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Abstract: In this work, iron oxalate from converter slag (FeOX-Slag) was produced by extraction
of iron from converter slag using oxalic acid, followed by photo-reduction. The FeOX-Slag sample
was subjected to various characterization techniques, including X-ray diffraction (XRD), Raman
spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX),
ultraviolet–visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL),
X-ray absorption near-edge structure spectroscopy (XANES), and X-ray photoelectron spectroscopy
(XPS), in order to gain insights into its physicochemical properties. Also, to compare the photocatalytic
activity of the FeOX-Slag, commercial iron oxide (Fe2O3) was used as a precursor to produce normal
iron oxalate (FeOX-Fe2O3). The obtained FeOX-Slag was applied to the photocatalytic degradation of
rhodamine B (RhB), a model organic contaminant in wastewater, compared with the FeOX-Fe2O3.
Using the produced FeOX-Slag, we were able to degrade RhB more than 98% within 90 min at
a reaction rate constant of about 3.6 times faster than FeOX-Fe2O3. Photoluminescence results
confirmed the less recombination of the electron–hole pairs in FeOX-Slag, compared to FeOX-Fe2O3,
which may be due to the defect structure of iron oxalate by guest metal impurities. The higher
separation and transportation of photogenerated electron–hole pairs cause the enhancement of the
degradation photocatalytic RhB degradation activity of the FeOX-Slag. In addition, The FeOX-Slag
showed higher light absorption ability than FeOX-Fe2O3, resulting in the enhancement of the RhB
degradation performance. Thus, the optical properties and the results from the activity tests led to
the proposal that FeOX-Slag may be used in a photocatalytic degradation process for RhB under
light irradiation.

Keywords: photocatalyst; RhB degradation; iron oxalate; converter slag

1. Introduction

Converter slag is a solid byproduct of the steel manufacturing process. According to
the World Steel Association’s global steel statistics for 2022, global crude steel production is
over 1.95 billion metric tons. It indicates that the generation of convertor slag has grown
substantially as a result of 1 ton of crude steel yielding 10–15% slag [1,2]. However, the
steel demand in 2023 was forecasted to increase by around 2.2% compared to 2021. In the
past, massive amounts of steel slag were disposed in landfills, jeopardizing the natural
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environment and human health owing to the leaching of heavy metals into soil and water
by rainfall [3]. Therefore, the reduction of waste slag is a crucial issue for the industry.

Currently, steel slag is utilized in a variety of applications, such as road construction,
civil engineering, and as an additive in cement or concrete [4–6]. The alternative method
to reduce the amount of steel slag is metal recovery due to the ferrous content in steel
slag, which is sustainable management. However, the chemical composition of steel slag
contains CaO (41.55%), Fe2O3 (31.35%), SiO2 (11.47%), and other components (15.63%) [7].
There are several methods for metal extraction from the slag, i.e., flotation reagents, magnet
separation, and chemical leaching [8]. To achieve high purity of Fe(III) oxalate solution,
oxalic acid has been reported to be used as an extraction solvent [9,10]. This chemical
(Fe2(C2O4)3) could be considered as the precursor to prepare the effective material for
wastewater treatment, i.e., ferrous (II) oxalate (FeC2O4).

Fe(II) oxalate is a promising candidate for wastewater treatment in a variety of pro-
cesses, including arsenic removal [11], organic pollutant degradation via Fenton reac-
tion [12–14] or photocatalytic reaction [15,16], and Photo-Fenton process [17,18]. However,
to achieve effective activity, Fenton or Photo-Fenton must use H2O2 as an oxidant, which
is an impractical and unsustainable process for real-world application. Therefore, the
photocatalytic process is green, low cost, and uses mild conditions by harvesting the solar
light power to chemical energy for complete mineralization [19–23]. For example, Hao et al.
reported the degradation of organic dyes such as methylene blue and rhodamine B using
C3N4 composite via photocatalysis [21].

The aim of the present research is to synthesize Fe(II) oxalate through the extraction of
iron from converter slag using oxalic acid and subsequently employing photo-reduction.
Various analytical methods were employed to examine the physicochemical characteristics
of the FeOX-Slag sample. In order to assess the photocatalytic efficacy of FeOX-Slag in
relation to conventional iron oxalate, we employed iron oxide (Fe2O3) as a precursor
for the synthesis of iron oxalate (FeOX-Fe2O3). In the framework of the photocatalytic
degradation of rhodamine B (RhB), a representative organic pollutant found in wastewater,
the FeOX-Slag, was utilized and compared to FeOX-Fe2O3.

2. Materials and Methods
2.1. Chemicals

For the process of synthesis as well as all experiments, the following chemicals were
provided by Fujifilm Wako Pure Chemical Co. (Osaka, Japan): oxalic acid, iron(III) oxide
(Fe2O3), p-benzoquinone (BQ), acetonitrile, isopropanol (IPA), and ethylenediaminete-
traacetic acid disodium (EDTA-2Na). Rhodamine B (RhB) was procured from Sigma-
Aldrich (St. Louis, MI, United States), a reputable supplier of chemicals. No additional
purification steps were performed on any of the chemicals prior to their utilization. These
solutions were prepared using ultrapure water, which is free from any impurities or con-
taminants.

2.2. Preparation of Iron Oxalate from Converter Slag (FeOX-Slag) and Iron Oxalate from Iron(III)
Oxide (FeOX-Fe2O3)

The iron oxalate samples were synthesized through the dissolution of Fe from Fe
sources (converter slag and iron(III) oxide), followed by the photo-reduction technique,
as per the methodology described in the previous publication [10]. Particularly, a mass of
15 g of converter slag, also known as iron(III) oxide, was introduced into a 250-milliliter
solution of oxalic acid with a concentration of 1 Molar. The aqueous mixture was agitated
and subjected to thermal treatment at 100 ◦C under reflux conditions for a duration of 6 h.
Subsequently, the solution containing Fe(III) oxalate in a dissolved state was effectively
isolated from the residual solid matter through the process of filtration, employing a filter
with a pore size of 0.45 µm. Subsequently, the solution containing Fe(III) oxalate was
subjected to photo-reduction using a 100 W Hg lamp for a duration of 1 h. This process
facilitated the reduction of the oxidation state of the Fe ion from Fe(III) to Fe(II) and
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resulted in its precipitation as a solid. The composites acquired using distinct Fe sources,
namely, converter slag and iron(III) oxide, were designated as FeOX-Slag and FeOX-Fe2O3,
correspondingly.

2.3. Characterization

All materials’ crystal phase structures were analyzed using an Ultima IV X-ray diffrac-
tion (XRD) instrument manufactured by RIGAKU, located in Akishima, Japan. To learn
more about the chemical composition and functional groups of FeOX-Slag and FeOX-Fe2O3,
we employed Raman spectroscopy (Thermo Scientific™ DXR3 Smart Raman spectrometer,
Waltham, MA, USA). All samples were inspected using scanning electron microscopy (SEM,
Hitachi High-Tech FlexSEM1000II, WITec K.K, Tokyo, Japan) to verify their morphology
and surface properties. The evaluation of light absorption capabilities in both pure and com-
posite materials was conducted using ultraviolet–visible diffuse reflectance spectroscopy
(UV-DRS, UV-2450 Shimadzu, Kyoto, Japan). The VB positions of FeOX-Slag and FeOX-
Fe2O3 were determined through the utilization of X-ray photoelectron spectroscopy (XPS,
ESCA 5800; ULVAC-PHI, Inc., Kanagawa, Japan). The PL spectroscopy measurements were
conducted employing an FP-6600 spectrofluorometer (JASCO Corporation, Tokyo, Japan).
The elemental compositions of all samples were determined via X-ray fluorescence (XRF)
spectroscopy utilizing the Rigaku ZSX Primus II instrument in the wavelength dispersive
mode, located in Akishima, Japan. Utilizing the Athena and Artemis software (version
0.9.26), specifically version 0.9.25, the spectral data obtained from the iron (Fe) K-edge was
subjected to comprehensive analysis. In the investigation of RhB degradation products, the
utilization of gas chromatography–mass spectrometry (GC–MS, Agilent 6890 N) with an
HP-5MS UI column (Length = 30 m, = 0.250 mm) and helium gas as a carrier at a flow rate
of 1 mL min-1 was employed. The Fe K-edge XAS spectra of all samples were acquired at
the SAGA Light Source (SAGA-LS) located at the BL06 Research Center for Synchrotron
Light Application at Kyushu University.

2.4. Photocatalytic Rhodamine B (RhB) Removal

The ability to degrade rhodamine B (RhB) in the presence of visible light was used to
evaluate the photocatalytic activity of FeOX-Slag and FeOX-Fe2O3 under a 500 W Xe lamp.
Each reaction started with 50 mg of the obtained FeOX-Slag or FeOX-Fe2O3 suspended
in 50 mL of 10 ppm RhB solution in the dark for 30 min to attain adsorption–desorption
equilibrium. After that, the suspended liquid was irradiated from above with light from a
500W Xe lamp at a controlled reaction temperature of 25 ◦C. The remaining concentration
of RhB in the treated solution was evaluated using UV/Vis Spectrophotometer at 554 nm,
which is the maximum absorption (λmax) of the RhB molecule. The investigation of the
presence and effect of free radicals was conducted through scavenger tests. One mole of
p-benzoquinone (BQ), isopropanol (IPA), and ethylenediaminetetraacetic acid disodium
(EDTA-2Na) were employed in the scavenger tests to eliminate super oxygen radicals,
hydroxyl radicals, and holes. The tests were conducted using a 50 mL solution of 10 ppm
RhB and 50 mg of the obtained catalyst. To ensure reusability, the exhausted catalyst from
the preceding cycle was isolated from the solution via a centrifugal method and employed
in its unmodified form, free of any purification processes.

3. Results and Discussion
3.1. Exploration of the Phase Composition and Chemical Characteristics

Figure 1a,b depicts the X-ray diffraction (XRD) analysis demonstrating the crys-
talline phase components of converter slag, FeOX-Slag, and FeOX-Fe2O3. Converter slag
(Figure 1a) displayed (Mn,Mg)(Mn,Fe)2O4 as the dominant phase, with main diffraction
peaks at 18.2◦ and 35.5◦. Also, some minor crystal phase components of calcium silicates,
such as Ca2Fe1.4Mg0.3Si0.3O5 and CaSi2O5, and iron(II) oxide (FeO) could be observed. The
crystallographic phase structures of FeOX-Slag and FeOX-Fe2O3 were subjected to X-ray
diffraction (XRD) analysis, as depicted in Figure 1b. At temperatures of 18.6◦, 20.9◦, 22.9◦,
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28.4◦, 29.3◦, 34.5◦, 37.9◦, 40.1◦, 42.7◦, 44.7◦, 46.1◦, and 48.4◦, the observed angles correlate
with the orthorhombic crystal structure of iron oxalate dihydrate (JCPDS 01-076-4579), and
two large distinct peaks of 002 plan at 18.6◦ were observed in both the FeOX-Slag and
FeOX-Fe2O3. The experimental results demonstrate the successful synthesis of iron oxalate
dihydrate through the efficient extraction of Fe from the two precursor compounds. How-
ever, the intensity of a main XRD peak at 18.6◦ of FeOX-Slag is lower than the FeOX-Fe2O3,
suggesting the extracted Fe solution from converter slag that contains several components
might contain some other elements and can be incorporated into the structure of the ob-
tained FeOX-Slag, thereby resulting in a decrease in the crystallinity of the FeOX-Slag. To
prove this assumption, the elemental compositions of FeOX-Slag and FeOX-Fe2O3 were
investigated using XRF analysis. It can be seen in Table 1 that the FeOX-Fe2O3 contains
only Fe, O, and C, which are from the backbone structure of the iron oxalate dehydrate,
while the FeOX-Slag consists of Fe, O, and C as the main components from the structure of
iron oxalate dehydrate and some impurities such as Mg and Mn from the converter slag
precursor. Thus, this result suggests the co-doping of other impurities in the structure of
iron oxalate dehydrate when converter slag was used as a precursor. Moreover, Raman
spectroscopy was used to look into the chemical properties of FeOX-Slag and FeOX-Fe2O3
as shown in Figure 1c. In the Raman spectrum of both samples, the υ(CO) modes of iron(II)
oxalate can be observed at 1468 and 1454 cm−1. The two bands located at 582 and 579
cm−1 correspond to the δ(CO2) mode of iron(II) oxalate. The peaks at 241 and 203 cm−1 are
consistent with an assignment to υ(FeO) modes, whereas the band at 114 cm−1 corresponds
to the υ(FeO2) mode of a coordinated metal–oxalate system [24]. Hence, these findings have
substantiated the synthesis of iron oxalate dehydrate through the processes of extraction
and photo-reduction employing the aforementioned precursors.
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Figure 1. XRD patterns of (a) converter slag and (b) extracted FeOX-Fe2O3 and FeOX-Slag and
(c) Raman spectra of FeOX-Fe2O3 and FeOX-Slag.

Table 1. Elemental component (%wt) using XRF analysis.

C O Fe Mg Mn

FeOX-Fe2O3 26.4 66.3 7.3 n.d. n.d.
FeOX-Slag 35.5 56.0 6.8 1.1 0.6

3.2. Optical Characteristics

UV-DRS spectroscopy was employed to elucidate the light absorption characteristics
and the energy band gaps (Eg) of FeOX-Slag and FeOX-Fe2O3, both of which play significant
parts in the photo-catalytic steps. Figure 2a demonstrates the efficacy of both FeOX-Slag
and FeOX-Fe2O3 as proficient photocatalysts within the UV and visible light spectrum,
showcasing maximum absorption between 300 and 550 nm. The ability to absorb visible
and near-ultraviolet light by the FeOX-Slag was significantly higher compared to FeOX-
Fe2O3. This meant that the optical characteristics of FeOX-Slag were improved by the
addition of the Mg and Mn impurities to its structure. Its photocatalytic activity toward
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RhB was improved, and its capacity to capture light was boosted, thanks to the large
number of charge carriers it produced. The estimated Eg values of the FeOX-Slag and
FeOX-Fe2O3 samples were calculated using Tauc’s equation [21,25–27]. Basically, iron
oxalate was classified as an indirect semiconductor [28]. Thus, the Eg of the obtained
sample are focused in the term of indirect Eg. The estimated Eg values for FeOX-Slag
and FeOX-Fe2O3 are 2.37 and 2.40 eV, respectively, as shown in Figure 2b. As compared
to pure FeOX-Fe2O3, the Eg of FeOX-Slag was lower. This might be because the Mg and
Mn impurities created new electronic states between the VB and CB. The photocatalytic
performance of the obtained FeOX-Slag sample for RhB degradation may be enhanced due
to the supplemented production of electron (e−) and hole (h+) pairs under light irradiation,
as evidenced by the decreased Eg values of the composites [29,30].
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3.3. Morphology Investigation

In Figure 3a,b, the SEM images of both FeOX-Slag and FeOX-Fe2O3 samples clarify
the surface morphologies and particle size. Intriguingly, the FeOX-Slag sample had less
accumulation of the FeOX particles, suggesting that FeOX-Slag may provide a more respon-
sive surface for photocatalytic RhB degradation than FeOX-Fe2O3. Excellent dispersion of
Fe and O in the structure of the iron oxalate was shown using SEM-EDX mapping of both
FeOX-Slag and FeOX-Fe2O3 samples. The unambiguous indications of Fe and O elements
in both FeOX-Slag and FeOX-Fe2O3 samples suggested that these elements were the main
constituents of iron oxalate, whereas the Mn and Mg signals were secondary. The regular
distribution of Mn and Mg in the FeOX-Slag confirmed that they were co-doped in the
structure of FeOX-Slag.

3.4. XPS Results

XPS was utilized to analyze the chemical states of C, Fe, and O, as well as the VB sites
of FeOX-Slag and FeOX-Fe2O3. Figure 4a showed the survey spectra of FeOX-Slag and
FeOX-Fe2O3. It can be seen that the signal of main elements such as Fe, C, and O can be
observed for both samples; however, Mg and Mn, which are the minor elements in the
FeOX-Slag, can be found due to the low concentration of these elements in the sample. The
C 1s spectra of FeOX-Slag and FeOX-Fe2O3 are given in Figure 4b, where the C 1s orbitals
of FeOX-Slag and FeOX-Fe2O3 may be deconvoluted into three peaks. The deconvoluted
signal at 284.6 eV can be attributed to the C–C bond of contaminated carbon. The oxalate
anion backbone in the iron oxalate was discovered to be responsible for the remaining
two peaks at 285.8 and 288.5 eV [31]. It is feasible to discern two unique O 1s signals in
Figure 4c, which are assigned to the various forms of O in the iron oxalate dehydrate. The
peak corresponding to the C=O bond is observed at an energy level of 531.8 electron volts
(eV), whereas the peak associated with H2O is detected at 532.4 eV [32]. Additionally, it
is worth noting that the notable peak observed at EB [Fe 2p3/2] in Figure 4d exhibited
a consistent energy value of 710 eV in both FeOX-Slag and FeOX-Fe2O3 samples. This
observation suggests that the Fe present in the iron oxalate structure exists in a trivalent
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chemical state, thereby confirming the effective reduction of Fe(III) to Fe(II) through photo-
reduction [33]. In addition, XPS was used to estimate the valence regions of FeOX-Slag
and FeOX-Fe2O3. As can be shown in Figure 4e, the predicted VB sites of FeOX-Slag and
FeOX are 1.27 and −0.28 eV, respectively. Interestingly, the VB position of FeOX-Slag
slightly shifts down to a more positive side compared with FeOX-Fe2O3, indicating that the
existence of the Mn and Mg as impurities affected the electronic properties of FeOX-Slag.
The more positive level of the VB position of FeOX-Slag could promote the production
of superoxide radical, which might be an important active species for RhB degradation.
According to the UV-DRS data, the CB locations of FeOX-Slag and FeOX-Fe2O3 were
identified to be at −1.1 and −2.68 eV (Figure 4f), respectively.
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3.5. X-ray Absorption near Edge Structure (XANES) Result

As depicted in Figure 5, the acquired samples undergo X-ray absorption spectroscopy
for the purpose of evaluation of oxidation state and phase configuration [34]. FeOX-Slag
and FeOX-Fe2O3 displayed comparable absorption edges at approximately 7125 eV and
exhibited oscillation spectra following the edge jump, signifying the effective synthesis
of iron oxalate using the oxalic acid-treated technique, without the presence of additional
phase impurities such as iron oxide. Furthermore, it is noteworthy that the oxidation state
of the iron (Fe) species in FeOX-Slag and FeOX-Fe2O3 is divalent, as evidenced by the
comparable binding energy observed between FeOX-Slag and FeOX-Fe2O3 when compared
to the iron oxalate standard.
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3.6. Charge Separation Properties

PL measurements were utilized to evaluate the impact of the preparation of iron
oxalate using converter slag (FeOX-Slag) that contains some other impurities such as Mg
and Mn on the separation and transfer of electrons and holes during light irradiation.
As shown in Figure 6, the emission spectra of both FeOX-Slag and FeOX-Fe2O3 samples
are in the 500–700 nm region. Generally, a low PL intensity is indicative of a low rate of
electron–hole pair recombinations. The distinct formulation of the FeOX-Slag, comprising
additional impurities like Mg and Mn, resulted in enhanced charge carrier separation, as
shown by the reduced PL emission intensity of FeOX-Slag in comparison to FeOX-Fe2O3
at a wavelength of 600 nm under a 350 nm excitation. Based on the photoluminescence
(PL) results, the electronic characteristics, encompassing charge separation and electron
transport, exhibited enhancement due to the formation of Ets through the incorporation of
impurities like Mg and Mn within the FeOX-Slag sample matrix.
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3.7. Photocatalytic RhB Degradation

The decomposition of RhB under light irradiation was used to evaluate the photo-
catalytic activity of FeOX-Slag and FeOX-Fe2O3. In the absence of light, as depicted in
Figure 7a, the adsorption efficacy for rhodamine B (RhB) in both FeOX-Slag and FeOX-
Fe2O3 specimens was approximately 25-30%. Interestingly, FeOX-Slag showed a higher
adsorption capacity for RhB than that of pure FeOX-Fe2O3. This could potentially be
attributed to the FeOX-Slag specimen exhibiting an elevated active surface area as a re-
sult of reduced agglomeration of FeOX-Slag particles. As a result, this makes it easier
for the RhB molecules to connect with each other better. After that, all of the samples’
decline efficiencies (C/C0) were tested to find out how well they worked as photocatalysts
when exposed to light from a Xe lamp, which is a solar light simulator. After 90 min of
response time, the C/C0 values of FeOX-Slag and FeOX-Fe2O3 samples were 0.017 and
0.26. Therefore, the combined formation of iron oxalate through the extraction of Fe from
converter slag exhibits greater potential for photocatalytic removal of RhB in comparison
to regular FeOX-Fe2O3, owing to their heightened light absorption and charge separation
capabilities. In detail, for photocatalytic RhB degrading activity, FeOX-Slag showed the
highest level about 98% during the 90 min, while the FeOX-Fe2O3 showed degradation
activity of around 75% within the same reaction time. The FeOX-Slag’s RhB degrading
activity was dampened by an overabundance of the guest atoms. Furthermore, the rates
of photocatalytic removal of RhB for FeOX-Slag and FeOX-Fe2O3 were subjected to fitting
based on experimental data employing a pseudo-first-order kinetic model, as depicted
in Figure 7b. For FeOX-Slag and FeOX-Fe2O3, the corresponding values for the reaction
rate constant (k) were 0.012, and 0.043 min−1. FeOX-Slag had a rate constant that was two
times higher than that of FeOX-Fe2O3. Therefore, our findings show that the FeOX-Slag’s
photocatalytic RhB degrading activity may be greatly enhanced by the creation of a new
electronic state attained by doping with Mn and Mg. Based on the findings, it can be
inferred that FeOX-Slag exhibits promising photocatalytic properties in the context of RhB
degradation in wastewater, owing to its rapid kinetic rate and notable efficiency in RhB
breakdown. Figure 7c shows how RhB can be removed by performing a photo-oxidation
test without FeOX-Slag under light treatment and an adsorption test with FeOX-Slag under
dark conditions. Photo-oxidation could lower the amount of RhB by about 5%. Also, the
adsorption–desorption balance of RhB on the surface of the FeOX-Slag reached about 36%
of removal activity within 15 min and stayed the same after that amount. The photocatalytic
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process exhibited a significant reduction in RhB concentration, achieving a remarkable 98%
decrease within a time frame of 90 min, indicating that RhB molecules are mostly removed
through a photocatalytic process. Moreover, the role of radicals involved in the degradation
of RhB was determined using a wide range of radical scavengers. In these scavenger
experiments, isopropyl alcohol (IPA) and ethylenediaminetetraacetic acid disodium salt
(EDTA-2Na) effectively captured superoxide anions (•O2

−), hydroxyl radicals (•OH), and
holes (h+). Upon the addition of BQ and EDTA-2Na, it was observed that the photocatalytic
oxidation of RhB was diminished (Figure 7d), suggesting that the primary contributors to
this phenomenon were •O2

− and h+. Furthermore, the diminished degradation efficacy of
FeOX-Slag in relation to RhB mineralization, when supplemented with IPA, signifies the
involvement of •OH as a secondary radical in the photocatalytic removal of RhB.
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3.8. Stability

The practical application of catalysts heavily relies on their stability and reusability [35].
The product’s recyclable nature was evaluated throughout five cycles of FeOX-Slag for
RhB degradation. The results depicted in Figure 8a indicate that FeOX-Slag exhibits
high stability and recyclability in the context of RhB decomposition under light exposure.
Specifically, the photocatalytic breakdown of RhB over FeOX-Slag remained consistent
across five cycles, resulting in an impressive elimination rate exceeding 97% within a 90-min
timeframe. XRD was used to evaluate the stability of FeOX-Slag following the first cycle of
photocatalytic elimination of RhB to that of fresh slag. It can be seen in Figure 8b that the
RhB deterioration did not affect the FeOX-Slag phase structures, as shown in comparison
with the two diffraction patterns.
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3.9. Possible RhB Removal Process

In addition, after being exposed to light from the FeOX-Slag, the RhB concentration
in the solution dropped dramatically, and some degraded product might be generated.
Based on the results of gas chromatography–mass spectrometry (GC–MS) tests on RhB
residues, Figure 9 shows a possible process for RhB oxidation. When the degraded solution
was analyzed at 90 min after the photocatalytic process, it was found to have a lot of small
pieces of RhB molecules (peaks with m/z values of 111, 118, 122, 132, 166, and 282). RhB
molecules can be broken down into smaller, less dangerous molecules by using processes
like N-demethylation, chromophore cleavage, and ring-opening to change their structure.
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3.10. Photocatalytic Mechanism

Figure 10 depicts a proposed photocatalytic RhB mineralization process using FeOX-
Slag, which is based on the results of this investigation. VB and CB of the FeOX-Slag were
1.27 and −1.1 eV. Thus, FeOX-Slag produced electron–hole pair when exposed to light.
Hole production in the VB occurred synchronously with the transportation of the excited
electrons to the CB of the FeOX-Slag. The presence of Mn and Mg impurities within the
FeOX-Slag has the potential to create a novel electronic state that can effectively capture
and confine photogenerated electrons. The extended lifespan of charge carriers in the
reaction was achieved by FeOX-Slag through the transfer of electrons to the newly formed
electronic state induced by the presence of impurities. This process effectively prevented the
recombination of photogenerated charge carriers. Consequently, the engagement between
the electrons generated by light and the dissolved oxygen molecules in water led to the
formation of superoxide radicals (•O2

−) as a byproduct in the process of photocatalysis.
Simultaneously, the presence of h+ in the valence band of the FeOX-Slag has the potential
to directly oxidize and decompose RhB molecules into water (H2O). The two active radicals
effectively facilitated the mineralization of RhB molecules, resulting in the formation of
negligible quantities of non-toxic byproducts. Hence, the employment of converter slag for
the synthesis of iron oxalate presents a promising approach in developing a highly effective
photocatalyst for the mineralization of RhB. This is achieved through the enhancement of
optical characteristics and the promotion of separation of charge carriers.
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4. Conclusions

The utilization of an oxalic acid solution for the straightforward extraction of Fe from
converter slag has the potential to yield iron oxalate, which can serve as a photocatalyst
for the remediation of waste, specifically in the removal of RhB, an organic dye commonly
found in wastewater. In this work, two types of iron oxalate were prepared using the differ-
ence of precursors, Fe2O3 and converter slag. The obtained product using converter slag as
a precursor (FeOX-Slag) demonstrated that the reaction rate constant for the effective degra-
dation of RhB in wastewater was about two times higher than FeOX-Fe2O3. FeOX-Slag also
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outperformed all other reported photocatalysts in terms of photocatalytic RhB degradation.
Based on the findings from UV-DRS and PL measurements, it can be concluded that the
enhanced photocatalytic efficacy of FeOX-Slag in degrading RhB can be attributed to its
superior light absorption capacity and reduced recombination of photo-generated charges.
Some elements, like Mn and Mg, were added to FeOX-Slag, which decreased the combina-
tion of photogenerated charges. This made photocatalytic RhB degradation under light
happen more efficiently. The photocatalyzed degradation products were also investigated
using GC–MS analysis. Therefore, this research offers an alternative method to utilize the
extracted Fe from converter slag for the effective treatment of wastewater polluted with
organic contaminants under light irradiation.
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