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Abstract: Fusarium oxysporum is one of the most harmful soil-borne pathogens that cause root rot,
damping-off, and wilt disease in many plant species. Management of Fusarium oxysporum diseases is
often by using many harmful and expensive chemical fungicides which have many harmful effects on
the environment and human health. The current study was conducted to identify the chemical con-
stituents of black cumin seeds’ methanolic extract and investigate the ability of the major constituents
to inhibit the Fusarium oxysporum trypsin-like serine protease, which play an important role in
F. oxysporun pathogenicity. The HPLC-MS analysis of black cumin seeds’ methanolic extract revealed
the presence of seven major compounds: amentoflavone, Procyanidin C2, Quercetin3-O-sophoroside-
7-O-rhamnoside, 5,7-Dihydroxy-3,4-dimethoxyflavone, Borapetoside A, tetrahydroxy-urs-12-en-28-
O-[b-D-glucopyranosyl (1-2)-b-D-glucopyranosyl] ester, and kudzusapongenol A-hexA-pen. The
results of molecular docking between these compounds and the active site of Fusarium oxysporium
trypsin showed that only four compounds were able to bind to the active site of F. oxysporum
trypsin. Amentoflavone, 5,7-Dihydroxy-3,4-dimethoxyflavone, and Quercetin3-O-sophoroside-7-
O-rhamnoside have the highest binding energy, −6.4, −6.5, and −6.5 Kcal/mol, respectively. In
addition, the results clarify that 5,7-Dihydroxy-3,4-dimethoxyflavone was the only compound to
form a hydrogen bond with Asp189 (the residue responsible for substrate specificity). The results of
the study strongly indicate that flavonoids of black cumin seeds’ methanolic extract could be used as
effective inhibitors for the F. oxysporum trypsin-like serine protease.
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1. Introduction

Fusarium oxysporum is one of the main pathogens that cause serious damage to numer-
ous monetarily significant crops worldwide. Phytopathogenic fungi including Fusarium
oxysporum possess a number of extracellular cell-wall-degrading enzymes such as cellulases,
pectic enzymes, and proteases; those enzymes cause a lot of damage to plant cell walls
during pathogenesis [1,2]. Proteases are important for the pathogenicity and growth of
phytopathogenic fungi. Among the proteases that are secreted by phytopathogenic fungi
is the trypsin-like serine protease [2]; the serine protease takes its name from the serine
residue in its catalytic site. The hydroxyl group of the serine residue is responsible for the
first step in peptide bond hydrolysis through acting as a nucleophile [3]. The F. oxysporum
trypsin-like serine protease consists of two domains; each domain consists of six beta
strands. The active site of the F. oxysporum trypsin-like enzyme consists of a catalytic site
located in the cleft between the two domains and the specificity bucket that is located near
the catalytic site serine residue [4]. Until now, the main method for controlling F. oxysporum
worldwide is chemical fungicides. With the increasing awareness of the damage caused
by chemical fungicides to the environment, for instance, affecting non-target organisms
and soil micro-organisms and contaminating water sources, in addition to the decrease in
their effect on phytopathogenic fungi as a result of the development of resistant strains,
the search for other means to control phytopathogenic fungi including F. oxysporum has
become urgent. One of the possible methods for controlling phytopathogenic fungi is the
use of natural compounds. Several studies were conducted to investigate the ability of
different natural compounds and plant extracts to inhibit cell-wall-degrading enzymes
including proteases as a key role in phytopathogenic fungi control [5,6]. Previous studies
have reported the inhibitory effect of black cumin seeds’ (N. sativa) oil and extracts on
phytopathogenic fungi growth. It has been reported that black cumin seeds’ oil decreased
56.67% of the severity of root rot disease caused by Rhizoctonia solani at a concentration
of 5% [7], and the different extracts of black cumin seed can inhibit 76–100% of Fusarium
oxysporum growth at a concentration of 50 mg/mL [8].

Nigella sativa, commonly known as black cumin (family: Ranunculaceae), is native to
south Asia. Black cumin seeds contain a large variety of compounds such as fatty acids,
alkaloids, saponins, flavonoids, terpenoids, and quinones [9]. Previous studies showed
that black cumin seeds’ oil contains high percentage of unsaturated fatty acids, and the
major fatty acid was linoleic acid [10]. Moreover, previous studies reported the presence of
phenolic compounds including coumaroyl acid derivative and thermoquinol glucoside,
flavonoids including quercetin and apigenin, alkaloids including norargemonine and
nigellimine, 2-(4-Nitrobutyryl), and saponins such as alpha-hederin, a triterpene saponin in
black cumin seeds’ extracts [9,11]. Black cumin seeds have been widely used in traditional
medicine in the Middle East [12]. In addition, black cumin seeds have been reported to
have antibacterial, antifungal, and antioxidant properties [8,13,14].

Recently, several studies have demonstrated that black cumin seeds have an inhibitory
effect on different types of proteases including the phytopathogenic fungi R. solani extracel-
lular protease. It has been reported that black cumin seeds’ methanolic extract at 2000 ppm
inhibited 74% of R. solani protease activity [15]. Moreover, it has been reported that black
cumin seeds’ oil inhibited 75.4% and 91.1% of the serine protease elastase type I and type II
activity, respectively, and 92.4% of collagenase activity at a concentration of 300 µg/mL [16].
On the other hand, there is no available information about the effect of black cumin seeds
on the extracellular trypsin-like protease of F. oxysporum.

Molecular docking is a tool used widely in drug discovery studies; it based on using
software to predict the interaction between a known 3D structure of a target protein and a
small molecule (ligand) and the most likely binding conformation of the ligands and its
binding affinity through thermodynamic favorability [17]. The aims of this study are to
identify the chemical composition of black cumin seeds’ (N. sativa) methanolic extract and
to clarify the ability of the major chemical constituents to bind and inhibit the trypsin-like
serine protease from Fusarium oxysporum using molecular docking methods.
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2. Results and Discussion
2.1. Analysis of Black Cumin Seeds’ Methanolic Extract by HPLC-MS

The yield of the extraction was 30% (w/w). Forty-three peaks resulted from the HPLC-
MS analysis of black cumin seeds’ methanolic extract (Figure 1). Seventeen peaks were
identified and presented in Table 1, whereas the rest of the peaks were considered to
be unknown. The identified peaks represent 83% of the peaks’ area. Table 1 shows the
retention time, m/z for the [M–H]− ion, m/z of the ESI-MS fragments, chemical formula,
and the percentages of identified peaks.
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Figure 1. MS chromatogram of black cumin seeds’ methanolic extract.

Peaks 1, 4, 7, 10, 11, 12, 27, and 33 were identified as flavonoids or flavonoid gly-
cosides. Peak 1, 10, and 27 were previously identified as amentoflavone, quercetin3-O-
sophoroside-7-O-rhamnoside, and procyanidin C2, respectively (Figure 2) [15,18–20]. The
mass spectrum of peak 4 showed the [M–H]− ion at 237 m/z in addition to the base peak ion
[M–H–H2–CO2]− at 191 m/z and [M–H–H2–B1,4]− ion at 128 m/z, resulting from the loss
of H2 and the cleavage of bonds 1 and 4 in ring C. In comparison with the fragmentation
pattern of flavones from the literature [21,22], peak 4 (tR = 2.28 min) was identified as hy-
droxyflavone (Figure 2). Peak 7 (tR = 9.74 min) produced the [M–H]− ion at 779 m/z, with
the [M–H–170]− ion at 609 m/z indicating the loss of dehydroxyshikimic acid and the base
peak ion [M–H–170–146–18–120]− at 327 m/z, resulting from the loss of dehydroxyshikimic
followed by the loss of the pentose moiety, H2O, and 0,3X fragment of the hexose moiety.
Comparing the fragmentation pattern of peak 7 with the literature [23–25], peak 7 was iden-
tified as Quercetin 3-O-dehydroxy shikimic acid-rhamnosyl-(1→4)-glucoside (Figure 2).
Peak 10 (tR = 10.85 min) gave the [M–H]− ion at 917 m/z and [M–H–486]− ion at 431 m/z,
resulting from the loss of dehexose coumaroyl and O-hexose. Peak 10 was identified as
flavonol base + 4O, O-dHex-Hex-Hex-Coumaroyl [20]. Peak 12 (tR = 11.82 min) generated
the [M–H]− ion at 607 m/z, with the base peak ion [M–H–146]− at 461 m/z, resulting from
the loss of dehexose, the [M–H–146–46]− ion at 415 m/z, and [M–H–146–162–31–B1,4]−

at 149 m/z, resulting from the loss of the dehexose and hexose moieties, OCH3, and the
cleavage of bonds 1 and 4 in ring C of diosmetin. According to the fragmentation pattern
of peak 12, it was identified as diosmetin 7-neohesperidoside (Figure 2) [26].
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Table 1. HPLC-MS analysis of methanolic extract of black cumin seeds (N. sativa).

Peak tR (min) [M–H]− (m/z) ESI-MS (m/z) Formula Identification % Area

1 1.57 537 387, 357, 195 C30H18O10 Amentoflavone 36.8

4 2.28 237 191, 128 C15H10O3 Hydroxyflavone 0.6

7 9.74 779 609, 497, 327, 171 C34H36O21

Quercetin 3-O-dehydroxy
shikimic acid-rhamnosyl-(1)-

4→glucoside
0.3

8 9.93 325 266, 175, 137 C15H18O8 Thermoquinol glucoside 0.3

9 10.45 933 535, 489, 239 C41H26O26 castalagin 0.6

10 10.85 917 431 C42H46O23
Flavonol base + 4O,

O-dHex-Hex-Hex-Coumaroyl 1.4

11 11.4 771 C33H40O21
Quercetin3-O-sophoroside-7-O-

rhamnoside 9.9

12 11.82 607 543, 461, 415, 149 C28H32O15 Diosmetin 7-neohesperidoside 0.1

13 12.1 765 439, 407, 371, 321,
233 C41H66O13 Soyasaponin IV 0.2

16 13.37 797 675, 629 C41H65O15 Kudzusapongenol A-hexA-pen 2.4

17 14.31 827 413 C42H67O16

Tetrahydroxy-urs-12-en-28-O-
[b-D-glucopyranosyl

(1-2)-b-D-glucopyranosyl] ester
3.2

18 14.53 187 C11H8O3 Plumbagin 0.3

22 16.82 791 395 Oleanoic acid-hex A–pent 1.8

27 20.29 865 525, 251 C45H38O18 Procyanidin C2 16.7

33 24.29 313 245 C17H14O6
5,7-Dihydroxy-3,4-
dimethoxyflavone 4.5

42 29.1 555 393, 327, 295 C26H36O13 Tinosineside A 0.1

43 29.34 537 341, 295 C26H34O12 Borapetoside A 4.1

Total 83.3

Peak 33 (tR = 24.29 min) produced the [M–H]− ion at 313 m/z and [M–H–68]− ion
resulted from the neutral loss of C3O2 at 245 m/z (Figure 3). In comparison with the
fragmentation pattern of flavanones from the literature [20], peak 33 was identified as
5,7-dihydroxy-3,4-dimethoxyflavone.

Peaks 13, 16, 17, and 22 were identified as triterpenoids glycosides. Peak 13 (tR = 12.1 min)
produced the [M–H]− ion at 765 m/z, with the [M–H–132–176–18]− ion at 439 m/z, result-
ing from the loss of pentose (132 Da), glucuronic acid (176 Da), and the water molecule,
[agly–H–18–32]– at 407 m/z corresponding to the loss of the water molecule and the
methanol molecule from the aglycone, and the base peak ion [agly–H–18–32–18–18]– at
371 m/z corresponding to loss of another two water molecules from the aglycone. Peak 16
(tR = 13.37 min) gave the [M–H]− ion at 797 m/z, with the base peak ion [M–H–18–44–60]−

ion at 675 m/z, corresponding to the loss of the water molecule and COO from the glu-
curonic acid moiety and 0,4X fragment of the pentose moiety (Figure 3). By comparing the
fragmentation pattern of peaks 13 and 16 with the literature [27], peaks 13 and 16 were
identified as soyasaponin IV and kudzusapongenol A-hexA-pen, respectively. Peak 17
(tR = 14.31 min) generated two ions, the [M–H]− ion at 827 m/z and the base peak ion
[M–H–414]− ion at 413 m/z corresponding to the loss of two hexose moieties and COO
(44 Da), H2O (18 Da), and CO (28 Da) from the aglycone (Figure 3). Peak 17 was identi-
fied as the tetrahydroxy-urs-12-en-28-O-[b-D-glucopyranosyl (1-2)-b-D-glucopyranosyl]
ester [28]. Similar to peak 17, peak 22 (tR = 16.82 min) produced two ions, the [M–H]−ion
at 791 m/z and the base peak ion [M–H–396]− ion at 395 m/z, corresponding to the loss of
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glucuronic acid (176 Da) and the hexose moiety (162 Da), and COO and CH2 (14 Da) from
the aglycone. By comparing the fragmentation pattern of peak 22 with the literature [29],
peak 22 was identified as oleanoic acid-hex A–pent.
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Peaks 42 and 43 were assigned to be diterpenoids glycosides. Peak 42 (tR = 29.1 min) gave
the [M–H–162]− ion at 393 m/z corresponding to the loss of hexose, [M–H–162–18–18–30]−

ion at 327 m/z corresponding to loss of hexose, 2 H2O, and 2CH3, and the base peak ion
[M–H–180–18–18–44]− at 295 m/z corresponding to loss of O-hexose, 2 H2O, and COO.
Similar to peak 42, peak 43 (tR = 29.34 min) gave the base peak ion [M–H–180–18–44]−

at 295 m/z and [M–H–180–18]− at 441 m/z (Figure 4). The [M–H]− ion of peaks 42 and
43 were absent. Peaks 42 and 43 were identified as tinosineside A and borapetoside A,
respectively [30].

Peak 8 (tR = 9.93 min) produced its [M–H]− ion at 325 m/z, [M–H–60]− ion at 266 m/z,
and [M–H–150]− ion at 175 m/z, indicating the presence of fragments 0,5X and 0,2X of the
hexose moiety, respectively, and the base peak ion [M–H–162–26]− at 137 m/z correspond-
ing to loss of hexose and 2CH. In comparison with the fragmentation pattern from previous
studies [31], peak 8 was identified as thymoquinol glucoside (Figure 2).
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Peak 9 (tR = 10.45 min) generated its [M–H]− and base peak ion at 933 m/z and
[M–H–694]− ion at 239 m/z, resulting from a lactonization reaction which resulted in the
formation of the [ellagic acid-H]− ion (301 Da) and [castalin-H]− ion. The loss of CO2 and
H2O from the [ellagic acid-H]− ion produced the peak at 239 m/z. Peak 9 was identified as
castalagin [31]. Peak 18 (tR = 14.53 min) gave its [M–H]− and only peak at 187 m/z. Peak
18 was identified as plumbagin (Figure 2) [32].

Peak 18 gave its [M–H]− and only peak at 187 m/z. In comparison with the litera-
ture [33], peak 18 was identified as plumbagin (Figure 2).

2.2. Molecular Docking Analysis

AutoDock Vina 1.2.0 was used for a docking study of eight compounds from black
cumin seeds’ methanolic extract and the known serine protease inhibitor benzamidine
against the active site of the Fusarium oxysporum trypsin-like serine protease. The active site
of the F. oxysporum trypsin consists of the catalytic site (His57, Ser195, and Asp102) and the
specificity pocket S1 (Asp189, Gly216, Asn217, Gly219, and Ser225) [4].

To validate the obtained results of the AutoDock Vina protocol, we have re-docked
the substrate that consists of single peptide GLY-ALA-LYS into the enzyme active site and
compared the interaction with the X-ray structure of the F. oxysporum trypsin enzyme and
substrate complex (1GDN). The result showed that the substrate binds to the active site of
the enzyme with a conformation very similar to the conformation reported in the X-ray
structure (Figure 5). In addition to forming all the hydrogen bonds reported in the X-ray
structure (Figure 5), Lys formed two hydrogen bonds with Ser190 and Gly193, Ala formed
one hydrogen bond with Ser214, and Gly formed two hydrogen bonds with Gly216. The
interactions between Lys and Asp189, His57, and Ser195 (water bridges) that are reported
by Rypniewski et al. [4] in the X-ray structure were not possible within the docking method
used in the current study. In the current study, the water molecules were deleted before the
docking due to the limitation of AutoDock Vina in differentiating between the water atoms
and the target protein atoms and treating the target protein atoms and the mediating water
molecules as a one rigid structure which causes the water molecules to prevent the binding
of the ligands.
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Figure 5. (a) The conformation of substrate in the enzyme active site, the substrate of X-ray structure
in red lines, the docked substrate in yellow lines, and the enzyme in cartoon; (b) 3D interactions
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the interacted residues and ligands in gray sticks, and the enzyme in cartoon.

Three compounds showed no affinity toward the active site of the F. oxysporum trypsin-
like serine protease, Kudzusapongenol A-hexA-pen, tetrahydroxy-urs-12-en-28-O-[b-D-
glucopyranosyl (1-2)-b-D-glucopyranosyl] ester, and procyanidin C2, as demonstrated by
the positive binding energy, whereas the rest of the studied compounds were successfully
docked to the enzyme. Table 2 shows the binding energy, type of bonds, bonds length,
interacted residues, and 2D interactions between the compounds and the F. oxysporum
trypsin-like serine protease. Amentoflavone, 5,7-dihydroxy-3,4-dimethoxyflavone, and
quercetin3-O-sophoroside-7-O-rhamnoside showed the highest affinity toward the enzyme
active site with a binding energy of −6.4, −6.5, and −6.5 Kcal/mol, respectively. Benza-
midine and Borapetoside A bind to the active site of the enzyme with a binding energy
of −5.5 and −4.2 Kcal/mol, respectively. All the compounds formed hydrogen bonds
with the residues in the enzyme active site except for plumbigan, which binds to the en-
zyme active site through van der Waals forces only with a binding energy of 5.3 Kcal/mol.
Amentoflavone formed two hydrogen bonds with His57 and Gly216, one carbon hydrogen
bond with Asn217, and van der Waals forces with Ser195 and Gly219 in the active site of the
enzyme and hydrophopic interaction (Pi–Pi stacked) with one residue outside the active
site of the enzyme Trp215 (Figure 6), whereas 5,7-dihydroxy-3,4-dimethoxyflavone binds
to the active site of the enzyme via two hydrogen bonds with Ser195 and one hydrogen
bond with Asp189 and van der Waals forces with Gly216, Gly219, and His57 and binds
with two residues outside the active site Glu146 through a carbon hydrogen bond and
Trp215 through hydrophobic interactions (Amid–Pi stacked) (Figure 6). Quercetin3-O-
sophoroside-7-O-rhamnoside formed one hydrogen bond with Ser195, Pi–donor hydrogen
bond with His57, and van der Waals forces with Asn217 in the active site of the enzyme
while it formed hydrogen bonds with two residues outside the active site Ser214 and Asn99
and had a hydrophopic interaction (Pi–Pi stacked) with Trp215 (Figure 6). Benzamidine
formed two hydrogen bonds, one with Asp189 in the specificity bucket and one with Ser190
outside the active site and salt bridge with Asp189 (Figure 7).
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Table 2. Interactions between Fusarium oxysporum trypsin-like serine protease and inhibitors.

Inhibitor 2D Interactions Type of
Bonds

Interacted
Residues

Bond
Length

(Å)

BE
(Kcal/mol)

Amentoflavone
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Table 2. Cont.

Inhibitor 2D Interactions Type of
Bonds

Interacted
Residues

Bond
Length

(Å)

BE
(Kcal/mol)

Borapetoside A
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Figure 6. 3D interactions of (a) amentofalvone; (b) 5,7-Dihydroxy-3,4-dimethoxyflavone; (c) quer-
cetin3-O-sophoroside-7-O-rhamnoside with F. oxysporum trypsin. Hydrogen bonds in green dash-
es, carbon hydrogen bonds in light green dashes, hydrophobic interactions in magenta dashes, the 
interacted residues and ligands in gray sticks, and the enzyme in yellow cartoon. 
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Benzamidine and 5,7-dihydroxy-3,4-dimethoxyflavone were the only compounds that
formed hydrogen bonds with the Asp189 residue which consider the residue responsible for
the substrate binding and the specificity of the enzyme for the amino acids with a positively
charged side chain. Quercetin3-O-sophoroside-7-O-rhamnoside and 5,7-dihydroxy-3,4-
dimethoxyflavone were the only compounds that formed hydrogen bonds with the Ser195
residue in the catalytic site of the enzyme; Ser195 is the residue responsible for starting the
cleavage of the peptide bond through a nucleophilic attack on the carbonyl group carbon.
The results of the docking indicate that flavonoids of black cumin seeds’ methanolic extract,
amentoflavone, 5,7-dihydroxy-3,4-dimethoxyflavone, and quercetin3-O-sophoroside-7-O-
rhamnoside could be effective inhibitors for the F. oxysporum trypsin-like serine protease,
specially 5,7-dihydroxy-3,4-dimethoxyflavone, which occupies the specificity pocket S1 of
the enzyme and in the same time binds to the catalytic site serine residue, which makes it a
perfect potential inhibitor for trypsin-like serine proteases. In addition, in comparison with
the docking output of benzamidine, amentoflavone, 5,7-dihydroxy-3,4-dimethoxyflavone,
and quercetin3-O-sophoroside-7-O-rhamnoside have been found to be more effective as
inhibitors for F.oxysporum trypsin than benzamidine whose effectiveness as a serine protease
inhibitor has been proven [34]. Several in vitro and in silico [35] studies had suggested that
flavonoids could be effective inhibitors for different types of proteases including serine
proteases; according to the results reported by [36], amentoflavone caused the inhibition
of 50% of the cysteine protease Cathepsin B at 1.75 µM. Furthermore, it has been reported
that quercetin and amentoflavone inhibited 50% of human thrombin activity at 57.77 and
19.5 µM, respectively [37].
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Figure 6. 3D interactions of (a) amentofalvone; (b) 5,7-Dihydroxy-3,4-dimethoxyflavone; (c) quercetin3-
O-sophoroside-7-O-rhamnoside with F. oxysporum trypsin. Hydrogen bonds in green dashes, carbon
hydrogen bonds in light green dashes, hydrophobic interactions in magenta dashes, the interacted
residues and ligands in gray sticks, and the enzyme in yellow cartoon.
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Borapetoside A binds to the active site via two hydrogen bonds with Gly216, a hy-
drophobic interaction (Pi–Pi T-shaped) with His57, and van der Waals forces with Ser195,
Gly219, and Asn217 in the active site of the enzyme, and binds to four residues outside the
active site Asn99 via a hydrogen bond, Cys42 and Trp41 via hydrophobic interactions, Pi
alkyl and Pi–Pi T-shaped, respectively, and Gln192 via an unfavorable interaction (unfa-
vorable acceptor–acceptor); however, Borapetoside A showed the lowest affinity toward
the enzyme active site. The low binding energy was attributed to the unfavorable interac-
tion with the Gln192 residue outside the active site of the enzyme. Despite the relatively
low binding energy, the result of the docking suggests that Borapetoside A could be a
potential inhibitor for the F. oxysporum trypsin-like serine protease. The inhibitory effect of
diterpenoids and their derivatives against the serine protease has been reported [38].

Plumbagin was the only compound that does not bind to the catalytic site or the
specificity pocket of the enzyme through hydrogen bonds or hydrophopic inertactions but
interacts with a relatively high affinity with two residues in the specificity pocket, Gly216
and Asn217, and four residues outside the active site of the enzyme, Asn99, Trp215, Try172,
and Ala175. It is unknown whether plumbagin interactions would affect the enzyme
activity or not.

3. Materials and Methods
3.1. Materials

Black cumin seeds (Nigella sativa) were purchased from Ragab El Attar herbs shop at
Cairo, Egypt. All the solvents utilized in the current study were of analytical grade and
purchased from Sigma-Aldrich, Cairo, Egypt.

3.2. Preparation of Extract

Black cumin seeds were ground to fine powder and extracted using step-wise extrac-
tion technique. The ground seeds were extracted by macerating 50 gm of the resulted
powder in 500 mL of solvent and hexane, followed by methylene chloride, and then
methanol 70% (v/v) was prepared as 70 parts of absolute methanol to 30 parts of distilled
water at room temperature (28 ◦C). Every step of the extraction was repeated 3 times. The
extracts were recovered from solvents by air drying the solvents at room temperature
(28 ◦C) [39].
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3.3. High-Pressure Liquid Chromatography–Mass Spectrometry (HPLC-MS) Analysis

Chemical composition of black cumin seeds’ methanolic extract was determined
by HPLC-MS. Shimadzu HPLC-2040 (Shimadzu, Kyoto, Japan) equipped with LC 2024
controller, LC-2040 Pump, LC-2040 autosampler, and LC2030/2040 PDA detector at 254 nm
was used. Shimadzu uplcms 8045 C-18 column (1.7 mm × 2.1 mm × 50 mm) was used for
compound separation, and Bruker triple quadrupole LC-mass spectrometer was employed.
The mobile phase was gradient of water and acetonitrile, ranging from 5% acetonitrile to
95% at flow rate of 0.2 mL/min, and the injected volume was 2 µL. The interface was set to
4.00 kv voltage and 300 ◦C temperature, and the flow rate of the heating and drying gases
were 10.00 L/min. Negative electrospray ionization mood was used and the mass spectra
were recorded at 3000 u/s scan speed in the range of 100–1200 m/z. The compounds were
identified by comparing the resulting spectrums with WILEY 09 and NIST 11 mass spectral
databases and literature, and the structure of identified compounds was drawn using King
Draw 3.0 software (King Draw Business Corporation, Qingdao, China).

3.4. Ligand Preparation

Ligand structure was drawn using Chem Draw 21.0.0 (PerkinElmer, Waltham, MA,
USA) and saved as SDF files. Ligand energy was minimized by MM2 calculation, logP
was calculated, and the structures of the ligands were converted to pdb file format using
Chem3D 21.0.0. Nonpolar hydrogen atoms were deleted, Gasteiger charges were calcu-
lated, torsion root was detected, and the structures were saved as pdbqt file format using
AutoDockTools-1.5.6.

3.5. Target Protein Preparation

The target protein, Fusarium Oxysporum trypsin-like serine protease enzyme structure
encoding 1GDN [4], was downloaded from Protein Data Bank “www.rcsb.org/. (accessed
on 24 July 2022)”. The target protein structure was prepared by deleting water and solvent
molecules and ligands, adding polar hydrogen atoms, calculating kollman charges, and
saving the structure of target protein as pdbqt using AutoDockTools-1.5.6 (The Scripps
Research Institute, San Diego, CA, USA).

3.6. Molecular Docking Procedures

The molecular interactions between the active site of Fusarium oxysporium trypsin-like
serine protease and eight compounds of black cumin seeds’ methanolic extract and the
known serine protease inhibitor, benzamidine, were determined using AutoDock Vina 1.2.0
(The Scripps Research Institute, San Diego, CA, USA) [40]. A random seed number was
used and the exhaustiveness function was increased to 32. A 18 × 15 × 22 Å grid box with
2.663 × −1.211 × −9.636 grid point spacing of 1 Å was used for docking the ligand into
the enzyme active site.

3.7. Analysis and Visualization of Protein–Ligand Interactions

The conformers of each ligand were separated using vina_split command. The con-
former with the highest affinity was analyzed and visualized using Discovery Studio-21
software (Dassault Systems BIOVIA San Diego, CA, USA). In silico interactions between
the substrate and F. oxysporum trypsin-like serine protease was analyzed and visualized
using PyMOL software (Schrödinger, Inc., Broadway, NY, USA).

4. Conclusions

The HPLC-MS analysis clearly indicated that black cumin seeds’ methanolic extract
consists mainly of flavonoids, triterpenes glycosides, diterpene glycosides, and phenolic
compounds. Amentoflavone, Procyanidin C2, Quercetin3-O-sophoroside-7-O-rhamnoside,
5,7-Dihydroxy-3,4-dimethoxyflavone, Borapetoside A, tetrahydroxy-urs-12-en-28-O-[b-
D-glucopyranosyl (1-2)-b-D-glucopyranosyl] ester, and kudzusapongenol A-hexA-pen
are the major compounds. The molecular docking results showed that amentoflavone,
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5,7-dihydroxy-3,4-dimethoxyflavone, and quercetin3-O-sophoroside-7-O-rhamnoside are
effectively able to inhibit F. oxysporum trypsin. This suggests that black cumin seeds’
methanolic extract is a source for potential trypsin-like serine protease inhibitors. Our
results support the use of black cumin seeds’ methanolic extract as a natural eco-friendly
fungicide against the diseases caused by F. oxysporum. Although it has been proven that
molecular docking is a very useful tool in structure-based drug discovery, further in vitro
studies are needed to confirm the inhibitory effect of amentoflavone, 5,7-dihydroxy-3,4-
dimethoxyflavone, and quercetin3-O-sophoroside-7-O-rhamnoside.
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