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Abstract: The present study has been designed to evaluate the impact of the co-administration
of pantoprazole (PNT) with vitamin B (VTB) complex (VTB comprising VTB1, VTB6, and VTB12
in this study) on pharmacokinetic behavior. In this study, HPLC-based sensitive and efficient
methods for simultaneous determination in human plasma were developed per US-FDA bioanalytical
standards. The pharmacokinetic parameters of PNT, VTB1, VTB6, and VTB12 were also evaluated
when the medicines were administered alone and co-administered. Following linearity, it was
observed that the plasma PNT, VTB1, VTB6, and VTB12 retention times were 6.8 ± 0.2, 2.7 ± 0.1,
5.5 ± 0.2, and 3.8 ± 0.1 min, respectively, over the range of 1−100 µg/mL. For all analytes at the lower
limit of quantification and all other values, intra-assay and inter-assay bias were within 15% and
13.5%, respectively. They barely interacted when PNT and VTB samples were evaluated in physical
combinations through in vitro tests. Moreover, in the pharmacokinetics study, treatment with VTB
did not significantly alter the pharmacokinetic characteristics of PNT. Therefore, the current work’s
results might help assess drug–drug interactions that may be applied to bioequivalence studies and
therapeutic drug monitoring.

Keywords: drug interactions; HPLC; pantoprazole; pharmacokinetic; vitamin B complex

1. Introduction

Polypharmacy, or using various medications to treat multiple health conditions, is
common among the elderly with numerous illnesses [1]. Polypharmacy is related to adverse
effects such as death, falls, unfavorable drug reactions, a more extended hospital stay, and
hospital readmission soon after discharge [2,3]. Increasing the number of drugs increases
the chance of adverse effects and catastrophes [4]. Several factors, such as drug–drug
interactions (DDIs) and drug–disease interactions, might cause harm [5]. Polypharmacy
has been associated with adverse outcomes, including higher healthcare expenses, an
increased risk of adverse drug events and DDIs, medication nonadherence, decreased
functional ability, and numerous geriatric syndromes [6,7].

DDIs, which have a prevalence of 20–40 percent in industrialized nations and are
particularly common in the elderly due to polytherapy, are among the most common causes
of medication errors [8]. Mainly, polytherapy raises the bar for therapeutic control and,
thus, the danger of clinically significant DDIs, which can lead to adverse drug responses
and lower clinical efficacy [9,10]. DDIs can be divided into two primary categories: phar-
macokinetic and pharmacodynamic. They result from the concurrent administration of
medications that can alter the pharmacokinetics and pharmacodynamics of co-administered
therapies, decreasing their therapeutic efficacy or increasing their toxicity [11,12]. DDIs are
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often taken into account based on each drug’s knowledge and are determined by monitor-
ing changes in plasma drug concentrations and the patient’s clinical symptoms [13].

In a recent survey, Proton pump inhibitors (PPI) and multivitamins were prescribed
in 500 prescriptions between 2015 and 2017 (data not published yet). Only 200 out of 500
prescriptions were confirmed to contain PPI and multivitamins. This study mainly used
Omeprazole, Pantoprazole, Esomeprazole, and Rabeprazole with multivitamins, especially
vitamin B (VTB) complexes. Additionally, this survey observed that patients between 20
and 35 take PPI and VTB together more frequently. In the evidence-based treatment of
upper gastrointestinal illnesses such as gastroesophageal reflux disease, erosive esophagitis,
dyspepsia, and peptic ulcer disease, PPIs are the best option globally [14,15]. PPIs have
been linked to a higher risk of vitamin and mineral deficiencies, which can affect the
metabolism of VTB12, vitamin C, calcium, iron, and magnesium [16].

Pantoprazole (PNT) is a gastric (H+/K+-ATPase) inhibitor which is one of the PPIs that
has been prescribed. It prevents H+/K+-ATPase from forming in the secretory canaliculus
of the activated parietal cell. As a powerful medication with a low rate of first-pass
metabolism and a bioavailability of 77%, PNT helps treat gastric and duodenal ulcers
and erosive esophagitis [17]. Compared to other proton pump inhibitors, it is a more
effective inhibitor of acid secretion and activates tetracyclic cationic sulfenamide at low pH
levels [18]. In addition, VTBs are a collection of eight water-soluble vitamins that work
as co-enzymes in a wide range of catabolic and anabolic enzymatic activities [19]. They
play crucial, closely connected roles in cellular activity. VTBs are essential for several
physiological functions, including energy production, DNA/RNA synthesis and repair,
genomic and non-genomic methylation, and the production of several neurochemicals and
signaling molecules [20,21].

Our research on any potential DDI between PNT and VTB in the healthy Bangladeshi
population was prompted by an adverse drug report (ADR) regarding the development of
VTB deficiency while being treated with PNT [22]. Although VTB and PNT are prescribed
concurrently in a significant percentage of cases in Bangladesh, there is still little information
on potential pharmacokinetic interactions or their potential effects.

The current study aimed to identify potential drug–drug interactions and their poten-
tial pharmacokinetic effects when PNT and VTBs (Figure 1) were administered concurrently
to healthy Bangladeshi volunteers. To our knowledge, no analytical technique can simul-
taneously determine PNT and VTB in biological fluids and pharmaceutical formulations.
To better understand the pharmacodynamic and combinatorial effects of the target med-
ications, new analytical methodologies for pharmacokinetics, DDI, and bioequivalence
investigations are therefore considered necessary. Therefore, this study was designed for
method development and validation of the determination of PNT and VTBs administered
concurrently and evaluation of their pharmacokinetic parameters for possible DDIs.
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Figure 1. Chemical Structure of (A) PNT; (B) VTB1; (C) VTB6; and (D) VTB12. 

2. Materials and Methods 
2.1. Materials 

Reference standard samples of PNT, VTB1, VTB6, and VTB12 were procured from 
Sigma-Aldrich (St. Louis, MO, USA). Aristopharma Ltd., Dhaka, Bangladesh, provided 
working samples as a generous gift. The commercial dosage forms of PNT and VTB were 
collected from local drug shops. Acetonitrile (HPLC grade), water (HPLC grade), and 
methanol (HPLC grade) were procured from RCI Labscan Limited (Bangkok, Thailand). 
All other chemicals and reagents were purchased from commercial sources as analytical 
or reagent grade. 

2.2. In Vitro Drug–Drug Interaction Study 
2.2.1. Sample Preparation 

To evaluate the in vitro interaction between PNT and VTB, solid-state characteriza-
tion in terms of X-Ray Powder Diffraction, Differential Scanning Calorimetry, and Fourier 
Transform Infrared Spectroscopic studies were carried out. For solid-state physicochemi-
cal characterization, a 1:1 ratio of PNT, VTB1, VTB6, and VTB12 was taken in a mortar and 
appropriately mixed using a pestle. 

2.2.2. X-Ray Powder Diffraction (XRPD) 
An X-ray diffractometer from an innovative lab studio (Rigaku, Tokyo, Japan) was 

used to record the XRPD patterns of PNT, VTB1, VTB6, and VTB12 samples that generate 
Cu-Kα radiation at 30 mA and 40 kV. All the samples were scanned at 2θ angles of short-
range from 5° to 35° that maintained 0.2° step size and scanning speed of 4°/min. 

Figure 1. Chemical Structure of (A) PNT; (B) VTB1; (C) VTB6; and (D) VTB12.

2. Materials and Methods
2.1. Materials

Reference standard samples of PNT, VTB1, VTB6, and VTB12 were procured from
Sigma-Aldrich (St. Louis, MO, USA). Aristopharma Ltd., Dhaka, Bangladesh, provided
working samples as a generous gift. The commercial dosage forms of PNT and VTB were
collected from local drug shops. Acetonitrile (HPLC grade), water (HPLC grade), and
methanol (HPLC grade) were procured from RCI Labscan Limited (Bangkok, Thailand).
All other chemicals and reagents were purchased from commercial sources as analytical or
reagent grade.

2.2. In Vitro Drug–Drug Interaction Study
2.2.1. Sample Preparation

To evaluate the in vitro interaction between PNT and VTB, solid-state characterization
in terms of X-Ray Powder Diffraction, Differential Scanning Calorimetry, and Fourier
Transform Infrared Spectroscopic studies were carried out. For solid-state physicochemical
characterization, a 1:1 ratio of PNT, VTB1, VTB6, and VTB12 was taken in a mortar and
appropriately mixed using a pestle.

2.2.2. X-ray Powder Diffraction (XRPD)

An X-ray diffractometer from an innovative lab studio (Rigaku, Tokyo, Japan) was
used to record the XRPD patterns of PNT, VTB1, VTB6, and VTB12 samples that generate
Cu-Kα radiation at 30 mA and 40 kV. All the samples were scanned at 2θ angles of short-
range from 5◦ to 35◦ that maintained 0.2◦ step size and scanning speed of 4◦/min.
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2.2.3. Differential Scanning Calorimetry (DSC)

To determine the thermal behavior of PNT, VTB1, VTB6, and VTB12 samples, 3 mg
samples were put in closed aluminum pans and heated at a rate of 5 ◦C/min using a
DSC (Netzsch, Germany) with nitrogen gas (50 mL/min) purged. Indium was used as a
reference standard to calibrate the system (99.999 percent pure, 8–10 mg, onset at 156.6 ◦C).

2.2.4. Fourier Transform Infrared Spectroscopy (FT-IR)

FT-IR analysis determined the likelihood of hydrophobic interactions between the
polymers and the drug. The samples were placed separately on the sample platform of the
instrument (Perkin Elmer, L160000A, Waltham, MA, USA), and IR spectra were collected
in the range of 4000–600 cm−1 using Spectrum 10 STD software. During the analysis, the
baseline was corrected and normalized for each sample. A smoothing function of 9 points
was applied to smooth the obtained spectra.

2.3. Method Development
2.3.1. Instrumentation

The content of PNT, VTB1, VTB6, and VTB12 were determined by using the HPLC
system with UV detection, Shimadzu HPLC system (LC-20A VP, Shimadzu, Kyoto, Japan)
consisting of an SCL-10Avp system controller, an LC-20ADvp solvent delivery pump, a
DGU-14A degasser, a CTO-20Avp column oven, and an SPD-20Avp UV-vis detector. The
analysis was performed at 280 nm wavelength with an ODS, reversed-phase C18, 150 mm
× 4.6 mm, 5 µm column maintained at 35 ◦C [23,24].

2.3.2. Preparation of Stock and Working Standard Solutions

Stock solutions of PNT (100 µg/mL), VTB1 (100 µg/mL), VTB6 (100 µg/mL), VTB12
(100µg/mL), and internal standard (IS) (diclofenac sodium at a fixed concentration of 10µg/mL)
were separately prepared in methanol and stored shaded from light at −20 ◦C. The working
solutions were prepared by serially diluting the stock solutions with methanol.

2.3.3. Chromatographic Separation

The separation of PNT, VTB1, VTB6, and VTB12 was performed on a Phenomenex
C18 column (150 × 4.6 mm) with 5 µm particle size (UV detector 20A, Shimadzu, Kyoto,
Japan), using HPLC grade water A and acetonitrile as mobile phase B in linear gradient
elution mode (A:B). The gradient conditions of the mobile phase were as follows: 0–20
min. The flow rate was set at 0.5 mL/min, and the column temperature was maintained at
35 ◦C. A Shimadzu HPLC system described in the preceding section was used to analyze
the filtrate using an internal standard method. The analysis of the PNT, VTB1, VTB6, and
VTB12 samples was determined simultaneously at 280 nm wavelength [23,24].

2.4. Method Validation

The HPLC method was validated by evaluating the following parameters: specificity
and selectivity, sensitivity, accuracy, precision, and recovery. Limits of detection (LOD)
and Limits of quantitation (LOQ), defined as concentrations having a signal-to-noise ratio
of at least 3 and 10, respectively, were used to determine sensitivity. The correlation
coefficient (r), representing linearity, was assessed by calculating a least-squares regression
line. As previously mentioned, three quality control (QC) samples at low, middle, and high
concentrations of 10, 20, and 30 (µg/mL, respectively) were used to evaluate the intra- and
inter-day precision and accuracy. Calculating the percent recovery for the QC samples in
triplicates was used to calculate the intra-day precision. The analysis of the QC samples on
three different days was used to estimate the inter-day accuracy. The closeness between the
expected value and the value discovered expresses an analytical method’s accuracy. It is
quantified by figuring out the percent recovery of the analyte (%R). In this instance, three
subsequent analyses (n = 3) for three distinct concentrations of standard sample solution
(10 µg/mL, 20 µg/mL, and 30 µcg/mL) were conducted using the suggested approach to



Separations 2023, 10, 170 5 of 15

assess the accuracy of the procedure. To evaluate the recovery and validity of the proposed
method, the experiment’s results were statistically analyzed using the formula [%Recovery
= (Recovered conc./Injected conc.) × 100]. The stability of target analytes in plasma was
evaluated for brief periods of up to 24 h at 4 ◦C and room temperature, for extended periods
of up to two weeks at −80 ◦C, and after three freeze–thaw cycles.

2.5. Pharmacokinetic and Drug–Drug Interaction Studies
2.5.1. Study Design

This was an open-label, 3 × 3 crossover pharmacokinetic study designed to evaluate
the potential pharmacokinetic interaction between PNT and VTB. In this crossover study,
all subjects received the same number of treatments involving PNT and VTB and were
engaged in the same number of periods. Unlike the parallel study, subjects were assigned
to study into three groups, group 1 (on the combined dose PNT and VTB) or group 2
(single-dose pharmacokinetics of VTB), or group 3 (single dose PNT). Among these groups,
pharmacokinetic sampling was performed following overnight fasting, which continued
for 6 h after dosing. Blood samples were taken in each group to analyze samples. After
the washing periods of 10 days, the same procedures were repeated for each group with
another alternative dose. Subjects remained at the sampling center for the entire duration
of the study. The number of subjects was calculated by single-tailed unpaired t-test [25].

2.5.2. Volunteers

Thirty healthy young adults, 18 to 35 years of age (inclusive), with a weighted average
of 40–75 kg, were included in the study. Among them, 22 were male, and 8 were female
volunteers. Individuals with previous disease histories (diabetes, hypertension, genetic
disorder, pregnancy, psychological disorder, etc.) were excluded. The demographic and
baseline characteristics of the subjects are presented in Table 1. Before sampling, they were
given a balanced diet chart for maintaining proper body function. In group 1, subjects were
co-administering a 20 mg dose of PNT and; 100 mg of VTB1, 200 mg of VTB6, and 200 µg
of VTB12. In group 2, subjects were given only VTB doses of 100 mg of VTB1, 200 mg of
VTB6, and 200 µg of VTB12. In group 3, subjects only received 20 mg of PNT.

Table 1. Demographic and baseline characteristics of study participants.

Group 1 Group 2 Group 3

Age (years) 23.00 ± 2.66 22.63 ± 3.61 21.66 ± 0.96
Weight (kg) 64.90 ± 9.51 65.63 ± 12.11 66.50 ± 14.02
Height (cm) 165.20 ± 9.29 165.18 ± 11.35 166.30 ± 1.07

BMI, (kg/m2) 23.64 ± 1.62 23.67 ± 2.56 23.78 ± 2.95

Gender
Male 8 6 8

Female 2 4 2

2.5.3. Collection of Blood Sample

Volunteers signed a consent form as an undertaken for collecting a blood sample.
Blood samples were collected from volunteers as a fasting condition. Samples were collected
intravenously with specific time intervals and randomly transferred into an EDTA tube,
precipitating blood cells. After that, all collected samples were centrifuged and transferred
supernatant with discarding red cells. Finally, new EDTA plasma samples were stored with
the label until further investigation started.
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2.5.4. Ethical Declaration

The regulations of the US Food and Drug Administration, the Declaration of Helsinki
as currently revised, and the International Conference on Harmonization were all followed
in this study [26,27]. The Faculty of Biological Science, University of Dhaka’s ethical com-
mittee evaluated and approved the study protocol and informed consent form (approved
number: 111). Before study participation, all subjects signed a written consent and were
allowed to withdraw at any stage.

2.5.5. Safety Parameters

Throughout the trial, the safety and tolerability of PNT and VTB were assessed by look-
ing at adverse events, clinical laboratory results, vital sign assessments, skin evaluations,
and concurrent drug use.

2.5.6. Plasma Sample Preparation

A stock solution of PNT, VTB1, VTB6, and VTB12 (100 µg/mL) and diclofenac as an
internal standard (10 µg/mL) were prepared in methanol. The stock solutions were diluted
with methanol to prepare working solutions before use. Plasma PNT, VTB1, VTB6, and
VTB12 standards were prepared by spiking 10 µL of PNT, VTB1, VTB6, and VTB12 and
10 µL of diclofenac stock solution into 180 µL of blank plasma resulting in PNT, VTB1,
VTB6, and VTB12 concentrations ranging 1−100 µg/mL, respectively. For the plasma
concentration analysis of PNT and VTB from the blood samples, plasma stored at −80 ◦C
was thawed at room temperature and vortexed for 30 s before preparation. A 1.5 mL fresh
Eppendorf tube added 100 µL aliquot of plasma, followed by 10 µL of IS. The samples
were vortexed for 30 s and deproteinized by adding an excess of acetonitrile. The spiked
sample and acetonitrile ratio was 1:4, where acetonitrile was a deproteinizing agent. The
samples were centrifuged for 10 min at10,000× g at 4 ◦C. The supernatant was separated,
transferred to a fresh tube, and kept in a refrigerator until analysis.

2.5.7. Determination of Pharmacokinetic Parameters

The pharmacokinetic parameters were calculated employing noncompartmental meth-
ods using the PKSolver Version 2 (a freely available menu-driven add-in program for
Microsoft Excel) [28].

2.6. Statistical Analysis

All data are represented as mean ± standard deviation (SD). GraphPad, Prism 8.0,
was used to create the graphs (GraphPad Software, LaJolla, CA, USA). A one-way analysis
of variance with pairwise comparisons using Fisher’s least significant difference approach
was used for statistical comparisons. A p-value of less than 0.05 was considered significant
in all analyses.

3. Results and Discussion
3.1. Physicochemical Interaction of the Solid Samples
3.1.1. Solid-State Characterization

To clarify any transitions in the chemical structures of PNT and VTB, the samples’
solid-state physicochemical characterization of physical mixture (PM) was characterized
using XRPD and DSC studies (Figure 2). The results indicated that PNT exhibited a
crystalline state with several intense peaks in XRPD analysis. In contrast, when mixed
with VTBs, minor changes were observed in intensities indicating the absence of significant
interactions. In DSC analysis, no shift in the endothermic peak of PNT when mixed with
VTBs means negligible transitions on the melting endotherm of PNT and VTBs. Based
on XRPD and DSC analysis, the recrystallization/phase transformation of PNT and VTB
samples was minor and suggested that the particles were still stable.
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Figure 2. Solid state characterization of physically mixed samples using (A) XRPD and (B) DSC.
(I) PNT-VTB1, (II) PNT-VTB6, and (III) PNT-VTB12.

3.1.2. Drug-Drug Interaction Using FT-IR

FT-IR analysis was also performed to evaluate the molecular status of PNT, VTBs,
and PMs. The corresponding FT-IR spectra are presented in Figure 3. FT-IR range of
PNT (Figure 3) showed intense, well-defined characteristic infrared absorption bands at
3485.37, 1589.34, 1035.77, 1168.86, and 1035.77 cm−1 due to N-H, C-O, C-F, C=S, and Sp2
C-O aromatic ether stretch. Comparing the FT-IR spectrum of PNT with those of VTBs and
physical mixtures in Table 2 indicates that no new chemical bond was constructed between
these functional groups. From the results in distinction to FT-IR spectrum analyses, the
identical FT-IR spectra curves suggested that adding VTBs might not affect the chemical
structure of PNT. The above results indicated negligible in vitro drug–drug interactions
could be detected. Theoretically, this situation is advantageous since some drug–drug
interactions might even decrease the dissolution rate, and the thermodynamic driving force
for dissolution will be higher in the case of very weak or no drug–drug interactions [29,30].

Table 2. Some important peaks observed in FT-IR spectra of PNT, VTB1, VTB6, and VTB12 and their
composite with their possible assignment.

Peak
Assignment

Peak Position (cm−1)

PNT VTB1 VTB6 VTB12 PM of PNT
and VTB1

PM of PNT
and VTB6

PM of PNT
and VTB12

N-H 3485.37 3321.42 3323.35 3373.50 3373.50

O-H 3136.25 3776.62
3431.36 3136.25 3155.54 3772.76

N-H 3369.64 3041.74 3242.34 2943.37 3379.29
C-H 3196.05 2881.65 3091.89 2926.01 2945.30 2845.00 2941.44
C=O 1589.34 1543.05 1593.20 1591.27 1589.34 1591.27
C-N 1371.39 1359.82 1159.22 1381.03 1382.96 1377.17
C-O 1118.71 1276.88 1029.99 1118.51 1118.71
S=O 1035.77 1037.70 1031.92 1031.92 1033.85
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Figure 3. Baseline-corrected and normalized FT-IR spectrum. (a), PNT-VTB1; (b), PNT-VTB6; and (c),
PNT-VTB12.

3.2. Method Development

Various chromatographic methods have been developed to measure PNT, VTB1, VTB6,
and VTB12 in specific formulations, often in conjunction with other substances [31–35]. Many
of these techniques necessitate lengthy analysis timeframes, making them unsuitable for
regular analysis. In addition, there is currently no method for simultaneously determining
the subject of the study utilizing HPLC detection in biological fluids. Hence, there is a
pressing need to develop a more practical method that gives more convenient options with
acceptable detection and determination limits. We, therefore, developed and validated an
RP-HPLC method for their quantification in plasma. The conditions required to obtain
high sensitivity and selectivity were optimized as follows.

Optimization of Separation Conditions

Different reversed-phase columns and gradient mobile phases were investigated to
determine the ideal conditions for chromatographic separation of the target analytes from
a simultaneous technique. Table 3 shows the analytical parameters for the robustness of
the HPLC method in the simultaneous quantification of PNT and VTBs. PNT and VTBs are
hydrophilic; thus, the reversed-phase column C18 columns were used for reasonable run
time, symmetric peak shape, and good resolution. The excellent resolution of these drugs
was achieved on the Phenomenex C18 (4.6 × 150 mm, 5 µm) column, which was widely
used to separate PNT and VTB. At first, isocratic elution was applied for the separation
of the analytes. However, it could not separate the target analytes simultaneously; the
gradient elution was then selected for optimum separation and reasonable resolution. The
separation of PNT, VTB1, VTB6, and VTB12 was performed on a Phenomenex C18 column
(150 × 4.6 mm) with 5 µm particle size (Shimadzu, UV detector 20A, Kyoto, Japan), using
HPLC grade water A and acetonitrile as mobile phase B in linear gradient elution mode
(A:B). The flow rate was set at 0.5 mL/min, and the column temperature was maintained
at 35 ◦C. The analysis of the PNT, VTB1, VTB6, and VTB12 samples was determined
simultaneously by the internal standard method at a 280 nm wavelength. The internal
standard was studied at a 280 nm wavelength under the same conditions.
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Table 3. Analytical parameters for robustness of HPLC method.

Parameters Variables
PNT VTB1 VTB6 VTB12

RT % Recovery RT % Recovery RT % Recovery RT % Recovery

Flow rate (mL/min) 0.3 13.2 83.2 ± 5.34 5.1 113.25 ± 2.87 9.2 112.8 ± 1.98 6.5 68.05 ± 2.67
0.5 6.6 123.70 ± 8.87 3.5 83.45 ± 3.25 5.5 98.73 ± 2.30 4.3 107.44 ± 1.34

Mobile Phase
Acetonitrile 7.5 123.70 ± 8.87 3.5 83.45 ± 3.25 3.5 98.73 ± 2.30 4.3 107.44 ± 1.34
Methanol ND ND ND ND ND ND ND ND

Column (µm) 250 × 4.6 9.2 102.22 ± 3.43 3.2 77.45 ± 2.39 ND ND ND ND
150 × 4.6 6.8 123.70 ± 8.87 2.7 83.45 ± 3.25 5.5 98.73 ± 2.30 3.8 107.44 ± 1.34

Wavelength (nm)

270 ND ND ND ND ND ND 4.2 65.44 ± 4.90
280 7.6 123.70 ± 8.87 3.2 83.45 ± 3.25 5.5 124.36 ± 2.30 4.5 107.44 ± 1.34
305 ND ND ND ND ND ND ND ND
505 ND ND ND ND ND ND 4.4 125.67 ± 7.32

Column Tem. (◦C) 30 6.5 123.70 ± 8.87 3.2 98.37 ± 2.49 6.1 112.23 ± 5.65 4.2 107.44 ± 1.34
35 7.5 123.70 ± 8.87 3.4 83.45 ± 3.25 5.5 98.73 ± 2.30 4.1 107.44 ± 1.34

ND, not detected; RT, retention time; Data represent the mean ± S.D. of 3 experiments

3.3. Method Validation

The current method was validated based on the U.S. Guidance of Industry on Bio-
analytical Method Validation and the criteria outlined in the Experimental Procedures
section. A straightforward straight-line equation produced a linear relationship under ideal
experimental circumstances. The calibration curve was established using peak area versus
concentration. The analysis of blank plasma evaluated this method; blank plasma spiked
with the analytes, and plasma was collected at 0.5.1, 2, 3, 5, and 6 h after administering the
combination. Typical chromatograms of these samples are shown in Figure 4. The detection
of PNT, VTB1, VTB6, VTB12, and IS by an HPLC with a UV detector was highly selective,
with no interference from each other and the endogenous substances. The retention time
for PNT, VTB1, VTB6, and VTB12 were 6.8 ± 0.2, 2.7 ± 0.1, 5.5 ± 0.2, and 3.8 ± 0.1 min,
respectively, in a runtime of 20.00 min. All the calibration curves showed good linearity
within the designed ranges, with correlation coefficient (r) values greater than 0.96. LOD
and LOQ were determined by injecting lower concentrations of the standard solutions into
the HPLC column using the optimized chromatographic conditions (Table 4). The LOD
values were 0.5 ng/mL for PNT, 0.59 ng/mL for VTB1, 15.34 ng/mL for VTB6, and 0.04
ng/mL for VTB12, respectively. The LOQs values were 1.50, 1.78, 69.34, and 0.10 ng/mL
for PNT, VTB1, VTB6, and VTB12, respectively. All the analytes tested with an assay, peak
eight, theoretical plates, tailing factor, and capacity factors were within the range. The
assay value was found within the 90–115% range, which was satisfactory according to the
FDA Guidance for Industry Bioanalytical Method Validation [36]. The tailing factor and a
capacity factor of PNT, VTB1, VTB6 and VTB12 was 0.79, 1.47, 0.81, and 1.81 and 2.5, 0.71,
1.48 and 0.79, respectively. The obtained results further demonstrated the absence of any
interferences in the samples and the absence of any peaks in the blank plasma associated
with any of the investigated analytes.

Table 4. Analytical parameters for system suitability test of HPLC method.

Parameter PNT VTB1 VTB6 VTB12

Retention time (min) 6.8 ± 0.2 2.7 ± 0.1 5.5 ± 0.2 3.8 ± 0.1
Assay (%) 104.13 ± 2.30 102.99 ± 2.56 114.36 ± 1.94 90.01 ± 1.56

Peak height 3539 ± 175.68 7308 ± 956.72 51,846 ± 1749.48 3993.33 ± 633.33
No of theoretical plates 547.66 ± 72.23 1214 ± 61.02 4360 ± 1480.81 1058 ± 249.52

USP Tailing Factor 0.79 ± 0.06 1.47 ± 0.27 0.81 ± 0.3 1.81 ± 0.07
Capacity factor 2.5 ± 1.18 0.71 ± 0.07 1.48 ± 0.50 0.79 ± 0.21
LOD (ng/mL) 0.50 0.59 15.34 0.04
LOQ (ng/mL) 1.50 1.78 69.34 0.10

Data represent the mean ± S.D. of 3 experiments.
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Precision, Accuracy, Recovery and Robustness

This method’s precision, accuracy, recovery and absolute matrix effect were evaluated
(Table 5). The intra and inter-assay bias precision and accuracy were expressed as standard
deviation (SD) and relative error (RE), respectively, which did not exceed ±15%. The
calculated recoveries and absolute matrix effect values were in the ranges of 85.0–115%.
All the results indicated that the assay was reproducible and accurate for determining
PNT, VTB1, VTB6, and VTB12 in human plasma. In Table 3, 0.3 mL/min and 0.5 mL/min
flow rates were applied, where chromatographic conditions were the same with a wave-
length of 280 nm, column size 150 × 4.6 mm, and column temperature 35 ◦C. Acetonitrile
and methanol were individually used in gradient elution, but the most suitable sample
separation was observed with acetonitrile. Using methanol, sample separation was not
achieved due to the polar nature of methanol. Moreover, acetonitrile has a lower UV cut-off
than methanol, making it more suitable for applications requiring low UV detection wave-
lengths. In addition, acetonitrile/water mixers have lower viscosity than methanol/water
mixes, generating substantially lower back pressures across the column. This lower back
pressure is often seen as advantageous as it puts less strain on the system components
and column and provides scope to increase the flow rate and reduce run times. It can
be seen that when acetonitrile and methanol are mixed with water in the same ratio, an
acetonitrile mobile phase displays greater elution strength. In chromatographic conditions,
the oven temperature was monitored in between 30–35 ◦C indicating no effective change
in temperature.
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Table 5. Intra-day and inter-day accuracy, precision, and recovery matrix effects for PNT, VTB1,
VTB6, and VTB12 determination in plasma.

Sample Spiked Analyte
(µg/mL)

Intra Day Inter Day

Mean ± S.D CV% Accuracy
(RE%)

Recovery
(%) Mean ± S.D CV% Accuracy

(RE%)
Recovery

(%)

PNT
10 13.07 ± 0.98 7.53 −10.78 114.70 13.12 ± 1.34 10.22 −11.22 113.83
20 19.65 ± 0.72 3.62 3.67 98.45 17.93 ± 3.17 12.72 10.23 89.65
30 27.36 ± 1.44 5.26 8.77 91.20 28.34 ± 0.99 3.49 5.53 94.56

VTB1
10 10.89 ± 1.48 13.69 −8.92 108.90 9.53 ± 0.78 8.24 4.73 95.30
20 17.37 ± 0.78 4.50 −2.45 86.85 15.51 ± 3.45 12.21 12.43 77.55
30 25.73 ± 1.56 6.07 14.20 85.76 26.16 ± 1.96 7.38 11.28 87.20

VTB6
10 10.23 ± 1.34 2.33 −2.33 102.30 11.27 ± 0.23 2.34 3.45 112.70
20 19.23 ± 0.024 1.44 6.22 96.15 18.54 ± 0.34 6.34 2.34 92.70
30 29.34 ± 0.03 2.44 8.22 97.8 26.97 ± 4.76 13.54 7.23 89.90

VTB12
10 7.31 ± 0.50 6.84 14.80 73.15 8.28 ± 0.27 3.36 14.12 82.8
20 21.23 ± 3.56 6.09 −14.18 106.15 26.19 ± 7.10 12.12 −10.95 87.3
30 30.45 ± 3.58 11.77 −1.57 101.50 38.08 ± 3.16 9.38 −10.24 112.33

Data represent the mean ± S.D. of 3 experiments. The accuracy of an analytical method expresses the nearness
between the expected value and the value found. It is expressed by calculating the percent recovery (%) of
analyte recovered.

3.4. Pharmacokinetic and DDI Studies in Healthy Adults

DDIs are a crucial factor when evaluating drug combinations’ safety and efficacy.
The effect can often explain the Pharmacokinetic (PK) interactions that each drug has on
a particular enzyme, membrane drug transporter, and plasma transport protein. Many
such DDIs arise during metabolism, for which the cytochrome P450 (CYP450) enzyme
superfamily is primarily responsible [37]. Depending on the drug combination, drugs
that do not have CYP metabolic enzymes and drug transporters can also contribute to
DDIs [38]. Depending on the medicine and the animal model, a wide range of additive,
synergistic, and antagonistic pharmacological effects occasionally switched between in vitro
and in vivo models.

The current HPLC method was successfully applied to determine the pharmacoki-
netic parameters of PNT and VTBs in human plasma after single oral administration,
alone or combined. The mean plasma concentration-time curves are shown in Figure 5,
and the main pharmacokinetic parameters, calculated by PKSolver, are summarized in
Table 6. PNT absorbed quickly (Tmax, 2.67 ± 0.33 h), resulting in a peak plasma con-
centration (Cmax) of 0.95 ± 0.347 g/mL−1 and a large area under the curve (AUC0–6) of
3.88 ± 1.239 µg * mL−1h−1. PNT exhibited a long terminal half-life (t1/2) of 2.74 ± 0.827 h
and mean residence time of 4.95 ± 0.993 h that results from a large volume of distribution of
17.94 ± 6.516 L and low plasma clearance of 4.33 ± 0.731 Lh−1. On the other hand, VTB1
and VTB6 showed excellent pharmacokinetic profiles, which are unique among VTBs.
VTB1 is well absorbed with AUC0–6 of VTB1 was 8.44 ± 0.514 µg * mL−1h−1, and Cmax was
1.63 ± 0.154 µg * mL−1, which was attained in a brief time (Tmax, 1.67 ± 0.333 h). VTB1 has
a prolonged half-life (17.01 ± 6.17 h) with a moderate volume of distribution (59.06 ± 6.071 L)
and plasma clearance 2.78 ± 0.601 Lh−1. In addition, VTB6 is also well absorbed with AUC0–6
of 62.91 ± 3.046 µg * mL−1h−1, and Cmax was 20.66 ± 1.969 µg * mL−1, which was attained in
a brief time (Tmax, 2.0 ± 1.20 h). VTB6 has a prolonged t1/2 (2.38 ± 1.20 h) with a moderate
volume of distribution (7.58 ± 3.021 L) and plasma clearance 2.18 ± 0.914 Lh−1. In addition,
due to the administration of shallow doses, VTB12 could not be detected in human plasma.
Due to very low concentration of VTB12 in plasma after oral administration, the RP-HPLC
method might not be suitable for detecting VTB12. However, other more sensitive methods
such as LC-MS or the Chemiluminescence ImmunoAssay (CLIA) Test, might be ideal for
quantifying VTB12 in human plasma [39,40]. It can also be assumed that PNT may also
interfere with the absorption of VTB12 via suppressing gastric acid secretion.
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Figure 5. Pharmacokinetic study after single and combined dose administration in healthy adults. 
(a), PNT (20 mg-PNT/kg, p.o.); (b), VTB1 (100 mg-VTB1/kg, p.o.); and (c), VTB6 (200 mg-VTB6/kg, 
p.o.). Data represent the mean ± SE of 21–25 experiments. 
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Vd L 17.94 ± 6.516 16.78 ± 1.605 0.969 59.06 ± 6.071 63.60 ± 4.763 0.588 7.58 ± 3.021 9.71 ± 6.258 0.774 

Figure 5. Pharmacokinetic study after single and combined dose administration in healthy adults. (a),
PNT (20 mg-PNT/kg, p.o.); (b), VTB1 (100 mg-VTB1/kg, p.o.); and (c), VTB6 (200 mg-VTB6/kg, p.o.).
Data represent the mean ± SE of 21–25 experiments.

Recent studies showed that excessive use of acid-inhibiting medications, mainly PPIs,
was associated with a subsequent diagnosis of VTB deficiency [41]. The magnitude of the
association was more substantial in women and younger age groups with more potent acid
suppression and decreased after discontinuation of use. There was no significant trend
with increasing duration of use and no strong evidence for confounding by utilization
of medical care [42]. Consistent with the pharmacokinetics after combination with PNT
observed in previous studies in healthy subjects, PNT has little influence on drug absorption,
which was negligible [43]. Moreover, People with achlorhydria (lack of stomach acid) or
hypochlorhydria may not adequately metabolize B vitamins, placing them at risk for
numerous nutritional deficiencies, which may lead to the development of a wide variety of
health issues. Therefore, those who need both PPI and vitamin B complex therapy should
consider it effectively by monitoring each drug’s effectiveness. PNT is metabolized by the
cytochrome P450 (CYP) system and can alter the metabolism of other drugs metabolized
by CYP enzymes. Thus, it can delay the elimination of vitamins, especially water-soluble
vitamins [44]. However, the pharmacokinetic interaction between the two drugs is not well
understood. The current HPLC method showed that the co-administration of PNT and
VTB could negligibly influence the pharmacokinetic profiles of each drug. Additionally,
the absorption of each drug was not affected by the presence of another drug, which is
evident from the steadiness of Tmax and AUC. AUC0–6 of PNT decreases slightly when
administered with VTB; this means that the exposed amount of PNT was reduced, and the
influx amount to the liver, where it exerts its pharmacological activity, was increased.

All the calculated p values were higher than 0.05 (Table 6), indicating no significant
differences between combination and single administration groups of PNT, VTB1, VTB6,
and VTB12 contents. In summary, no significant drug–drug interaction was found between
PNT and VTB. Therefore, the co-prescription of PNT and VTB is feasible and would benefit
clinical applications and improve patients’ compliance.
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Table 6. Pharmacokinetic parameters of PNT, VTB1, and VTB6 in healthy volunteers after oral
administration of single dose and combined doses.

Parameters Unit
PNT (20 mg/kg, p.o.) VTB1 (100 mg/kg, p.o.) VTB6 (200 mg/kg, p.o.)

Alone Combination p Alone Combination p Alone Combination p

Cmax µg/mL 0.95 ± 0.347 0.98 ± 0.295 0.949 1.63 ± 0.154 1.58 ± 0.053 0.742 20.66 ± 1.969 24.09 ± 3.179 0.410
Tmax h 2.67 ± 0.333 2.67 ± 0.333 >0.99 1.67 ± 0.333 2.33 ± 0.333 0.230 2.00 ± 1.20 2.67 ± 0.333 0.116

AUC0−6 µg/mL * h 3.88 ± 1.239 3.56 ± 0.356 0.816 8.44 ± 0.514 7.90 ± 0.130 0.366 62.91 ± 3.046 56.52 ± 6.816 0.440

AUC0−inf µg/mL * h 5.03 ± 0.950 4.73 ± 0.344 0.782 39.72 ±
10.417 51.37 ± 18.469 0.612 95.03 ± 29.349 60.61 ± 6.732 0.317

MRT h 4.95 ± 0.993 4.71 ± 0.334 0.832 24.93 ± 8.890 34.83 ± 14.736 0.596 5.13 ± 1.882 3.36 ± 0.165 0.402
CL Lh−1 4.33 ± 0.731 4.27 ± 0.291 0.936 2.78 ± 0.601 2.44 ± 0.697 0.725 2.18 ± 0.914 3.16 ± 0.370 0.376
Vd L 17.94 ± 6.516 16.78 ± 1.605 0.969 59.06 ± 6.071 63.60 ± 4.763 0.588 7.58 ± 3.021 9.71 ± 6.258 0.774
t1/2 h 2.74 ± 0.827 2.72 ± 0.155 0.988 17.01 ± 6.177 23.85 ± 10.302 0.600 2.38 ± 1.200 1.18 ± 0.442 0.401
Ke h−1 0.32 ± 0.120 0.26 ± 0.014 0.609 0.05 ± 0.016 0.04 ± 0.014 0.610 0.45 ± 0.169 0.75 ± 0.229 0.354

Cmax: maximum concentration; Tmax: time to maximum concentration; AUC0–6: area under the curve of blood
concentration vs. time from 0 h to 6 h; AUC0–∞: area under the curve of blood concentration vs. time from 0 h
to infinity; MRT: mean residence time; Vd: volume of distribution; CL: clearance; t1/2: elimination half-life; and
Ke: elimination rate constant. Data represent the mean ± S.E. of 21–24 experiments. P, with respect to single
administration and co-administration.

3.5. Safety Parameters

Throughout the trial, adverse events were evaluated to determine the safety and
tolerability of PNT and VTB when administered alone or in combination. For instance,
there was no convincing evidence of adverse events after administering a single PNT
or VTB under steady-state conditions with other medications. Volunteers did not report
any adverse events during the study period. During the study, there were no clinically
significant changes in laboratory testing, vital signs, physical examination, or suicidality
assessment results.

4. Conclusions

For the first time, the simultaneous determination of PNT, VTB1, VTB6, and VTB12 in
human plasma was facilitated primarily by developing a fully validated HPLC method. The
suggested approach offers valuable resources for evaluating the pharmacokinetic profiles of
the target medications. The current process, the first type, validates DDI between PNT and
VTBs when co-administering concurrently. Additionally, this study might offer a standard
for dosage monitoring and bioequivalence in healthy adults. Even though the results of
this study may be beneficial for therapeutic drug monitoring and DDI, more thorough
investigations of the pharmacokinetics parameters of PNT and VTBs are still required to
fully comprehend the risks and benefits, if any, of their concomitant administration.
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