MOFs Synthetic Method BET Surface Area,
SBET (m2/g)

Average Pore
Size (nm)

Total Pore
Volume,

VT (cm3/g)
Ref.

AlFu Hydrothermal 1156.0 1.7 NR 1 [38]
b-CD@AlFuMoF Hydrothermal 779.2 5.6 0.36 [53]

Al-MOF-5 Hydrothermal 1264.0 3.1 NR 1 [54]
Zr@Fu Hydrothermal NR 1 NR 1 NR 1

[45]La@Fu Hydrothermal NR 1 NR 1 NR 1

Fe@Fu Hydrothermal NR 1 NR 1 NR 1

[Ce(L1)0.5(NO3)(H2O)2]·2DMF NR 1 NR 1 NR 1 NR 1
[29]

[Eu3(L2)2(OH)(DMF)0.22(H2O)5.78]·guest NR 1 NR 1 NR 1 NR 1

MOF1 ({[Zn3L3(BPE)1.5]·4.5DMF}n) Solvothermal 270.3 NR 1 0.15 [55]
MOF1 NR 1 NR 1 10–20 NR 1 [56]

Sn(II)-TMA Solvothermal 360.8 4.0 0.46 [57]
Fe@BDC Hydrothermal 53.7 9.0 0.14

[58]Fe@ABDC Hydrothermal 68.8 4.2 0.42
Ce@BDC Hydrothermal NR 1 NR 1 NR 1

[59]
Ce@ABDC Hydrothermal NR 1 NR 1 NR 1

La@BTC Hydrothermal NR 1 NR 1 NR 1 [60]
La-BTC Solvothermal 2.4 18.1 0.01 [61]

Fe-Al BDC Solvothermal 120.3 1.4 NR 1 [62]
Al-TDC Hydrothermal 1251.7 1.3 0.87

[63]Ce-TDC Hydrothermal 859.7 1.7 0.36
Zr-TDC Hydrothermal 923.3 1.4 0.37

ZrFu MOF NR 1 537.5 1.8 0.23 [64]
Zn- MOF-801 Hydrothermal 725.0 0.1 0.40 [65]
Zn- MOF-801 Solvothermal 522.0 0.3 1.51 [66]

Uio-66 NR 1 NR 1 NR 1 NR 1 [67]
UiO-66-NH2 Hydrothermal 945.0 2.0 NR 1 [68]

La-UiO-66-(COOH)2 Solvothermal 80.3 1.3–2.2 0.15 [69]
MIL-96(RM) Hydrothermal NR 1 NR 1 NR 1 [70]
MIL-53 (Fe) NR 1 51.3 NR 1 NR 1 [71]

1 Not referred.
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3.2. Reviewing Synthesis of MOFs Materials Applied for the Removal of Fluoride in
Recent Literature

Several types of MOFs have been synthesized for the removal of fluoride, as presented
in Table 1. The main trends in the relevant literature, especially over the past five years, are
discussed in the following section.

Particularly, Karmakar et al. [33] synthesized by the hydrothermal method a laboratory-
prepared aluminum-fumarate metal organic framework (MOF), namely AlFu MOF, for
fluoride removal. AlFu MOF was found to present a micro-porous structure, exhibiting a
relatively large surface area (1156 m2/g) and an average pore size of 1.7 nm. Moreover, the
modified AlFu MoF obtained by the hydrothermal method when using the b-cyclodextrin
impregnation treatment in order to produce b-CD@AlFu MoF also presented with a large
specific surface area (779.2 m2/g) and a porous structure with an average pore diameter
of 5.6 nm and a pore volume of 0.36 cm3/g [53]. Wang et al. [54] synthesized a novel
aluminum-based MOF, i.e., Al-MOF-5, for the potential fluoride removal from water by
using the hydrothermal method. This Al-MOF-5 material presented the highest specific
surface area (1264 m2/g) of all MOFs described in Table 2. It has a mesoporous structure
with microporous characteristics, providing an average pore size of 3.12 nm. Recently,
fumaric acid-based MOFs have been hydrothermally produced by using several metal ions,
such as Zr4+, La3+ and Fe3+, thus obtaining Zr@Fu, La@Fu and Fe@Fu composite MOFs,
respectively, which have been applied for defluoridation studies [45].

Additionally, more complexes have been synthesized for the efficient removal of
fluoride ions. In particular, Ma et al. [29] composed two new lanthanide-based MOFs,
i.e., [Ce(L1)0.5(NO3)(H2O)2]·2DMF and [Eu3(L2)2(OH)(DMF)0.22(H2O)5.78], although with-
out presenting sufficient details about the applied synthesis method or their specific surface
characteristics. Furthermore, in the study of Aliakbari et al. [55], a zwitterion metal–organic
framework, MOF1/({[Zn3L3(BPE)1.5]·4.5DMF}n), was synthesized by the solvothermal
method in acidic media, where the components were initially mixed, and then drops of
N,N-dimethylformamide (DMF) were added. The BET surface area and pore volume
of this MOF1 material were determined as 270.3 m2/g and 0.12 cm3/g, respectively. In
addition, another zirconium-based relevant-to-MOF1 material, which is simply synthesized
by the mixing of zirconium tetrachloride and tetrafluoroterephthalic acid, was investi-
gated for defluoridation studies with pore sizes around 10–20 nm, as derived from the
N2 isotherms [56].

In the study of Ghosh et al. [57], another core metal was used, i.e., Sn2+, mixing with
benzene-1,3,5-tricarboxylic acid (TMA) as the organic linker, to synthesize via the solvother-
mal method the respective Sn(II)-TMA MOF. The examination by the BET
(Brunauer–Emmett–Teller) and BJH (Barrett–Joyner–Halenda) methods showed that this
type of MOF had a mesoporous structure with an average pore size of 4 nm, a specific
surface area of 360.8 m2/g and a pore volume of 0.46 cm3/g.

Moreover, Fe@BDC and Fe@ABDC MOFs were synthesized with the application of
hydrothermal synthesis by using Fe3+ and benzene-1,4-dicarboxylic acid (BDC) in the
first derivative and 2-aminobenzene-1,4-dicarboxylic acid (ABDC) for the second one, as
shown in Figure 6 [58]. The relative BET surface area of Fe@ABDC MOF was higher
than that of Fe@BDC without any noticed enhancement from the presence of amine,
i.e., 68.8 and 53.7 m2/g, respectively. Furthermore, Jeyaseelan et al. [50] also used cerium
(Ce3+) in addition to the use of Fe3+ (Figure 7) as the core metal, producing, namely,
Ce@BDC and Ce@ABDC MOFs, aiming to produce rare earth metal-based (REM) MOFs by
applying the hydrothermal synthesis method. In addition, by replacing BDC with benzene-
1,3,5-tricarboxylic acid (BTC) and using lanthanum (La3+) as a rare earth metal, they also
produced La@BTC MOFs [60] (Figure 8) in parallel with the Ce@BTC MOF. Moreover, Yin
et al. [61], in their study, synthesized several lanthanum-based MOFs (La-MOFs) by the
solvothermal method, varying only the organic ligands. Among the produced adsorbents,
the La-BTC presented a rather small BET surface area (2.4 m2/g), a pore size of 18.1 nm
and 0.01 cm3/g pore volume.
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The solvothermal method was also used in the study of Mukherjee et al. [62] for the
synthesis of 3D rod-like bimetallic MOF (with Fe3+ and Al3+ as metals) by using BDC as
the organic linker in dimeethylfromamide (DMF) medium. This Fe-Al BDC MOF material
presented a surface area of 120.3 m2/g.

Another organic ligand, 2,5-thiophenedicarboxylate (H2TDC), was used to synthesize
TDC-MOFs (2,5-thiophenedicarboxylic acid MOFs) via the hydrothermal method and by
adding Al3+, Ce4+ or Zr4+ as the central metal ions, forming Al-TDC, Ce-TDC and Zr-TDC,
respectively [63], whose structure is illustrated in Figure 9. As shown in Table 2, the BET
surface area of Al-TDC, Ce-TDC and Zr-TDC measured 1251.7, 859.7 and 923.3 m2/g,
respectively. Regarding the pore volumes and pore sizes, the relative values were found
to be 0.87 cm3/g and 1.3 nm for the Al-TDC; 0.36 cm3/g and 1.7 nm for the Ce-TDC; and
0.36 cm3/g and 1.4 nm for the Zr-TDC. These values lead to the recommendation that all
three of these TDC-MOFs can exhibit potential adsorption efficiency for fluoride removal.
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In addition, a zirconium fumarate (ZrFu) MOF has also been prepared as an efficient
adsorbent for fluoride removal from industrial wastewaters, providing a surface area of
537.5 m2/g, according to BET analysis, a pore volume of 0.23 cm3/g and a pore size of
1.8 nm [64].

Several studies synthesized members of the MOF-801 family. According to Zhu et al. [65],
a produced zirconium fumarate MOF-801 exhibited a surface area of 725 m2/g, a pore diameter
of 0.1 nm and a pore volume of 0.40 cm3/g. Tan et al. [66] also synthesized Zr-MOF-801 by
using the solvothermal method (Figure 10), Zr4+ as the central metal and several organic
linkers. The corresponding BET surface area and the calculated pore volume were found to
be smaller than those of Zhu et al. [65], i.e., 522 m2/g and 0.26 cm3/g, respectively; however,
they presented larger average pore diameters (1.51 nm). The BJH method also indicated the
presence of micropores, which may enhance the fluoride adsorption [66].
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The UiO-66 family MOFs have also been referred to in recent literature for the effective
removal of fluoride from contaminated waters [72]. Several studies were reviewed, and
among them is the study of Lacalamita et al. [68], according to which the highly porous
MOF UiO-66-NH2 was synthesized by the hydrothermal method. The BET analysis pro-
vided a high surface area (about 945 m2/g) with a pore size below 2 nm. On the other
hand, Zhao et al. [69] prepared a novel adsorbent containing a Zr-based metal–organic frame-
work (i.e., UiO-66-(COOH)2) and La3+ as the metal. This dual-metal sites MOF, abbreviated
as La-UiO-66-(COOH)2, took the advantages of properties from each material separately,
i.e., the non-toxicity and the ability of La3+ to link with the oxygen-containing ligands and the
availability of UiO-66-(COOH)2) in carboxyl groups that present affinity with the rare earth
cations, combining them into a unique adsorbent material. However, it was observed in this
study that with the addition of La, there was a reduction of the specific surface area (from
317.4 down to 80.3 m2/g), as well as of pore volume (from 0.44 down to 0.15 cm3/g), maybe
due to the blocking of UiO-66-(COOH)2 pores by the presence of La. Nevertheless, this
addition significantly increases the active centers of this material for the efficient adsorption
of fluoride ions [69].

Last but not least, the Matériaux Institut Lavoisier (Materials Institute Lavoisier) pre-
pared an alternative metal–organic framework, also referred to in this review. Particularly,
the MIL-96(RM) was produced via the hydrothermal synthesis method by using metal ions
present in red mud (RM) and was applied for defluoridation studies [70]. In addition, an
iron-based MOF, e.g., MIL-53 (Fe), was also synthesized [73], but it did not show a large
surface area when compared to other MOFs, i.e., only 51.3 m2/g; however, its fundamental
structure makes it a potentially effective adsorbent for fluoride removal.

Based on the values reported in Table 2 and what was aforementioned, it seems that
the hydrothermal/solvothermal synthesis method is the most frequently used for MOF
preparation. Furthermore, regarding the properties and characteristics of these materials,
the higher BET surface area is presented by the MOFs that are based on aluminum metal
ions, i.e., AlFu (1156.0 m2/g), Al-MOF-5 (1264.0 m2/g) and Al-TDC (1251.7 m2/g), followed
by those that have zirconium metal in their structure. Regarding the average pore size (nm),
MOFs that include the lanthanum metal in their structure presented the highest values,
such as La-BTC (18.1 nm), whereas the Zn-MOF-801 presented the lowest (0.1 nm). The
total pore volume was relatively similar for all materials, with Al-TDC presenting the
largest value (0.87 cm3/g). The high surface area and the microporous morphology of
these materials are most likely to benefit the adsorption efficiency [66]. The aforementioned
results suggest that all these adsorbents showed strong adsorption potential for the removal
of fluoride from contaminated waters.

4. Application of MOFs for the Removal of Fluoride Anions

The potential for using MOF materials to remove fluoride from waters was evalu-
ated with detail; the relevant materials were synthesized mainly during the last 5 years,
described in Table 2 and compared systematically regarding their effectiveness. The main
examined parameters include the effect of initial fluoride concentration, the adsorbent
dosage, the solution pH, the contact time, the adsorption capacity and the thermodynamic
and regeneration studies; they were properly correlated and analyzed. The respective
values are listed in Table 3. The adsorption mechanisms of several MOFs for fluoride
removal are also discussed.

According to the study of Karmakar et al. [38], the AlFu MOF was found to be an
excellent adsorbent regarding the fluoride removal from groundwaters, and its adsorption
capacity was very high (600 mg/g) by adding 0.75 g/L at pH 7.0. The values of ∆G0

(−13.94 kJ/mol at 293 K) and ∆H0 (−32.06 kJ/mol) indicated that this adsorption was
spontaneous and exothermic, i.e., favored by the increase of temperature. In addition, the
AlFu MOF can be regenerated in medium alkaline conditions. However, when modified
with b-cyclodextrin AlFu MOF, i.e., b-CD@AlFu MoF [53], it exhibited substantially lower
maximum fluoride adsorption capacity (39.95 mg/g) and was regenerated with an organic
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solution for seven cycles. In this case, the ideal conditions for the treatment of 30 mg/L
initial fluoride concentration were found for pH 2.0 by adding a dosage of 0.75 g/L of
this material. The thermodynamical analysis showed that the adsorption of fluoride
onto b-CD@AlFu MoF is spontaneous and mostly driven by chemical adsorption, while
the negative value of ∆H0 (−140.84 kJ/mol) provided an indication that in this case the
defluoridation process was exothermic in nature.

Moreover, the results of using another Al-based MOF, i.e., Al-MOF-5 [54], showed
that this material presented an adsorption capacity of 46.08 mg/g. The study of kinetics
showed that equilibrium was reached within 120 min by applying a 1.0 g/L dose at natural
pH conditions. In addition, considering the higher specific surface area of this Al-MOF-5,
as listed in Table 2, it could be assumed that this material can be an efficient selection for the
adsorption of fluoride. However, in this case, the positive enthalpy change (∆H0), indicates
that the adsorption process was endothermic. Nevertheless, this MOF type, despite the fact
that it is effective for fluoride removal, has the disadvantages of higher production cost and
lower durability/stability. For the regeneration of Al-MOF-5, several solutions were used,
such as NaOH, HCl and ethanol, at different concentrations. However, the NaOH solution
at 10 mg/L was found to be the most appropriate, as more than 50% of the fluoride was
removed after five recycling cycles.

Table 3. Comparison of adsorption capacities between the main MOF adsorbents (literature data) for
fluoride removal, as presented in this review.

MOFs [F]o
(mg/L)

Dosage
(g/L) pHinit

Contact
Time (min)

Adsorption
Capacity (mg/g)

1 ∆H0

(kJ/mol)
Recycling

Cycles Ref.

AlFu 30.0 0.75 7.0 60 600 −32.06 NR 2 [38]
b-CD@AlFuMoF 30.0 0.75 2.0 120 39.95 −140.84 7 [53]

Al-MOF-5 10.0 1.0 7.0 120 46.08 21.30 5 [54]
Zr@Fu 10.0 0.1 7.0 30 4.92 0.37 6

[45]La@Fu 10.0 0.1 7.0 30 4.93 0.45 6
Fe@Fu 10.0 0.1 7.0 30 4.85 0.31 6

[Ce(L1)0.5(NO3)(H2O)2]·2DMF 12.5 2.0 3.0–7.0 120 103.95 18.52 NR 2
[29]

[Eu3(L2)2(OH)(DMF)0.22(H2O)5.78]·guest 12.5 2.0 3.0–7.0 120 57.01 25.32 NR 2

MOF1 ({[Zn3L3(BPE)1.5]·4.5DMF}n) NR 2 NR 2 7.0 20 NR 2 NR 2 5 [55]
MOF1 10.0 0.2 3.0–11.0 30 240 NR 2 7 [56]

Sn(II)-TMA 12.0 1.0 3.0–10.0 150 30.86 10.1 NR 2 [57]
Fe@BDC 10.0 0.1 7.0 30 4.90 0.56 6

[58]Fe@ABDC 10.0 0.1 7.0 30 4.92 1.24 6
Ce@BDC 10.0 0.1 7.0 30 4.88 0.38 6

[59]Ce@ABDC 10.0 0.1 7.0 30 4.91 0.45 6
La@BTC 10.0 0.1 7.85 30 4.98 0.58 6 [60]
Al-TDC 5.0 0.2 10.0–11.0 300 107.5 −25.37 4

[63]Ce-TDC 5.0 0.3 3.0–4.0 300 94.9 −20.53 4
Zr-TDC 5.0 0.3 3.0–4.0 300 97.0 −21.18 4

Fe-Al BDC 10.0 1.0 7.0 45 NR 1 NR 1 NR 1 [62]
La-BTC 20.0 0.5 5.0 180 105.2 19.68 4

[61]
La-BPDC 20.0 0.25 5.0 180 125.9 35.94 4
La-BHTA 20.0 0.15 5.0 180 145.5 25.66 4
La-PMA 20.0 0.25 5.0 180 158.9 36.47 4
La-BDC 20.0 0.15 5.0 180 171.7 30.22 4

ZrFu 10.0 3.0 6.0 60 49.66 NR 1 6 [64]

Zn-MOF-801 10.0 0.7 no pH
adjusting 40 40.0 NR 2 NR 2 [65]

Zn-MOF-801 10.0 1.0 NR 2 120 17.33 NR 2 4 [66]
Uio-66 14.6 0.4 7.0 41.5 31.09 NR 2 5 [67]

UiO-66-NH2 20.0 2.0 6.1 60 49.7 NR 2 NR 2 [68]
La-UiO-66-(COOH)2 100.0 1.0 3.0 30 57.23 32.92 4 [69]

MIL-96(RM) 20.0 0.5 7.0 120 82.65 9.05 7 [70]
MIL-53(Fe) 10.0 0.25 4.0 60 4.34 NR 2 NR 2 [71]

1 Values of ∆H0 < 0 (negative) indicate that defluorination is an exothermic process, whereas for ∆H0 > 0, it is
endothermic. 2 Not referred.

In the study of Jeyaseelan et al. [45], several M@Fu-based MOFs were evaluated in
terms of fluoride removal. Particularly, the Zr@Fu, La@Fu and Fe@Fu MOF composites,
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when applying the same conditions, i.e., initial fluoride concentration 10 mg/L, pH 7.0
and adsorbent dosage 1.0 g/L, indicated maximum capacities of 4.92, 4.93 and 4.85 mg/g,
respectively; therefore, they are quite lower than those found in previous studies. However,
for all these composite materials, the kinetic equilibrium can be reached after only 30 min.
Among the advantages demonstrated by these MOFs is that they can be applied effectively
for different initial pH conditions, as after the treatment, the solution pH remains around
neutral values. In addition, the La@Fu MOF was found to present higher defluorination
capacity than Zr@Fu and Fe@Fu MOFs over the entire pH range examined. The thermody-
namic studies proved the endothermic nature of the process, as the determined values of
∆H0 were positive. The regeneration and reusability studies (up to 6 treatment cycles by
using the NaOH solution) proposed that the Zr@Fu, La@Fu and Fe@Fu MOF composites
can be used adequately. Regarding the fluoride removal mechanism by using M@Fu-based
MOF composites, as shown in Figure 11, it is possible that electrostatic adsorption and
complexation are mainly taking place. This happens because the positively charged ions
present in the prepared M@Fu-based MOF, i.e., Zr4+, La3+ and Fe3+ for Zr@Fu, La@Fu and
Fe@Fu MOF, respectively, can attract the negatively charged fluoride anions.
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The two lanthanide-based MOFs proposed in the study of Ma et al. [29],
i.e., [[Ce(L1)0.5(NO3)(H2O)2]·2DMF and [Eu3(L2)2(OH)(DMF)0.22(H2O)5.78],·have shown
very good performance for the removal of fluoride. It was found that the [[Ce(L1)0.5(NO3)
(H2O)2]·2DMF material exhibits much higher adsorption capacity (103.95 mg/g) than the
second one (57.01 mg/L), maybe due to the stronger interaction between fluoride and Ce.
At lower (acidic) pH values, i.e., pH 3.0–7.0, the removal is higher, as the La-based MOFs
are positively charged and the nucleophilic substitution of OH− by F− is favored. On the
other hand, after the pH value reaches 8.0, the removal ability drops drastically due to the
potential competition between F− and OH− anions. Furthermore, the ∆H0 values for both
adsorbents are positive (18.52 and 25.32 kJ/mol, respectively).

Another adsorbent, MOF1 ({[Zn3L3(BPE)1.5]·4.5DMF}n) [55], showed high adsorption
efficiency under both acidic and neutral pH conditions. The optimal pH range for the
uptake of fluoride by MOF1 is between 4 and 10, and the rest of the experiments were
conducted at the natural pH of drinking water. MOF1 was washed with methanol and
reused after activation for five operational cycles, with only 10% reduction in efficiency. In
addition, another zirconium based-MOF1, synthesized by Zhu et al. [56], showed that the
adsorption efficiency reaches 92% within 30 min by applying a small dose of 0.2 g/L to
efficiently treat the initial fluoride ion concentration of 10 mg/Lover a wide range of pH
values (3.0–11.0). The calculated maximum adsorption capacity was found to be 240 mg/g,
i.e., much higher than the aforementioned materials; seven cycles of adsorption-desorption
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experiments took place, and the results show that even after several times of reuse, the
adsorbent is still sufficiently effective for the removal of fluoride.

When the Sn(II)-TMA MOF material [57] was used to treat the initial fluoride con-
centration of 12 mg/L, 84% removal efficiency was achieved over the pH range 3–10,
leaving a residual concentration of fluoride anions close to the WHO limit of 1.5 mg/L.
The maximum fluoride adsorption capacity was measured at 30.86 mg/g over the broad
examined pH range (3.0–10.0) and by applying the optimum dose of 1.0 g/L. Kinetic exper-
iments revealed that the fluoride adsorption onto the Sn(II)-TMA MOF is a combination of
physisorption and chemisorption mechanisms. Looking for the most likely mechanism, the
results showed that electrostatic interactions are primarily determining the adsorption of
fluoride from waters in this case.

Jeyaseelan et al. [58] developed the Fe@BDC and Fe@ABDC MOF composites and
examined them for the removal of fluoride. The highest fluoride adsorption was noticed
at pH 7.0 for the fixed initial fluoride concentration (10 mg/L) by adding 0.1 g/L of
Fe-based MOF and providing 4.90 or 4.92 mg/g adsorption capacities, respectively. More-
over, both enthalpy changes (∆H0) were positive, i.e., 0.56 and 1.24 kJ/mol for Fe@BDC
and Fe@ABDC MOF composites, respectively, indicating that the process is endothermic in
nature. The fluoride adsorption mechanisms of these MOF materials are controlled mainly
by electrostatic attraction and complexation, as shown in Figure 12. The regeneration and
recycling of Fe@BDC and Fe@ABDC MOF composites were performed for six operational
cycles, using 0.1 M NaOH.
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Furthermore, regarding the cerium-based MOFs, Jeyaseelan et al. [59] also synthesized
the Ce@BDC and Ce@ABDC MOF materials. The higher values of adsorption capacity
(4.88 and 4.91 mg/g, respectively) were obtained for the solution pH values 6–7. As shown
in Figure 13, positive Lewis acids, such as the Ce3+ ions, can significantly interact with the
negatively charged Lewis base, such as the F− ions, mainly by the electrostatic attraction
mechanism. Additionally, in the case of Ce@ABDC MOFs, there are positively charged
amine groups (NH3

+) that can also attract fluoride anions via electrostatic forces. Moreover,
both ∆H0 values were found to be positive, i.e., 0.38 kJ/mol (for Ce@BDC) and 0.45 kJ/mol
(for Ce@ABDC), indicating in this case the endothermic nature of the fluoride removal
reaction. Finally, the recyclability of Ce@BDC and Ce@ABDC MOFs was high even after
six cycles of adsorption–desorption studies in alkaline conditions (NaOH).
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Figure 13. Fluoride removal mechanisms when using (a) Ce@BDC and (b) Ce@ABDC MOF
materials [59].

In the case of synthesized La@BTC MOF [60], which is one of the materials based on
rare earth metals as central metals, the removal capacity was found to be 4.98 mg/g at the
neutral pH. This gives the REM-based MOFs the advantage of being effective at various
pH values. The thermodynamic analysis confirmed the spontaneous and endothermic
(∆H0 0.58 kJ/mol) nature of fluoride adsorption in this case. The relevant fluoride ad-
sorption mechanisms are depicted in Figure 14 and seem to also be complexation and
electrostatic attraction. The La@BTC MOF regenerated up to six operational cycles, and
NaOH was used as the eluent.
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Yin et al. [61] also studied the lanthanum-based MOFs, such as La-BTC, La-BPDC,
La-BHTA, La-PMA and La-BDC, having different organic (bridging) ligands, for the ef-
ficient removal of fluoride; 105.2, 125.9, 145.5, 158.9 and 171.7 mg/g, were the exhibited
adsorption capacities, respectively, which were actually found to be higher than those of
most of the other MOF materials, as comparatively analyzed in Table 3. The thermody-
namics showed that the ∆H0 values were in all these cases positive (19.68, 35.94, 25.66,
36.47 and 30.22 kJ/mole, respectively), demonstrating that the adsorption of fluoride was
endothermic, and therefore enhanced by the increase of temperature. Moreover, the La-
BTC, La-BPDC, La-BHTA, La-PMA and La-BDC MOFs are efficient over a wide pH range
(4.0–9.0). Meanwhile, the main mechanisms taking place are electrostatic attraction and
ligand exchange (Figure 15). It is worth noting that only a small addition of 0.15 g/L
from La-BDC or La-BHTA MOF materials can decrease the fluoride concentration (from
the relatively high initial concentration of 20 mg/L) to the WHO recommended drinking
water limit.
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Figure 15. Schematic diagram of the main mechanisms for the case of La-based MOF materials
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The 3D rod-like bimetallic MOF, i.e., Fe-Al BDC [62], used for the removal of fluoride
by the chemisorption mechanism, exhibited high removal efficiency by using 1.0 g/L and
contact time 45 min at pH 7.0. The thermodynamic parameters exhibited that the adsorption
in this case was spontaneous, and the ∆H0 value was found to be−94.66 kJ/mol. As shown
in Figure 16, the removal of F− by using Fe-Al BDC MOF in an aqueous medium followed
the surface-boundary-layer mechanism, which is based on electrostatic interactions.
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electrical double-layer model [62].

The three TDC-MOFs synthesized by Huang et al. [63], i.e., Al-TDC, Ce-TDC and
Zr-TDC, displayed high chemical stability in a wide pH range (4–10) when used for the
treatment of constant 5 mg/L initial fluoride concentration. The maximum adsorption ca-
pacities of Al-TDC, Ce-TDC and Zr-TDC MOFs for fluoride reached 107.5 mg/g, 94.9 mg/g
and 97.0 m/g, respectively, which are among the highest values presented in Table 3.
According to the XPS and FTIR characterization techniques conducted in this study, it is
assumed that the leading mechanisms responsible for the adsorption of fluoride by the
TDC-MOF materials were the ligand exchange and the electrostatic attraction (Figure 17). In
addition, the literature showed that various characterization techniques supported fluoride
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adsorption through electrostatic, ion-exchange and hydrogen-bonding mechanisms [74–76].
The effect of pH showed that the adsorption capacity of Al-TDC increased significantly
between the pH values 10.0 and 11.0, whereas for the cases of Zr-TDC and Ce-TDC MOFs,
the adsorption was more favorable at pH values 3.0–4.0. The thermodynamics results
showed that for all three TDC-MOFs, the ∆H0 values were all negative, indicating an
exothermic process. Furthermore, after four operational cycles using NaOH as the eluent,
the adsorption/removal rates of Zr-TDC for fluoride were found to be still higher than
93% [63].

Moreover, the ZrFu MOF [64], i.e., a zirconium fumarate metal–organic framework,
was found to be effective for fluoride removal under the optimum selected conditions
(i.e., dose of 1.0 g/L, initial fluoride concentration of 10 mg/L, pH 6.0), removing fluoride
almost completely and presenting an adsorption capacity 49.66 mg/g.
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Regarding the studies of the zirconium fumarate metal–organic framework-801
(MOF-801), Zhu et al. [65] determined the respective fluoride adsorption capacity of this
material (40 mg/g) through batch experiments; 0.7 g/L of this MOF found to be the opti-
mum dosage to successfully remove 10 mg/L initial concentration of fluoride solution. The
displayed results showed that it was not necessary to adjust the pH during the experiments,
and, in fact, the major mechanism for the effective defluoridation treatment was the ion
exchange between the fluoride ions and the hydroxyl groups of MOF-801. Regarding the
mechanism of fluoride removal by MOF-801, Tan et al. [66] reached the same conclusion.
As shown in Figure 18, the hydroxyl groups attached to Zr within the structure of MOF-801,
upon the application of fluoride solution, are replaced by the fluoride ions through this
anion exchange mechanism. Moreover, the electrostatic interaction between Zr4+ and F− is
described in the following Equation (1):

Zr−OH + F− → Zr− F + OH− (1)
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In this study, the maximum adsorption capacity was found to be 19.42 mg/g, and the
MOF-801 used up to four treatment cycles for the removal of fluoride, still reaching a 79%
removal rate and hence suggesting that this is a material with very good reusability. NaOH
was found to enhance the replacement of OH− by F− and was used to regenerate MOF-801.

Furthermore, several studies were conducted by using the novel University of Oslo
(UiO-66) types of MOF materials. Particularly, Massoudinejad et al. [72] studied the use of
Uio-66 for the removal of fluoride. The maximum capacity was found to be 31.09 mg/g by
applying the optimum determined conditions, i.e., pH 7.0, initial fluoride concentration
14.6 mg/L, dosage 0.4 g/L and contact time 41.5 min, leading to the residual concentration
of 1 mg fluoride/L (i.e., achieving 80.2% removal); therefore, it was a very good result
regarding fluoride treatment in contaminated waters. Recently, Lacalamita et al. [68] modi-
fied the UiO-66 MOF material with amino groups, thus forming the UiO-66-NH2 composite.
The presence of amino groups provided several hydrogen bonds, which enhanced the
adsorption of fluoride through the improvement of electrostatic attractions. The results
showed that 70–80% of fluoride can be removed within 60 min by adding 2.0 g/L of
UiO-66-NH2 without changing the initial pH value. Another modification for the UiO-66
MOF can be found in the study of Zhao et al. [69], where the La anchored Zr-based hybrid
MOF (La-UiO-66-(COOH)2) adsorbent was produced; this adsorbent exhibited adequate
adsorption capacity (57.23 mg/g) over a wide pH range (3.0–9.0), removing 87% of fluo-
ride anions within just 5 min. The point of zero charge (pzc) for the La-UiO-66-(COOH)2
was determined at the pH value 3.35. Thus, regarding the mechanism that occurs, when
pH < 3.35, the electrostatic attractions between the positively charged La-UiO-66-(COOH)2
and the negative fluoride ions prevails, whereas at pH values > 3.35, mainly the ion ex-
change mechanism occurs. According to thermodynamics, this adsorption process was
spontaneous and endothermic. Four adsorption–desorption cycles were conducted, and at
the end of the fourth cycle, the fluoride removal rate still remained at 79.7% [69].

Finally, the Materials Institute Lavoisier family MOFs are considered as promising
materials for the removal of fluoride. MIL-96(RM) MOF [70] was effective over a wide pH
range; the adsorption process was found to be spontaneous and endothermic, and the main
mechanism in this case was the exchange between the F− and OH− ions. The maximum
adsorption capacity was determined to be 82.65 mg/g, and the MIL-96(RM) material was
reused after regeneration treatment with NaOH solution up to seven cycles. In addition,
another material from the MIL family, MIL-53 (Fe) [73], demonstrated high removal rate for
F− (95.6%); however, it showed lower capacity (4.34 mg/g) under the optimal experimental
conditions (i.e., pH 4.0, dose 0.25 g/L of MIL-53 (Fe), treating 10 mg/L initial fluoride
concentration within 60 min contact time).

To conclude, several MOF materials have been used for the efficient adsorption of fluoride,
proving to be a promising method for the removal of fluoride ions from contaminated waters.
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5. Future Perspectives

As can be seen from the literature, there are many factors that can affect the effective-
ness of MOFs, both in general and in the case of fluoride ion removal [28,32]. The ultimate
goal in the research field of MOFs is to make them functional and suitable for real-world
applications using real water or wastewater to develop a more comprehensive and accurate
approach to future actions. Increasing the active sites by adding functional groups that
attract fluoride ions is the main regulatory factor for adsorption. When selecting the appro-
priate MOF for defluorination, its adsorption capacity and stability should be considered
over a wide pH range. Furthermore, the effect of co-ions should be minimal on MOFs, as
they hinder fluoride adsorption, mainly from ion-abundant groundwaters. The formation
of MOFs with specific metals such as Ca, Mg, Ce, Fe, etc., which have a high affinity to
interact with fluoride ions [14,19,77], thus enhancing their adsorption capacity, should be
considered. Therefore, an important point to consider when designing a high-stability
MOF is the bond strength between the metal and linker.

In conclusion, the environmentally friendly, cost-effective design and fabrication of
MOFs composites that can function at different pH conditions, even at high temperatures,
are the main research goals. Due to their high cost, there is still a long research road to
be able to use MOFs for large-scale fluoride removal facilities. Therefore, future research
efforts are expected to address functional and practical problems in their use, as well as
issues related to the commercialization of MOFs.

6. Conclusions

In recent years, the potential of using metal–organic framework (MOF) materials to
remove fluoride anions from polluted waters has been increasingly researched, as they are
very competitive in the field of adsorption for the removal of dissolved anions. This review
focuses on the synthesis and relevant applications of MOFs and their derivatives, as found
in the respective literature, emphasizing the research performed during the last five years.

The conventional method most commonly used for the preparation of respective
MOFs is the hydrothermal/solvothermal method. Several types of MOFs have been
synthesized and applied for the removal of fluoride. Furthermore, regarding the properties
and the characteristics of these materials, the highest BET surface area was shown by MOFs
based on aluminum metal ions, i.e., AlFu (1156.0 m2/g), Al-MOF-5 (1264.0 m2/g) and
Al-TDC (1251.73 m2/g), followed by those that have the zirconium metal in their structure.
Regarding the average pore size (nm), the Zn-MOF-801 material presented the lowest value
(0.06 nm). The total pore volume was relatively similar for all materials. The high surface
area and the microporous morphology are likely to benefit the adsorption performance.
The main parameters affecting adsorption, i.e., the effect of initial fluoride concentration,
adsorbent dosage, solution pH, contact time, adsorption capacity and thermodynamic and
regeneration studies, were correlated and analyzed.

Various MOFs have been used for effective fluoride adsorption, and according to the
presented results, in most cases, the initial fluoride concentration was 10 mg/L. Only in the
case of La-UiO-66-(COOH)2 was a very high initial concentration (100 mg/L) examined.
Regarding the dosage/concentration of MOFs applied, the highest used was 3 g/L (ZrFu)
and the lowest was 0.1 g/L. The most common pH for conducting experiments was 7.0, but
several materials were effective over a wide pH range. A total of 4–6 regeneration cycles
were applied successfully on average, regarding the reviewed MOFs, without substantial
decrease of efficiency, by using, in most cases, an NaOH solution as the regeneration agent.
In the majority of them, the process was found to be endothermic in nature, except for a
few cases where it was exothermic, according to thermodynamics. However, what is worth
noting is the very high adsorption capacity shown by the homometallic AlFu material, i.e.,
600 mg/g, as compared to all the other materials, which also exhibited the highest BET
surface area, a fact that possibly explains this high capacity.
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