
Citation: Alatawi, L.; Abdullah, A.H.;

Jamil, S.N.A.M.; Yunus, R. A Facile

and Green Synthesis of Hydrophobic

Polydimethylsiloxane Foam for

Benzene, Toluene, and Xylene

Removal. Separations 2023, 10, 377.

https://doi.org/10.3390/

separations10070377

Academic Editors: Sherif A. Younis

and Mohamed Betiha

Received: 6 May 2023

Revised: 14 June 2023

Accepted: 19 June 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

separations

Article

A Facile and Green Synthesis of Hydrophobic Polydimethylsiloxane
Foam for Benzene, Toluene, and Xylene Removal
Lila Alatawi 1,2, Abdul Halim Abdullah 1,3,* , Siti Nurul Ain Md. Jamil 1,4 and Robiah Yunus 5

1 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
lialatawi@ut.edu.sa (L.A.)

2 Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
3 Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Malaysia
4 Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
5 Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia,

Serdang 43400, Malaysia
* Correspondence: halim@upm.edu.my

Abstract: Due to its excellent properties, polydimethylsiloxane (PDMS) foam has recently attracted
significant academic and industrial attention. In this study, a facile and green method was developed
for PDMS foam synthesis. The PDMS foam was prepared by using the gas foaming method with
eco-friendly materials, namely NaHCO3 as a blowing agent and acetic acid as the catalyst. By
changing the ratios of the reactants and the curing temperature, foams with varying properties
were obtained. The water contact angle of the obtained PDMS foams ranged from 110◦ to 139◦. We
found that the PDMS foams can be compressed to a maximum strain of 95% and retain their original
size, showing excellent mechanical properties. The synthesized PDMS foams were tested as an
absorbent to remove benzene, toluene, and xylene (BTX) from the water. It exhibited good selectivity,
outstanding reusability, and absorption capacity. Its capability to remove a large amount of organic
solvent from the water surface suggests the great promise of PDMS foam in recovering spilled organic
compounds from water, with excellent separation performance for continuous treatment.

Keywords: PDMS foam; gas foaming process; water contact angle; mechanical properties; BTX;
absorption; recyclability

1. Introduction

Polydimethylsiloxane (PDMS) porous polymeric materials such as polydimethylsilox-
ane (PDMS) foam have recently attracted significant academic and industrial attention as a
novel porous polymeric foam material. The high bonding energy of the Si-O-Si backbone en-
dows PDMS foam with excellent properties, such as thermal stability, mechanical flexibility,
non-flammability, and nontoxicity. The PDMS in foam structure has functional proper-
ties such as high porosity, low bulk density, simple fabrication, low cost, and remarkable
reusability compared to other polymers [1–3]. Moreover, PDMS has a low surface energy,
due to the nature of the bonding and the low intermolecular forces between the side chains,
giving this polymer superhydrophobicity [4,5]. Due to its distinctive porous structure and
exceptional physical properties, PDMS foam has attracted considerable interest for various
applications, including sensors [6–10], microfluidics [11–13], flexible conductors [14,15],
adsorbents [16–18], absorbents [19–22], and oil/water separation [23–26]. One of the most
important applications of PDMS foams is the separation of oil from water, including BTX.
BTX are mono-aromatic volatile organic compounds that are liquids at typical room con-
ditions. BTX are found in a wide range of petroleum products, such as gasoline, solvents,
and diesel fuels. BTX are used as starting compounds in the chemical industry to produce
a variety of secondary products, such as plastics, resins, detergents, inks, adhesives, and
paints. BTX are considered some of the most frequently found contaminants present in
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surface and groundwater. Because of their severe hazardous and carcinogenic properties,
BTX negatively impact human health, even at low concentrations. In addition, BTX expo-
sure can cause skin, eye, and mucous membrane irritation, as well as catastrophic nervous
system deficits and leukemia [27–30].

Many approaches have been applied to prepare PDMS foams, such as porogen leaching
(the template method), emulsion templating, and gas foaming. In the porogen leaching
method, a sacrificial material known as a porogen, such as salt, sugar cubes, ZnO powders,
Ni foam, and polymer particles, is incorporated into the PDMS mixture before curing. Once
cured, the porogen is removed by leaching, leaving a porous structure behind [18,31–40].
Although porogen leaching methods have been utilized in numerous studies, they are
time-consuming and cannot be used for large-scale synthesis.

The emulsion templating method involves the formation of an emulsion of two im-
miscible liquids, where one liquid is a continuous phase, and the other is a dispersed
phase. After polymerization, the dispersed phase is removed, resulting in the formation
of a porous structure. Typically, PDMS foams are produced from prepolymer-water emul-
sions. Several factors, such as the type of emulsifier, the polymerization conditions, and
the processing parameters, significantly influence the morphology and properties of the
resulting PDMS foams [3,41–46]. However, the emulsion method is also time-consuming
and requires hazardous solvents, and the surfactants used in the emulsion method affect
the produced foams’ properties and need to be removed.

In the gas foaming technique, a foaming agent is introduced into the process in order
to produce an inert gas that generates pores with various structures. The gas foaming
technique can be physical or chemical [47–49]. The reported studies that used the gas
foaming method to prepare the PDMS foam were either combined with other methods or
used additional harmful solvents, making it complicated and time consuming. The pore
structure and absorption capacity of PDMS sponges can be controlled by using different
diluent ratios, due to their effect on generating gas in the gas foaming technique [49].

This work reports a new, facile, cost-effective, and time-saving method to prepare the
PDMS foam via the gas foaming technique. The PDMS is polymerized using eco-friendly
and non-hazardous materials, namely NaHCO3 as a blowing agent and acetic acid as the
catalyst. No cumbersome instrumentation is needed, making it suitable for large-scale
production. Synthesized PDMS foams are characterized by their morphology, density, and
elastic modulus, and their performance in absorbing BTX from water is evaluated.

2. Materials and Methods
2.1. Materials

Sylgard 184 silicone elastomer prepolymer (Sylgard 184A) and the thermal curing
agent (Sylgard 184B) were purchased from Dow Corning (Midland, MI, USA). Benzene,
toluene, and xylene were purchased from System Chemicals (Shah Alam, Malaysia).
Sodium bicarbonate (NaHCO3) and acetic acid were obtained from R&M Chemicals
(Subang Jaya, Malaysia). All chemicals were used without purification.

2.2. Preparation of PDMS Foams

The PDMS prepolymer liquid was obtained by mixing the base and curing agent in a
ratio of 10:1 by mass. NaHCO3 and acetic acid were then added in rations of 1:1, 1:2, and
2:1 (where 1 = 5% and 2 = 10%, by mass of the PDMS prepolymer). The mixture was hand
mixed for a few seconds and then placed in the oven at the desired temperature (80, 100,
and 120 ◦C) for one hour. The resulting foams were washed with water and then dried at
the same curing temperature for one hour. The schematic preparation of the PDMS foam is
illustrated in Figure 1, while the reaction conditions are listed in Table 1.
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Figure 1. Schematic of PDMS foam production. (1) A mixture of the prepolymer and a curing agent.
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Table 1. The composition and reaction conditions for the preparation of the PDMS foam.

PDMS Foam NaHCO3 (%) Acetic Acid (%) Curing Temperature (◦C)

1:1(100) 5% 5% 100
1:2(100) 5% 10% 100
2:1(100) 10% 5% 100
1:2(80) 5% 10% 80

1:2(120) 5% 10% 120

2.3. Characterization

The PDMS foams’ morphology was characterized using JEOL JSM-7600F (Tokyo,
Japan), a field emission scanning electron microscope (FE-SEM), operated at a voltage of
5.0 kV. The SEM images obtained were analyzed with Fiji/ImageJ software, version 1.8.0.
The pore size of the foam was determined by measuring the diameters as shown in the
FESEM images using the Fiji/ImageJ software. The diameters of both large and small pores
of the foam were recorded, and the average pore size was determined for each sample.
Fourier transform-infrared spectra (FTIR) of samples were determined using a Thermo
Fisher Scientific Nicolet iS10 (Madison, WI, USA) spectrometer within the wave number
range of 400–4000 cm−1. The water contact angles were measured with a contact angle
goniometer (OCA20, Dataphysics Instrument, Filderstadt, BW, Germany). Compression
tests were carried out using a universal testing machine (Instron 3366 (Kawasaki, Japan),
10 kN) with a 10 kN limiting load and 20 mm/min of constant compressive speed.

To determine the density of the PDMS foam, the dimension and weight of a PDMS
foam cube were measured using a micrometer, with an accuracy of 0.001 mm and an
analytical balance and with a precision of 0.001 g, respectively. The sample volume was
determined by its dimension, while the density was determined by dividing the weight of
the foam by its volume.

The porosity of the foam was determined with Equation (1), as follows:

P = 1− ρ

ρPDMS
(1)

where P is the sample’s porosity and ρ and ρPDMS are the density of the foam and cured
PDMS (~1.03 g/mL), respectively.

2.4. The Absorption Study

The absorption capacities (q) of the PDMS foams were determined by soaking the
foams with benzene, toluene, and xylene (BTX) at room temperature for 10 min. The
absorption capacity of the foams was calculated using Equation (2), as follows:

q =
W1 −W0

W0
(2)
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where W0 and W1 are the foam weights before and after the absorption of benzene, respec-
tivley. The absorption capacities of all prepared types of PDMS foam were compared using
only benzene. Then, further experiments were carried out using the optimal foam. The
experiments were also performed in water to evaluate the BTX/water selectivity index (SI)
of optimum foam individually. The SI index is defined as the ratio of the mass absorption
capacity in the BTX, q(BTX), to the mass absorption capacity in water, q(water), according to
Equation (3), as follows:

SI =
q(BTX)

q(water)
(3)

The recyclability of the foam was evaluated by repeated absorption–desorption pro-
cesses. The foams were immersed in each absorbate of BTX until saturation. After recording
the weight, the foams were manually squeezed to extract absorbates and reweighed before
being used in the next absorption cycle. This absorption–desorption process was repeated
ten times.

In addition to a simple BTX absorption and recovery method, the benzene/water
mixture was continuously separated using a peristaltic pump. The separation process is
as follows: one side of the rubber tube is attached to the PDMS foam and placed in the
benzene/water mixture, while the other side of the rubber tube is placed in a clean beaker.
Benzene was dyed with Sudan III for illustration purposes only.

3. Results and Discussion
3.1. Preparation of PDMS Foams

The PDMS foam was fabricated by using the gas foaming method, whereby the
thermal decomposition of NaHCO3 releases CO2 gas during the crosslinking of the polymer
(Figure 2 and Equation (1)). Acetic acid was introduced into a mixture of PDMS and
NaHCO3 to facilitate the release of CO2, which in turn created porous structures in the
PDMS foam after heating the mixture in the oven.
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The thermal decomposition of NaHCO3, added as a foaming agent, started at ap-
proximately 50 ◦C and generated CO2, water vapor, and sodium carbonate (Na2CO3), as
illustrated in Equation (1) [50].

2NaHCO3 → CO2 + H2O +Na2CO3 (4)
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Acetic acid acted as a catalyst, as it reacts with NaHCO3 and Na2CO3 to stimulate the
release of CO2 and, thus, the formation of pores, as shown in Equations (2) and (3).

NaHCO3 + CH3COOH→ CH3COONa + CO2 + H2O (5)

Na2CO3 + 2CH3COOH→ 2CH3COONa + CO2 + H2O (6)

Therefore, the pores of PDMS foam were generated by CO2 gas derived from the
decomposition of NaHCO3 and the reaction of NaHCO3 with acetic acid. These two
process products left almost no residue in the pores, as the water evaporated during the
heating process, while Na2CO3 and CH3COONa were removed during the washing process.
Since the pores of the PDMS foam were generated by CO2 gas derived from these reactions,
it is vital to determine the suitable conditions for producing a highly porous foam ideal
for use as an absorbent. The weight of the resulting foams ranged from 10.89 g to 10.96 g
when 10 g of silicone elastomer prepolymer and 1 g of curing agent were used, in addition
to NaHCO3 and acetic acid, as mentioned previously in Table 1.

3.2. Characterization of the PDMS Foam
3.2.1. Morphology
Effect of NaHCO3: Acetic Acid Ratios

The morphology of the PDMS foams prepared using different NaHCO3:acetic acid
ratios (1:2, 2:1, and 1:1) and cured at 100 ◦C is illustrated in Figure 3a–c. These foams
exhibited spherical interconnected macropores, with sizes ranging from 100 µm to 1000 µm
(except for the 1:1 foam, where the size of some pores reached 1200), and connected
micropores with diameters of less than 100 µm hence can be generally claimed to be
homogeneous and uniform (Figure 3f–h) [37]. The PDMS foams produced using a higher
acid content (1:2) and NaHCO3 content (2:1) exhibited better pore homogeneity, which
was possibly due to a faster and more significant amount of CO2 being released during
the curing process. Consequently, more cells formed simultaneously, resulting in smaller,
finer, and more uniform pores in the foam. Through a close examination, the surface of the
pore wall was quite rough, which could have contributed to the increased hydrophobic
properties of the foams [6,43,44]. The foam pore size distributions (Figure 3k,l,m) showed
that most of the pore sizes were less than 600 µm in diameter. The foam produced at
a 2:1 ratio exhibited the smallest average pore size of 314 µm, followed by the 1:2 ratio
(332 µm) and the 1:1 ratio (338 µm)

Effect of Curing Temperature

Since the rate of reaction between NaHCO3 and acetic acid and the rate of PDMS
curing are temperature dependent, the PDMS foams with a 1:2 ratio were prepared at three
different temperatures, 80 ◦C, 100 ◦C, and 120 ◦C. The change in the curing temperature
changed the amount of CO2 gas released and, thus, affected the porous structure of the
foams. The foam prepared at 80 ◦C (Figure 3d) showed a dense section in the middle of
the foam. The foam prepared at 100 ◦C (Figure 3b) exhibited better pore homogeneity,
which was possibly due to the significant amount of CO2 that was released during the
curing process. Consequently, more cells formed simultaneously, resulting in smaller, finer,
and more uniform pores in the foam. In contrast, the foam that was prepared at 80 ◦C
(Figure 3d) showed a dense section in the middle of the foam because the rate of carbon
dioxide release was slow at low temperatures, which led to less expansion.
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Figure 3. Photographic images (a–e), SEM images (f–j), and pore size distribution (k–o) of the
prepared PDMS foams.

The pore homogeneity of the foam that was produced at 120 ◦C was found to be
significantly less than that of foams made at lower temperatures (Figure 3f,i,j), and with
a broader pore size range between less than 100 µm and 1400 µm (Figure 3k,n,o). This is
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because the higher foaming temperature generated a higher pressure of carbon dioxide
gases, which stretched the cell wall the most. This expansion of the cell walls led to a relative
increase in the cell size, resulting in foam with lower pore homogeneity and broader pore
size distribution [6,43,45].

3.2.2. Measurement of Density, Porosity, and Hydrophobicity

The effect of the NaHCO3 to acetic acid ratio and curing temperature on the foams’
density, porosity, and hydrophobicity properties was investigated. The results, tabulated
in Table 2, show that the density of the foam is inversely related to the porosity of the
foam, the higher the porosity, the lower the density. Only a slight change in porosity was
observed with changes in the NaHCO3 to acetic acid ratio. However, varying the curing
temperature noted a significant difference in porosity.

Table 2. Density, porosity, and water contact angle of the PDMS foams.

PDMS Foam Density (g/cm3) Porosity % Water Contact Angle

1:1(100) 0.216 79 119.33
1:2(100) 0.247 76 139.42
2:1(100) 0.279 73 128.17
1:2(80) 0.348 66 110.42

1:2(120) 0.126 88 131.42

This finding can be correlated to the pore size distribution of the foam. The wettability
of the surface of the foams was investigated by water contact angle measurement. The
water contact angles ranged from 110◦ to 139◦ (Table 3), indicative of hydrophobic foams,
with the 1:2(100) foam exhibiting the highest contact angle. The water-repellent nature
of foam can be attributed to the presence of methyl groups, which tend to reduce its
surface energy and tension. Consequently, the foam floats in water and can be wetted by
organic solvents such as benzene (Supplementary Figure S1). The differences in the water
contact angle at varying preparation parameters can probably be ascribed to the increased
roughness of the foam surface. When the surface roughness increases, the hydrophobicity
increases, leading to an increased water contact angle [51,52].

Table 3. Assignments of the main FTIR absorption bands of PDMS foams.

Wavenumber (cm−1) Assignment

786.71 Si-CH3 stretching
843.75 -CH3 rock
1008.29 Si-O-Si stretching
1257.57 C-H bending
1411.58 C-H bending
2962.10 C-H stretching

3.2.3. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectra of PDMS foams presented in Figure 4 and Supplementary Figure S2
revealed the functional groups of the foam. All of the PDMS foam types had identical FTIR
spectra. The strongest absorption bands between 1100 and 1000 cm−1 were characteristic
peaks of the PDMS polymer backbone (Si-O-Si stretching). The second strong peak at
786.71 cm−1 was due to Si-CH3 stretching. The peak at 2962.10 cm−1 was assigned to the
methyl group (C-H stretching). The two absorptions at 1411.58 cm−1 and 1257.57 cm−1

arose from symmetric C-H bending. Table 3 illustrates the assignments of the PDMS foams’
main FTIR absorption bands [20,34,53].
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Figure 4. FTIR spectra of 1:2(100) PDMS foam.

3.2.4. Mechanical Properties

The compressibility of the foam is essential for determining its reusability. Figure 5
displays digital images of the compression and recovery processes of the PDMS foams
in the mechanical test. All PDMS foams can be compressed to the maximum strain of
95% and retain their original size, showing excellent mechanical properties (Figure 6 and
Supplementary Figure S3). Two regions can be distinguished in the strain–stress curve. The
first region is the linearly elastic region, where stress increases slowly with the increase in
strain, which gives a plateau. This can be explained by the presence of pores, which leads
to large deformation at low stress. In the second region, stress increases rapidly due to
the collapse of the pores and the deformation of the walls that form an approximate solid
state [54,55].
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The stress–strain curve at 95% strain of the 1:2(100) PDMS foam before and after ten
cycles of benzene absorption is shown in Figure 6. No noticeable change was observed,
and the foam retained its original shape after decompression. The excellent elasticity of the
PDMS foam is attributed to the elastic bending of the PDMS skeleton. It was remarkable
that there was no collapse after ten cycles; consequently, excellent reusability and more
entrapped absorbent can be extracted in order to achieve a higher recovery rate.

The modulus of the PDMS foams can be calculated by dividing the stress by the
strain in the first elastic region, where stress grows linearly with strain at 50%. In general,
the modulus values of the PDMS foams were very low, because a small load led to a
significant change in strain. The increase in foam density resulted in a slight increase in the
elastic modulus and compressive strength. The compressive strengths of the PDMS foams
calculated from the end of the linear region at 50% strain are shown in Supplementary
Table S1. The compressive strength is directly proportional to the foams’ density. The foam
with the lowest compressive strength and modulus was the 1:2(120) PDMS foam, which
had the lowest density, while the 1:2(80) PDMS foam had the highest compressive strength
and modulus. This can be explained by the fact that, as the density of a foam increases,
the collapse of the pores and the deformation of the walls occur rapidly as the pore size is
smaller. Therefore, more stress is required to produce the same strain change as foam with
a lower density.

3.3. Absorption Study
3.3.1. Effect of Preparation Parameters on the Absorption of Benzene

Figure 7 shows a comparison of the maximum absorption capacity of all of the PDMS
foams for benzene with 10 min of contact time. The differences in the absorption capacity
at varying preparation parameters can probably be ascribed to the increased hydrophobic
surface and porosity of the foams. The 1:2(100) foam has the highest absorption capacity,
due to its higher hydrophobicity and medium porosity, which are responsible for a higher
benzene retention capacity. When the porosity is high, as in the 1:2(120) and 1:1(100) foams,
it seems that their ability to retain solvent is lower than that of the 1:2(100) foam, due to the
presence of large pores. In contrast, the low absorption capacity of the 1:2(80) and 2:1(100)
foams is attributed to their low porosity, leading to the low flow penetration of the foam.
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contact time.

3.3.2. Absorption of BTX

The ability of the 1:2(100) foam to remove toluene and xylene was also evaluated.
Figure 8 shows the maximum absorption occurring in the first minute, with a percentage
exceeding 93%. Although there is no significant difference, the foam exhibits a higher
absorption capacity toward xylene and toluene than benzene. This observation could be
related to the strength of the hydrophobic interaction between the methyl groups of the
polymer and the methyl groups of the compound, which increases with the increasing
number of methyl groups and the hydrophobic character of the compound [56–58]. The
results also show that the PDMS foam maintained its excellent absorption efficiency after
ten absorption cycles of BTX, indicating its excellent stability and reusability.
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Table 4 shows a comparison of the properties and absorption capacity of the PDMS
foams with other works. The absorption capacity of PDMS in this work is not the highest;
however, the preparation method is considered more facile, eco-friendly, cost-effective, and
timesaving. Moreover, no cumbersome instrumentation is needed, making it suitable for
large-scale production. In addition, it exhibits the highest compression strain of 95%, which
is essential in order for the foam to regenerate using the squeezing technique.

BTX/water selectivity indexes are 29.3, 29.7, and 30.5 for benzene, toluene, and xylene,
respectively. The higher the SI values, the higher the selective absorption capacity of the
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foam in the absorbate compared to water. Consequently, during pollutant spills in water,
the foam, which floats in the water, absorbs the pollutants and reduces the unwanted
absorption of water [59].

The recyclability of PDMS foam is a significant factor and provides both practical and
economic benefits. The results show that the PDMS foam still had excellent absorption
efficiency after ten absorption cycles of BTX (Figure 9), indicating its excellent stability
and reusability.
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3.3.3. Sorption from the Water’s Surface

One distinct characteristic of PDMS foam is its ability to absorb hydrophobic com-
pounds even from the water’s surface. Figure S4 in the Supplementary Material demon-
strates the effectiveness of PDMS foam in selectively absorbing benzene from water. The
floating benzene on the water surface is absorbed by the PDMS foam within 10 s, indicating
the high selectivity and quick absorption ability of the PDMS foam.

In many circumstances, dynamic absorption is more effective than static absorption,
such as for collecting organic compound spills on the sea [60]. The continuous separation
of benzene from water was successfully achieved using a peristaltic pump (Figure 10),
showing great promise for PDMS foams in the continuous recovery of spilled organic
compounds from water with excellent separation performance. This recovery method
would not destroy the porous structure of the foam, as compared to the compression
recovery method, hence prolonging the foam’s use in oil/water separation.
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Table 4. Comparison of properties and absorption capacity of PDMS foams with those of other works.

Foam Material Preparation
Method

Density
(g cm−3)

Porosity
(%)

Pore Volume
(µm)

Maximum
Compression

Strain

Water
Contact

Angle (◦)

Absorption Capacity for
BTX (g/g) Ref.

B T X

PDMS Sugar particle
template 0.18–0.75 N/A N/A N/A 120–130 - 4–5 - [37]

AuNP/PDMS Emulsion
template 0.9–1.3 N/A 0.97–3.12 48–127% N/A 3.5 4.5 6 [61]

PDMS/wax
nanocrystal

Sugar cube
template 0.28–0.43 56–71 50–100 N/A 151 9 13 10 [62]

AuNP/PDMS Emulsion
template N/A 10–1000 N/A N/A - 6 - [63]

PDMS/GO Gas foaming N/A 65.1–71.6 0.1–1000 80% 117.4–138.1 9 [64]

PDMS Gas foaming N/A N/A 30–500 N/A 139 - - - [19]

PDMS Sugar particle
template 0.12–1.1 43–84 N/A 60% 144 - 18.7 [65]

PDMS Emulsion
template N/A 93 65.8–1768 90% 145.5 - 19 - [41]

PDMS Emulsion
template 0.131–0.847 8.80–85.6 15–5000 90% 115–141 - - - [44]

PDMS/Graphene Salt template 0.14 80 N/A 70% 140–149 - - - [66]

PDMS/Graphene Sugar cones
template N/A N/A N/A N/A 101–126 - 6 - [67]

DMS/CNFs Sugar cube
template 0.425 N/A N/A 50% 131–151 - 1.4 - [68]

PDMS Gas foaming 0.126–0.348 73–88 100–1400 95% 110–139 7.5 7.6 7.8 This work

4. Conclusions

A facile, eco-friendly procedure was successfully developed to produce porous PDMS
foams via the gas foaming approach. The structural properties, namely the morphology,
porosity, density, and mechanical properties of the foams, are affected by the NaHCO3 to
acetic acid ratio and the curing temperature. The 1:2(100) foam was the most effective in
absorbing benzene, with an absorption capacity of 7.5 g/g, which can be attributed to its
increased hydrophobic properties and medium porosity. The foam retains its excellent
absorption efficiency after ten absorption cycles of BTX, indicating its excellent stability and
reusability. This work shows the great promise of PDMS foam in recovering spilled organic
compounds from water, with excellent separation performance for continuous treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/separations10070377/s1, Figure S1: (a) The PDMS foam float on
water; (b) Optical images of the wetting behaviors of water and benzene droplets on the surface
of PDMS foam; Figure S2: FTIR spectra of 1:1(100 ◦C) and 2:1(100 ◦C) PDMS foams; Figure S3:
Stress-strain curves for the prepared PDMS foams at strains of 95%; Figure S4: Absorption of benzene,
stained with Sudan III dye, by the 1:2(100) PDMS foam; Table S1: The modulus and the compressive
strength of the PDMS foams.
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