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Abstract: SARS-CoV-2 is a serious viral pathogen, and agents that inhibit its replication are in high
demand. In the present work, we prepared two novel tryptanthrin derivates bearing a thiosemicar-
bazone moiety as potential antiviral agents. Both compounds displayed potent chelation activity
against Fe(III/II) ion-associated COVID-19. The molecular docking results suggest that the com-
pounds can display significant affinity towards SARS-CoV-2 papain-like proteases and SARS-CoV-2
main proteases. In addition, administering T8H-TSC can repress viral replication in the used model
(Vero cells). Moreover, the therapeutic potential of the prepared compounds was predicted and
analysed in terms of Lipinski’s rules, drug-likeness and drug score.

Keywords: tryptanthrin; phaitanthrin A; thiosemicarbazone; SARS-CoV-2; antiviral; chelation;
molecular docking

1. Introduction

Transition metal ions have significant roles in living systems. For example, copper
and iron ions are necessary for cellular homeostasis, but higher levels of these metals can
be toxic [1–3]. Copper plays an important role in many biological functions, namely, ATP
generation, the production of various mediators and transcription control. On the other
hand, Cu(II) ions can displace zinc ions in metalloproteins, induce their denaturation and
inhibit their enzymatic activity [2]. In addition, free Cu(II) ions stimulate ROS formation
and cause subsequent oxidative damage to biomolecules (e.g., proteins, nucleic acids and
lipids). Copper-induced oxidative stress is deeply associated with many serious diseases,
such as oncological, cardiovascular and neurodegenerative disorders (Alzheimer’s, Menkes,
Wilson’s and prion diseases, and familial amyotrophic lateral sclerosis) [2,4,5].

Iron is important for various cellular processes, such as DNA replication and tran-
scription, protein synthesis, and transport and cellular respiration. It is also necessary for
of a number of enzymes (mainly oxidoreductases) [6–8]. Due to its exceptional physiolog-
ical reactivity, iron is a key component of numerous biochemical systems. On the other
hand, because of its reactivity, iron is extremely cytotoxic, and can play significant part in
many diseases [1,2,4]. For example, hyperferritinemia is important phenomenon in the
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pathogenesis of COVID-19, as increased serum ferritin can significantly correlate with a
high risk of cytokine storms [9]. Higher levels of free iron are associated with aggressive
mycotic rhino-orbital-cerebral mucormycosis infections (called black fungus) in patients
with COVID-19 [10]. Furthermore, it is probable that ferroptosis significantly contributes to
multiorgan damage in patients with COVID-19 [11].

The impact of copper in COVID-19’s progression is ambiguous. Although exposure
to copper inactivates the viral genome and exhibits spike protein dispersal, an increase
in the Cu/Zn ratio due to high serum Cu levels is correlated with an enhanced risk of
infections [12].

Tryptanthrin is a natural, weakly basic alkaloid compound found in several plant
species [13]. Tryptanthrins can bind metal ions, which are accompanied by absorption
changes and are studied as colorimetric receptors, especially for transition metal ions [14,15].
Liang et al. and Wang et al. prepared new derivatives of the tryptanthrin receptor for Cu(II)
ions [14,16]. Kawakmi et al. synthetized a derivative of tryptanthrin that can chelate a
number of metal ions [15].

In addition, tryptanthrins show inhibitory activity against certain iron-dependent
oxidoreductases, such as 5-lipoxygenase. Many biological studies have shown that tryptan-
thrin and its derivatives display numerous therapeutically significant activities (e.g., antibac-
terial, anti-inflammatory, antiparasitic), but they are also classified as potential anticancer
agents against breast, lung and central nervous system cancers [13–15,17–19].

In addition, some relevant studies strongly suggest that tryptanthrins could be potent
antiviral agents. For example, Tsai et al. reported that tryptanthrin represses HCoV-NL63
replication (IC50 = 0.06 M) by the inhibition of viral RNA genome synthesis and papain-like
protease 2 [20]. In the case of SARS-CoV-2, docking studies suggest that trypthanthrin
could represent a promising structural motif for inhibiting some proteases, such as Mpro
and PLpro (SARS-CoV-2 main protease and the papain-like protease) [21,22].

Constructing conjugates of two or more pharmacophores is among the most promising
methods of preparing original drugs with a combined mechanism of action. To increase
the antiviral effects of tryptanthrin derivatives, we decided to add a thiosemicarbazone
moiety to the tryptanthrin molecule. Thiosemicarbazones are known for their broad
biological effects, including anticancer, antiviral and antimicrobial effects [23–26]. In
addition, thiosemicarbazones are great metal chelators [27].

Thus, we designed and prepared tryptanthrin- and phaitanthrin A-based thiosemicar-
bazones, tested their metal-binding properties and investigated their potential interactions
with Mpro and PLpro using in silico docking studies and also the in vitro inhibition of
virus replication in Vero cells.

2. Materials and Methods

Used chemicals and solvents were obtained commercially and used without further
purification. All NMR spectra were recorded on a Bruker Avance III 500 MHz (500 MHz
for 1H and 125 MHz for 13C) (Bruker, Germany) in DMSO-d6 (room temperature). The
chemical shifts (δ) and coupling constants (J) are presented in ppm and in Hz, respectively.
The program MestReNova ver. 14 was used to process the NMR spectra. Electrospray
ionisation (ESI) with a triple quadrupole mass spectrometer (TSQ Quantum Access) and an
LTQ Orbitrap spectrometer (HRMS) was used for recording of mass spectra.

2.1. Synthesis

Synthesis of tryptanthrin derivatives is shown in Scheme 1.
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2.1.1. Synthesis of Tryptanthrin (T8H)

Isatoic anhydride (2447 mg; 15 mmol) and isatin (2207 mg; 15 mmol) were dissolved
in DMF (40 mL, anhydrous). DIPEA (8 mL; 46 mmol) was added, and the reaction mixture
was stirred (r.t., 24 h). Then, the yellow suspension was diluted with a mixture of organic
solvents (diethyl ether: hexane, 1:1 v/v, 300 mL) and filtered. The obtained yellow solid
was washed (diethyl ether, 2 × 100 mL) and vacuum-dried. Tryptanthrin was obtained in
the form of yellow solid (3000 mg, 81% yield). 1H and 13C data were in accordance with
the published data.

2.1.2. Synthesis of Phaitanthrin A (PAA)

Diethylamine (0.3 mL; 3 mmol) was added to a suspension of tryptanthrin (248 mg;
1 mmol) in acetone (5 mL), and the reaction mixture was stirred (r.t., 24 h). Subsequently, the
reaction mixture was evaporated to dryness (under reduced pressure), and the crude prod-
uct was purified by column chromatography (Silicagel; eluent dichloromethane: methanol,
9:1 v/v). Phatanthrin A was obtained in the form of off-white solid (228 mg, 75% yield). 1H
and 13C data were in accordance with the published data.

2.1.3. Synthesis of T8H-TSC

Tryptanthrin (87 mg; 0.35 mmol) and thiosemicarbazide (91 mg; 1 mmol) in ethanol
(96%; 15 mL) and acetic acid (0.15 mL) were stirred at 75 ◦C overnight. Then, the reaction
mixture was poured into ice-cold water (100 mL). The solid product was filtered, washed
with water (2 × 25 mL) and vacuum-dried. T8H-TSC was obtained as a yellow solid in a
yield of 106 mg (94%). 1H NMR (DMSO-d6): 7.46 (t, J = 7.6 Hz, 1H); 7.60 (t, J = 7.8 Hz, 1H);
7.69 (t, J = 7.6 Hz, 1H); 7.78 (d, J = 8.1 Hz, 1H); 7.96 (d, J = 7.8 Hz, 1H); 8.04 (d, J = 7.6 Hz,
1H); 8.32 (d, J = 7.9 Hz, 1H); 8.39 (d, J = 8.1 Hz, 1H); 8.85 (s, 1H); 9.15 (s, 1H); 13.00 (s, 1H).
13C NMR (DMSO-d6): 116.34; 121.15; 121.68; 123.14; 126.47; 126.82; 127.75; 128.66; 130.85;
131.06; 135.10; 139.39; 145.77; 157.78; 178.76. HRMS (ESI−): when calcd. for C16H10N5OS
[M-H]− 320.06061, a value of 320.06113 was found.; when calcd. for C32H20N10NaO2S2
[2M-2H+Na]− 663,11098, a value of 663.11169 was found. When (ESI+) was calcd. for
C16H11N5NaOS [M+Na]+ 344.05820, a value of 344.05856 was found; and when calcd for
C32H22N10NaO2S2 [2M+Na]+ 665.12663, a value of 665.12720 was found.

2.1.4. Synthesis of PAA-TSC

Phaitanthrin A (123 mg; 0.4 mmol) and thiosemicarbazide (146 mg; 1.6 mmol) in
methanol (10 mL) and acetic acid (0.1 mL) were stirred at 65 ◦C overnight. Then, the
reaction mixture was poured into ice-cold water (40 mL). The solid product was filtered,
washed with water (2 × 25 mL) and vacuum-dried. PAA-TSC was obtained as an off-white
solid in a yield of 120 mg (79%). 1H NMR (DMSO-d6) (2 diastereoisomers): 1.80 (1.87)



Separations 2023, 10, 73 4 of 30

(s, 3H); 3.35 (m, 2H); 5.92 (s, 1H); 6.53 (s, 1H); 7.39 (t, J = 7.7 Hz, 1H); 7.51 (t, J = 7.7 Hz,
1H); 7.63 (m, 2H); 7.80 (d, J = 8.2 Hz, 1H); 7.89 (m, 2H); 8.29 (8.46) (d, J = 8.0 Hz, 1H); 8.41
(d, J = 8.0 Hz, 1H); 9.79 (10.45) (s, 1H). 13C NMR (DMSO-d6) (2 diastereoisomers): 17.88;
45.98; 75.83 (76.44); 115.97 (116.26); 121.17 (121.49); 124.34; 126.51 (126.36); 126.69; 127.52
(127.77); 129.67 (130.24); 134.11 (132.89); 134.92 (134.84); 138.44 (138.30); 146.95 (146.77);
150.52 (148.67); 158.74 (158.90); 160.71 (160.09); 178.22 (178.44). HRMS (ESI+): when calcd.
for C19H17N5NaO2S [M+Na]+ 402.10007, a value of 402.10049 was found; and when calcd.
for C38H34N10NaO4S2 [2M+Na]+ 781.21036, a value of 781.21051 was found.

2.2. Derivates of Tryptanthrin Derivates and Metal Guests

The synthetic derivates of tryptanthrin (PAA-TSC, T8H-TSC) and studied guests in the
form of nitrates (Al(III), Co(II), Cu(II), Fe(III), Pb(II), Zn(II), Mg(II), Ca(II), K(I) and Na(I) ion)
and perchlorate (Fe(II) ion) were obtained from Sigma-Aldrich (Czech Republic, Prague).

2.3. Spectroscopic Studies on the Interactions of Tryptanthrin Derivates with Metal Guests

For the UV–Vis “on-off” study, 35 mg of each synthetic compound was dissolved in
1 mL DMSO. The calculated volume of the solution of tryptanthrin derivates was placed
into a 10 mL flask, and water was added to a final volume. The obtained concentration in
the stock solution was 100 µM.

Defined amounts of metal salts were dissolved in measured tryptanthrin solution in a
10 mL volumetric flask for a final concentration of the metal cation of 5000 µM.

UV–Vis spectra of the tryptanthrin derivates were measured by SpectraMax ABS Plus
in the presence and absence of the used metal guests. Data were collected in the range of
200–800 nm with 1 nm data spacing in 96 UV–Vis well plates. Before the first measurement,
prepared solutions were shaken for 180 s.

2.4. Determining the Conditional Binding Constants and the Complex Stoichiometry of
Tryptanthrin Derivates with Cu(II), Fe(II) and Fe(III) Ions

The interactions of tryptanthrin derivates with Cu(II), Fe(II) and Fe(III) ions were
studied using UV–Vis spectroscopy. The concentration of PAA-TSC and T8H-TSC was
100 µM. The concentration of Cu(II), Fe(II) and Fe(III) ions was 5000 µM. It is known that
binding constants are dependent on the solvent used. All titrations were performed in the
same solvent system, and the concentration of tryptanthrin solutions was maintained at
100 µM. Conditional constants (K values) were calculated from the absorbance changes
(∆A) of tryptanthrin derivates and their complexes with Cu(II), Fe(II) and Fe(III) ions at
their spectral maximum by regression analysis (Letagrop Spefo 2005 software). The details
of computational model have been described and discussed by Silen et al. [28], and the
same method was used to analyse the binding affinity of the organic receptors for metal
ions in aqueous media [29–36]. Solutions were mixed in the cuvette during the whole
titration and after each addition of metal guests.

2.5. Studying PAA-TSC, T8H-TSC and Their Copper Complex through Raman and
Infrared Spectroscopy

The sample was prepared in the solid state; 10 mg of receptor was dissolved in 1 mL of
dichloromethane, and 5 mg of copper nitrate was dissolved in 1 mL of methanol. Prepared
solutions were mixed and covered with ether.

For the measuring of Raman spectra, a Bruker FT Raman (FRA 106/S, Equinox 55/S)
spectrometer equipped with a Nd:YAG laser was used with an excitation wavelength in
the NIR range (λ = 1064 nm, Coherent) and a Ge detector cooled with liquid nitrogen.
Glass vials were used for measurements. The measurements were performed by collecting
1024 scans with a resolution of 4 cm−1 for each sample. The laser power was set to 250 mW.

An AVATAR 320 (Nicolet) infrared spectrometer with Fourier transformation (FT-IR)
was used to measure the sample spectra in the spectral range of 4000–400 cm−1. For
measurements, the attenuated total reflection (ATR) technique with a ZnSe crystal was
used. The measurements were performed by collecting 640 scans with a resolution of
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4 cm−1 for each sample. Before each measurement, a new background was measured,
and the ATR crystal was cleaned between each measurement. The obtained spectra were
corrected by subtracting the spectrum of water as a background and the spectrum of water
vapour. Prior to measurement, all samples were crushed in an agate dish to suppress the
Christiansen effect.

2.6. Study of the Interaction of PAA-TSC and T8H-TSC Receptors with Cu(II) Ions by NMR

NMR spectra were recorded using a Bruker Avance III 500 Hz spectrometer for 1H
NMR spectra at 25 ◦C in DMSO–d6. Copper(II) perchlorate hexahydrate was used as a
source of Cu(II) ions.

2.7. In Silico Docking of Tryptanthrins to CoV-2 Proteases

The 3D structural model of the CoV-2 proteases (Mpro and PLpro) was obtained from
the protein data bank database. PDB ID was 6LU7 and 3E9S Mpro and PLpro, respectively.
In the structures obtained from the PubChem database, all bound water molecules and
ligands were removed and saved using UCSF Chimera software as pdb files. The three-
dimensional structures of the tested compounds (tryptanthrinss) were obtained with 3D
Chemdraw software.

Molecular docking was performed by AutoDockTools (ADT). We analysed the interac-
tion of Mpro and PLpro with the tested compounds using ADT, UCSF Chimera and BIOVIA
Discovery Studio Visualiser to identify and describe the protein–ligand binding site. All
docking poses from this cavity (binding site) were visually evaluated with BIOVIA Dis-
covery Studio Visualiser and UCSF Chimera, and 2D and 3D models of the protein–ligand
interaction were generated and are presented.

2.8. Antiviral Effects of T8H-TSC and PAA-TSC

Vero cells (1.5 × 105/well) were infected with an isolate of SARS-CoV-2 provided by
the Centre of Biological Protection in Těchonín, Czech Republic. The infectious inoculum
contained 2.38E+07 copies of the E-gene of SARS-CoV-2. After 1 h of inoculation, the cells
were supplemented with 1 mL of Dulbecco’s modified Eagle’s medium containing 2% foetal
bovine serum (2% FBS-DMEM) and increasing concentrations (0–10 µM) of the compounds
T8H-TSC and PAA-TSC. After 24 and 48 h of incubation, replication of SARS-CoV-2 and/or
virus particles was characterised in an aliquot of culture supernatant by one-step RT–qPCR.

Viral RNA was isolated from 200 µL of culture supernatant using magnetic beads.
SARS-CoV-2 RNA was quantified by amplification of E-gen SARS-CoV-2 (Generi Biotech)
with a SensiFast Probe One-Step Kit (BioLine) and Light Cycler 480 II (Roche) using absolute
quantification and calibration curves. The primers and probe used together with their
sequences are summarised in Table 1. Statistical analysis of the obtained data for finding
significant differences (* p < 0.05) was performed using a one-tailed unpaired Student’s
t-test with Welch correction.

Table 1. Primers and probe used.

Name Sequence 5′-3′ Concentration in Reaction

E_Sarbeco_F1 ACAGGTACGTTAATAGTTAATAGCGT 400 nM
E_Sarbeco_R2 ATATTGCAGCAGTACGCACACA 400 nM
E_Sarbeco_P1 FAM-ACACTAGCCATCCTTACTGCGCTTCG-BHQ1 200 nM

3. Results and Discussion
3.1. Synthesis

Firstly, tryptanthrin (T8H) was prepared by the reaction of equimolar amounts of
isatoic anhydride and isatin [13,37] in the presence of DIPEA as a base in DMF at laboratory
temperature with an 81% yield. Phaitanthrin A (PAA) was prepared by a catalytic aldol
reaction of tryptanthrin with acetone in the presence of diethylamine [37,38] with a 75%
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yield. The thiosemicarbazones were prepared by reacting thiosemicarbazide with tryptan-
thrin in ethanol and with phaitanthrin A in methanol, respectively, with catalytic amounts
of acetic acid in both cases. T8H-TSC was formed with a 94% yield, and PAA-TSC was
formed with a 79% yield (Scheme 2). The tryptanthrin derivatives were fully characterised
by 1H and 13C NMR and HRMS analyses.

Separations 2023, 10, x FOR PEER REVIEW 6 of 30 
 

 

foetal bovine serum (2% FBS-DMEM) and increasing concentrations (0–10 μM) of the com-
pounds T8H-TSC and PAA-TSC. After 24 and 48 h of incubation, replication of SARS-
CoV-2 and/or virus particles was characterised in an aliquot of culture supernatant by 
one-step RT‒qPCR. 

Viral RNA was isolated from 200 μL of culture supernatant using magnetic beads. 
SARS-CoV-2 RNA was quantified by amplification of E-gen SARS-CoV-2 (Generi Biotech) 
with a SensiFast Probe One-Step Kit (BioLine) and Light Cycler 480 II (Roche) using abso-
lute quantification and calibration curves. The primers and probe used together with their 
sequences are summarised in Table 1. Statistical analysis of the obtained data for finding 
significant differences (* p < 0.05) was performed using a one-tailed unpaired Student’s t-
test with Welch correction. 

Table 1. Primers and probe used. 

Name Sequence 5′-3′ Concentration in Reaction 
E_Sarbeco_F1 ACAGGTACGTTAATAGTTAATAGCGT 400 nM 
E_Sarbeco_R2 ATATTGCAGCAGTACGCACACA 400 nM 
E_Sarbeco_P1 FAM-ACACTAGCCATCCTTACTGCGCTTCG-BHQ1 200 nM 

 

3. Results and Discussion 
3.1. Synthesis 

Firstly, tryptanthrin (T8H) was prepared by the reaction of equimolar amounts of 
isatoic anhydride and isatin [13,37] in the presence of DIPEA as a base in DMF at labora-
tory temperature with an 81% yield. Phaitanthrin A (PAA) was prepared by a catalytic 
aldol reaction of tryptanthrin with acetone in the presence of diethylamine [37,38] with a 
75% yield. The thiosemicarbazones were prepared by reacting thiosemicarbazide with 
tryptanthrin in ethanol and with phaitanthrin A in methanol, respectively, with catalytic 
amounts of acetic acid in both cases. T8H-TSC was formed with a 94% yield, and PAA-
TSC was formed with a 79% yield (Scheme 2). The tryptanthrin derivatives were fully 
characterised by 1H and 13C NMR and HRMS analyses. 

 
Scheme 2. Synthesis of compounds.

Phaitanthrin A was formed as a racemate. PAA-TSC was formed as a mixture of
diastereoisomers (due to the chiral centre at the indoline core and geometrical stereoiso-
merism about the C=N double bond). The ratio of the diastereoisomers calculated from
the 1H NMR signal for methyl (1.80/1.87) as well as from the signal for NH (9.79/10.45)
was 7:1.

3.2. Spectroscopic Study

First, the interaction of nitrogen receptors and metal guests (Al(III), Co(II), Cu(II),
Fe(III), Pb(II), Zn(II), Mg(II), Ca(II), K(I), Na(I) and Fe(II) ions) was analysed using UV–Vis
spectroscopy. The receptor concentration was 100 µM, and the metal ion concentration
was 5000 µM. The PAA-TSC receptor produced observable bands in the 264 nm, 315 nm
and 329 nm regions (Figure 1). The addition of Cu(II) caused a significant change in the
absorption spectrum of the PAA-TSC solution and a decrease in its absorption intensity,
while the original bands disappeared. Furthermore, a decrease in absorbance intensity
was observed after Fe(III) was added to the receptor solution. In the 264 nm region, the
absorbance intensity decreased by approximately 30%, and in the 315 nm and 329 nm
regions, a decrease in intensity of approximately 10% was observed. A small decrease
in absorbance intensity (approximately 8%) in the region of 264 nm was observed in the
presence of Fe(II). The other tested metal ions did not induce significant spectral changes.

In the case of the T8H-TSC receptor, bands in regions of 252 nm, 405 nm and 425 nm
are observable in the original spectrum (Figure 2). As with the PAA-TSC receptor, spectral
changes can be observed after Cu(II), Fe(III) and Fe(II) are added, and no significant spectral
changes are observed for the remaining metal ions. After Cu(II) was added to the T8H-
TSC receptor, there was again a significant change in the spectrum and a decrease in the
absorbance intensity. After Fe(III) was added, there was a slight decrease in the absorbance
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intensity (approximately 15%). After Fe(II) was added, there was a slight increase in the
absorbance intensity (approximately 2%).
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Figure 2. UV–Vis spectra of the T8H-TSC receptor (100 µM) without and with metal ions (5000 µM)
in water (water/DMSO, 99:1, v/v), including a bar graph of the absorption maxima (252 nm, 405 nm,
425 nm).

A titration experiment was used to determine the interaction between Cu(II) and the
PAA-TSC receptor, and we specified the linear range and limit of detection. As shown
in Figure 3, in the region of 265 mn, the absorbance intensity trend decreases after the
addition of Cu(II). The addition of 0.52 equivalents of Cu(II) decreased the absorbance
intensity by approximately 25%, and after the addition of 6.25 equivalents, the decrease
was approximately 90%. The presence of Cu(II) also increased the absorbance intensity in
the 315 and 329 nm regions. In those regions, after the addition of 0.52 equivalents of Cu(II),
the absorbance intensity increased by approximately 26% in the case of 315 nm and 23% in
the case of 329 nm. The addition of 6.25 equivalents decreased the absorbance intensity by
approximately 83% at 315 nm and 84% at 329 nm.

The Ka values of the receptor complexes (PAA-TSC, T8H-TSC) with transition metal
ions (Cu(II), Fe(III) and Fe(II)) were calculated in Letagrop Spefo 2005, and the Ka values
and stoichiometry are shown in Table 2. In the case of the PAA-TSC receptor, the Cu(II) ion
shows the highest affinity, and in the case of the T8H-TSC receptor, the Fe(III) ion exhibits
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the highest affinity. Therefore, this suggests that the receptors we synthesized can be used
as chelators for copper and iron ions.
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Figure 3. Titration and titration curves of the PAA-TSC receptor with Cu(II) ions in water (wa-
ter/DMSO, 99:1, v/v). Titration curves were measured at the absorption maxima (265 nm, 315 nm,
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Table 2. Ka values and stoichiometry of receptors (PAA-TSC, T8H-TSC) in complex with metals
(Cu(II), Fe(III), Fe(II)) in water (water/DMSO, 99:1, v/v).

Receptor Ion Log (K1) Log (K2) Stoichiometry
(Metal Ion:Receptor)

PAA-TSC

Cu(II) 8.9 15.0 1:1
2:1

Fe(II) 1.5 13.7 1:1
1:2

Fe(III) 6.0 10.2 1:1
1:2

T8H-TSC

Cu(II) 4.6 8.1 1:1
1:2

Fe(II) 4.9 7.1 1:1
2:1

Fe(III) 12.2 17.4 1:1
2:1

Chemical sensors are often used as receptors for metal ions. The detection limits and
linear range (Table S1) suggest that the T8H-TSC receptor (6.6 µM and 0–4 µM) could be
used for the determination of copper ions in drinking water; the maximum tolerable limit
is 30 µM (2 mg/L), and the normal range for the copper concentration is 10 to 25 µmol/L
in serum [39]. The strong interaction of both compounds with Cu(II) is associated with a
colour change (Figure S6); nevertheless, its spectral properties limit its applicability.

FTIR, FT Raman and NMR Analysis of Cu Complex

From the comparison of the FTIR and FT Raman spectra of the pure substances (PAA-
TSC, T8H-TSC; Figures 4 and 5 with their Cu(II) complexes (detail of FTIR and Raman
spectra are shown in Figures S7–S10)), there was a significant change in the spectra and
therefore, it is evident that complexes of the PAA-TSC and T8H-TSC receptors with the
Cu(II) ion were formed. The vibrational spectroscopic changes observed during complex-
ation indicate that the thiourea residue is primarily involved in metal binding, while the
rest of the receptor molecule can significantly stabilize the complex, primarily due to the
participation of the nitrogen atom in the cyclic structure. In addition, thiourea residue can
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bind copper(II) cations both through sulphur and through nitrogen. The bonding of the
metal through sulphur leads to a decrease in the order of the carbon–sulphur bond with
the carbon–nitrogen bond approaching a double bond. As a result, the ν(CS) frequency
should decrease and the ν(CN) frequency should increase. Moreover, if the place of the
metal bond is nitrogen, then a decrease in the frequency of the N-H vibrations is observed,
while in the case of coordination through sulphur, such changes are not observed [40].

The IR bands of pure substances PAA-TSC and T8H-TSC at 3138–3157, 3246–3309 and
3417–3423 cm−1, attributed to the stretching of the NH2 and N-H groups of the thiourea
residue, were shifted towards lower frequencies for the corresponding Cu(II) complexes,
which indicates the participation of nitrogen atoms in the metal binding. However, the band
of PAA-TSC at 3367 cm−1 assigned to the OH stretching showed only a slight shift for the
Cu(II) complex; therefore, the hydroxyl group does not participate in the binding. For the
complexes, all these bands were significantly broadened, especially for T8H-TSC, probably
due to the presence of hydrogen bonds [40]. Similarly, the IR band of the pure substances
at 1510–1514 cm−1 (antisymmetric CN stretching) and 1321–1325 cm−1 (NH bending) was
shifted to 1485–1487 and 1279–1313 cm−1, respectively, upon the Cu(II) complexation.
These spectral changes also confirmed metal bonding via nitrogen atoms. The intense sharp
band of pure substances at 773 cm−1 was assigned to the CS stretching vibration of the
thiourea residue [41]. This band showed no shift for the Cu(II) complex of T8H-TSC, and
it is present as a shoulder near 770 cm−1 for the Cu(II) complex of PAA-TSC because it
overlaps the more intense band at 758 cm−1 assigned to the τ(NH2) vibration [41]. These
features indicate that in both complexes sulphur does not participation in the metal binding.
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Figure 5. FTIR (left) and Raman spectra (right) of the T8H-TSC receptor (black) and its complex with
Cu(II) ions (red).

The FT Raman spectra of the pure substances are dominated by intense peaks in
the regions of 1550–1650 and 1270–1370 cm−1 corresponding mainly to the C=N/C=C
stretching and ring vibrations of the tryptanthrin cyclic structure. In the first region the
most intense bands were found at 1638 cm−1 for PAA-TSC and at 1556 cm−1 for T8H-TSC.
These bands were assigned to the C=N stretching in the open side chains. A significant shift
of the latter band towards lower wavenumbers is explained by the strong conjugation with
the cyclic system. The complexation with Cu(II) leads to significant changes in this spectral
region that can be explained by the participation of cyclic and open-chain nitrogen atoms in
the metal binding. In the second region, more significant changes, indicating the formation
of Cu(II) complexes, were found in the case of PAA-TSA. Thus, effective chelation can be
achieved with this substance due to the greater flexibility of the longer open chain.

The comparison of the NMR spectra of the pure substances PAA-TSC and T8H-TSC
with their in situ formed Cu(II) complexes showed a significant change in the spectra;
therefore, it is evident that a complex of the PAA-TSC and T8H-TSC receptors with the
Cu(II) guests (one equivalent) was formed. In the spectra of PAA-TSC, the peaks with
chemical shifts of 5.92 ppm and 6.53 ppm disappeared after the Cu(II) complexation.
Furthermore, the peaks with chemical shifts of 9.79 and 10.45 ppm also changed (Figure 6).
In the spectra of T8H-TSC, the peaks with chemical shifts of 8.85 and 9.15 ppm disappeared
after the Cu(II) complexation, and the peak with a chemical shift of 13.00 ppm moved
(Figure 7).
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3.3. In Silico Docking of PLpro and Mpro with Tested Tryptanthrins

For the docking studies, model complexes of PLpro and Mpro with the tested com-
pounds were constructed. The 3D structures of the protease were obtained from the protein
data bank database with PDB ID 3E9S and PDB ID 6LU7 for PLpro and Mpro, respectively.
The 3D structure of the tryptanthrin derivatives was obtained with the 3D Chemdraw
software. In the structures obtained from the PubChem database, all the bound water
molecules and ligands were extracted by the UCSF Chimera software and saved as pdb files.
During the docking process, the proteins were considered a receptor and the tryptanthrin
derivatives were considered a ligand, and we used a grid box for the receptor. In this
study, the three-dimensional structure of the protease was considered a receptor. The tested
compounds were considered ligands.

For the in silico analysis, AutoDockTools (ADT) was used [42] for the preparation of
the receptors and ligands. Nonessential water molecules, including heteroatoms, were
removed using UCSF Chimera before the continuation of the docking test. Furthermore,
ADT was used in the preparation of the tryptanthrin derivatives for the docking analysis
(extraction of the solvent molecules and addition of polar hydrogen and partial charges).
Finally, the molecular docking was done using ADT. The interactions of SARS- PLpro and
Mpro with the tested compounds were analysed using ADT, UCSF Chimera and BIOVIA
Discovery Studio Visualiser to identify and describe the protein–ligand binding site.

We conducted a detailed analysis of ligand–protein complexes (e.g., the value of the
binding energy, the role of hydrogen bonds and π–π interactions, and amino acid residues
in the process of binding). The 3D structures were converted to the pdbqt format using ADT.
The size of the grid box was 126 _ 126 _ 126, and the centre that contained the maximum of
the protein surface for the blind docking was selected.

After the AutoGrid and AutoDock analyses, ten possible conformations were obtained
and the best conformation was selected based on the binding energy and number of H-
bonds. The better binding sites (conformations) obtained from the docking process were
found with ADT by the function “analysis-conformation-ranked by energy”. Subsequently,
the pdbqt files were obtained and converted from pdbqt to pdb using the OpenBabelGUI
software. The obtained complexes were analysed in UCSF Chimera and BIOVIA Discovery
Studio Visualiser [43]. The binding affinity, binding energy, H-bonds and existence of π-π
interactions of the tested compounds to SARS-PLpro and Mpro were analysed using ADT.
A more detailed analysis of the binding pockets (e.g., role of the amino acid residues) was
performed by using the UCSF Chimera software [44]. Furthermore, the UCSF Chimera
software was used for rendering pictures labelling the amino acid residues for a better
visualisation of the binding site. Complete information and images are given in separate
documents below.

3.3.1. Molecular Docking of PLpro with PAA, Tryptanthrin (T8H) and Their Derivates
(PAA-TSC and T8H-TSC)

For the docking calculation, the structural model of the SARS-PLpro (PDB ID 3E9S)
catalytic domain was used. The compounds PAA, T8H, PAA-TSC and T8H-TSC were
docked to the structural model of PLpro using the AutoDock Tools software. All docking
poses from the protein binding site were visually analysed with UCSF Chimera and BIOVIA
Discovery Studio Visualiser, and 2D interaction diagrams with 3D visualisations of the
protein–ligand complex were constructed (Figures 8–11). The computed values of the
interaction energy and association constant for PLpro and the tested compounds PAA, T8H,
PAA-TSC and T8H-TSC are shown in Table 3.

Based on the data obtained during molecular docking, we can conclude that the
tryptanthrin derivative (T8H-TSC) exhibits a higher affinity for PLpro than that of tryptan-
thrin and the rest of our compounds (PAA and PAA-TSC).

The lower panel of Figure 8 was generated with BIOVIA Discovery Studio Visualiser
and shows a 2D diagram of the interactions between Plpro and PAA-TSC.
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and THR277. 

If we look in more detail at the lower panel, we can make conclusions about the types 
of interactions and where they interact with PAA-TSC. Amino acids, such as SER278, 
LYS279, THR259 and GLN122, participate in the formation of conventional H–bonds. The 
hydroxyl (-OH) group interacts with the SER278 and THR259 aa via conventional H–
bonds. The amino (-NH2) group also interacts with SER278 and GLN122 aa via conven-
tional H–bonds. LYS279 interacts with sulphur via conventional H–bonds and with ben-
zene via π–alkyl bonds. Oxygen and nitrogen from the quinazolinone group interact with 
GLY256 and THR259 via carbon H–bonds. The quinazolinone group also interacts with 
LYS306 via π–alkyl bonds. The quinazolinone part of PAA-TSC interacts with LYS306 and 
THR257 via π–alkyl and amide–π stacked bonds. Other aa (HIS255, GLU280, THR277, 
LEU101, PHE258 and TYR305) can participate in van der Waals (vdW) interactions. 

Figure 8. Complex of PLpro with PAA-TSC. The upper panel shows a 3D model of PLpro with a
binding site (cavity) on its surface for the PAA-TSC compound. The lower panel shows the interaction
of PAA-TSC with the amino acid residues of PLpro. Figure was created with UCSF Chimera (upper
panel) and BIOVIA Discovery Studio Visualiser (lower panel) and shows the best docking pose of
compound PAA-TSC on the PLpro protease. We can also see where the PAA-TSC is placed on the
Plpro surface and a general view of the complex of Plpro (green–cyan–brown) with PAA-TSC (pink).
The secondary structure of the protease behind the molecular surface (created with 90% transparency
for better presentation of the molecule) is also shown.
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Based on these images, we see that the following amino acids form the binding 
pocket: TYR310, GLU214, TYR213, TYR305, LYS217, GLU307, THR257, PHE258, LYS306 
and THR259. 

If we look in more detail at the lower panel, we can make conclusions about the types 
of interactions and where they interact with PAA. Amino acid LYS217 participates in the 
formation of conventional H–bonds with keto groups. The indoline group of the PAA 
compound interacts with LYS306 via the π–alkyl bond, and the quinazolinone group in-
teracts with GLU307 via the π–anion interaction. 

Other aa (TYR310, TYR213, GLU214, TYR305, THR257, PHE258 and THR259) partic-
ipate in forming vdW interactions. 

Figure 9. Complex of PLpro with PAA. The upper panel shows a 3D model of PLpro with a binding
site (cavity) on its surface for the PAA compound. The lower panel shows the binding mode of PAA
with the amino acid residues of PLpro. Figure was created with UCSF Chimera (upper panel) and
BIOVIA Discovery Studio Visualiser (lower panel) and shows the best docking pose of compound
PAA on PLpro. We should also see where PAA is placed on the PLpro surface and a general view of
the complex of PLpro (green–cyan–brown) with PAA (pink). The secondary structure of the protease
behind the molecular surface (created with 90% transparency for better presentation of the molecule)
is also shown.

Based on these images, we see that the following amino acids form the binding
pocket: LYS306, TYR305, THR259, GLN122, THR257, PHE258, LEU101, LYS279, SER278
and THR277.

If we look in more detail at the lower panel, we can make conclusions about the
types of interactions and where they interact with PAA-TSC. Amino acids, such as SER278,
LYS279, THR259 and GLN122, participate in the formation of conventional H–bonds. The
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hydroxyl (-OH) group interacts with the SER278 and THR259 aa via conventional H–bonds.
The amino (-NH2) group also interacts with SER278 and GLN122 aa via conventional
H–bonds. LYS279 interacts with sulphur via conventional H–bonds and with benzene via
π–alkyl bonds. Oxygen and nitrogen from the quinazolinone group interact with GLY256
and THR259 via carbon H–bonds. The quinazolinone group also interacts with LYS306 via
π–alkyl bonds. The quinazolinone part of PAA-TSC interacts with LYS306 and THR257
via π–alkyl and amide–π stacked bonds. Other aa (HIS255, GLU280, THR277, LEU101,
PHE258 and TYR305) can participate in van der Waals (vdW) interactions.
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of interactions and where they interact with T8H-TSC. Amino acids, such as CYS181, 
SER239 and GLU307, participate in the formation of conventional H–bonds. The amino (-
NH2) group interacts with SER239 and GLU307 via conventional H–bonds. CYS181 also 
interacts with the carbonyl group via conventional H–bonds. However, this aa (CYS181) 
also takes part in the formation of the π–sulfur and π–alkyl bonds with aryl groups. 

Other aa (ASN177, SER180, LYS182, LEU178, GLU238, LYS126, LEU125, ASN308, 
GLU124, LYS306) take part in forming vdW interactions. 

Figure 10. Complex of PLpro with T8H-TSC. The upper panel shows a 3D model of PLpro with a
binding site (cavity) on its surface for the T8H-TSC compound. The lower panel shows the binding
mode of T8H-TSC with the amino acid residues of PLpro. Figure was created with UCSF Chimera
(upper panel) and BIOVIA Discovery Studio Visualiser (lower panel) and shows the best docking
pose of Compound T8H-TSC on PLpro. We can also see where T8H-TSC is placed on the PLpro
surface and a general view of the complex of PLpro (green–cyan–brown) with T8H-TSC (pink). The
secondary structure of the protease behind the molecular surface (created with 90% transparency for
better presentation of the molecule) is also shown.
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ASN308, GLU124 and LYS306. In the formation of conventional H–bonds, CYS181 inter-
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Figure 11. Complex of PLpro with T8H (tryptanthrin). The upper panel shows a 3D model of PLpro
with a binding site (cavity) on its surface for tryptanthrin. The lower panel shows the binding mode
of T8H-TSC with the amino acid residues of PLpro. Figure was created with UCSF Chimera (upper
panel) and BIOVIA Discovery Studio Visualiser (lower panel) and shows the best docking pose of
tryptanthrin on PLpro. We can also see where tryptanthrin is placed on the PLpro’s surface and the
general view of the PLpro (green–cyan–brown) complex with tryptanthrin (pink). The secondary
structure of the protease behind the molecular surface (created with 90% transparency for better
presentation of the molecule) is also shown.

Table 3. Binding energy and association constant of PAA, PAA and T8H and T8H-TSC for PLpro.

PAA PAA-TSC T8H T8H-TSC

Binding energy (kcal/mol) −5.32 −5.34 −5.71 −6.57

Ka/M/1000 7.9 8.2 15.3 65.4
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The lower panel of Figure 9 was generated with BIOVIA Discovery Studio Visualiser
and shows a 2D diagram of the interactions between PLpro and the PAA compound.

Based on these images, we see that the following amino acids form the binding
pocket: TYR310, GLU214, TYR213, TYR305, LYS217, GLU307, THR257, PHE258, LYS306
and THR259.

If we look in more detail at the lower panel, we can make conclusions about the
types of interactions and where they interact with PAA. Amino acid LYS217 participates
in the formation of conventional H–bonds with keto groups. The indoline group of the
PAA compound interacts with LYS306 via the π–alkyl bond, and the quinazolinone group
interacts with GLU307 via the π–anion interaction.

Other aa (TYR310, TYR213, GLU214, TYR305, THR257, PHE258 and THR259) partici-
pate in forming vdW interactions.

The lower panel of Figure 10 was generated with BIOVIA Discovery Studio Visualiser
and shows a 2D diagram of the interactions between PLpro and T8H-TSC.

Based on these images, we see that the following amino acids form the binding pocket:
ASN177, SER180, LYS182, CYS181, LEU178, GLU238, LYS126, SER239, LEU125, PRO240,
ASN308, GLU124, GLU307 and LYS306.

If we look in more detail at the lower panel, we can make conclusions about the
types of interactions and where they interact with T8H-TSC. Amino acids, such as CYS181,
SER239 and GLU307, participate in the formation of conventional H–bonds. The amino
(-NH2) group interacts with SER239 and GLU307 via conventional H–bonds. CYS181 also
interacts with the carbonyl group via conventional H–bonds. However, this aa (CYS181)
also takes part in the formation of the π–sulfur and π–alkyl bonds with aryl groups.

Other aa (ASN177, SER180, LYS182, LEU178, GLU238, LYS126, LEU125, ASN308,
GLU124, LYS306) take part in forming vdW interactions.

The lower panel of Figure 11 was generated with BIOVIA Discovery Studio Visualiser
and shows a 2D diagram of the interactions between PLpro and tryptanthrin.

Based on these images, we see that the following amino acids form the binding pocket:
ASN177, SER180, CYS181, LEU178, GLU238, LYS126, SER239, LEU125, PRO240, ASN308,
GLU124 and LYS306. In the formation of conventional H–bonds, CYS181 interacts with
nitrogen from the quinazolinone group and with oxygen from the indolinone group. Aa
LEU178 interacts with oxygen from the indolinone carbonyl group via carbon–hydrogen
bonds. Each of the benzene groups of tryptanthrin interacts with PRO240 via π–alkyl
bonds, and only one interacts with GLU238 via amide–π stacked bonds.

Other aa (GLU124, LEU125, ASN308, LYS126, ASN177, SER180) participate in
vdW interactions.

As seen in the images and diagrams, the binding pocket for tryptanthrin (T8H) is
more similar to the T8H-TSC compound (Figures 12 and 13) than to PAA-TSC and PAA
and includes almost the same set of amino acids for both ligands.

The docking studies suggest that tryptanthrin and its derivative T8H-TSC bind to
PLpro via their common interactions with SER180, ASN177, LEU178, CYS181, GLU238,
SER239, LYS126, LEU125, PRO240 GLU124, ASN308 and CYS181, and they have almost
the same position in the binding pocket.

However, little difference in the mode of interaction was found. For example, T8H-TSC
forms more conventional hydrogen bonds (SER239, GLU307, CYS181) than tryptanthrin
(only CYS181) but does not have π–amide interactions with GLU238. On the other hand,
both compounds have similar interactions with PRO240 via π–alkyl bonds. It should also
be noted that, in addition to hydrogen, CYS181 also provides π–sulphur bonds.

Now, we will compare the interactions between the two tryptanthrin derivates. As
noted above, PAA-TSC and T8H-TSC have completely different binding pocket locations.
However, they also share a common trend of connection to the receptor. In particular,
they have more hydrogen bonds than tryptanthrin and both have π–alkyl bonds (LYS306
with PAA-TSC and PRO240 with T8H-TSC). In addition, PAA-TSC forms a π–amide
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bond with THR 257 and theoretically has less potential than T8H-TSC (by comparing the
binding energies).
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Figure 12. Comparison of complexes PLpro with tryptanthrin derivates (TSC compounds) (left) with
tryptanthrin and PAA (right). During the creation of the magnified image, the hydrogen atoms were
hidden for aesthetic reasons.

3.3.2. Molecular Docking of Mpro with PAA, Tryptanthrin (T8H) and Their Derivates
(PAA-TSC and T8H-TSC)

For the docking calculation, a structural model of the Mpro (PDB ID 6LU7) catalytic
domain was used. The compounds PAA, T8H, PAA-TSC and T8H-TSC were docked to the
structural model of Mpro using the AutoDock Tools software. All the docking poses from
the protein binding site were visually analysed with UCSF Chimera and BIOVIA Discovery
Studio Visualiser, and 2D interaction diagrams with 3D visualisations of the protein–ligand
complex were constructed (Figures 14–17). The computed values of the interaction energy
and association constant for Mpro and the tested compounds PAA, T8H, PAA-TSC and
T8H-TSC are shown in Table 4.

Based on the data obtained during molecular docking, we can conclude again that
the tryptanthrin derivative (T8H-TSC) exhibits a higher affinity for Mpro protease than
tryptanthrin and the rest of our compounds (PAA and PAA-TSC). However, in this case,
we can also observe the higher affinity of PAA-TSC to Mpro than we saw before with Plpro.

The lower panel of Figure 14 was generated with BIOVIA Discovery Studio Visualiser
and shows a 2D diagram of the interactions between Mpro and PAA-TSC.

Based on these images, we see that the following amino acids form the binding pocket:
ALA285, ASN277, LEU286, LEU271, MET276, GLY278, LEU287, GLY275, TYR239, LEU272
and TYR237. The formation of conventional H–bonds involves LEU271 with the hydroxyl
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group of PAA-TSC, MET276 with nitrogen from the quinazolinone ring and TYR239 with
the thiosemicarbazone amino group (CSNH2). LEU 286 interacts with the methyl group
via alkyl and π–alkyl bonds.

Other aa (ALA285, ASN277, GLY278, LEU287, GLY275, LEU272, TYR237, THR199)
participate in vdW interactions with PAA-TSC.

The lower panel of Figure 15 was generated with BIOVIA Discovery Studio Visualiser
and shows a 2D diagram of the interactions between Mpro and PAA.

Based on these images, we see that the following amino acids form the binding pocket:
ASP289, LEU287, LEU286, VAL204, GLY275, TYR239, LEU271, MET276, THR199, LEU272,
TYR237 and ASN238. In the formation of conventional H–bonds, LEU287 has nitrogen from
the quinazolinone ring of PAA and TYR 239 has a keto group. THR199 forms a π–donor
hydrogen bond with PAA (benzene group). MET276 participates in the formation of the
π–sulfur bond with the quinazolinone ring. In addition to the described H-bonds, LEU287
and TYR239 form π-sigma and π–π T–shaped bonds with an aromatic ring of PAA.
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Figure 14. Complex of Mpro with PAA-TSC. The upper panel shows a 3D model of Mpro with a
binding site (cavity) on its surface PAA-TSC. The lower panel shows the binding mode of PAA-TSC
with the amino acid residues of Mpro. Figure was created with UCSF Chimera (upper panel) and
BIOVIA Discovery Studio Visualiser (lower panel) and shows the best docking pose of PAA-TSC on
Mpro. We can also see where the PAA-TSC is placed on the Mpro surface and a general view of the
complex of Mpro (green–cyan–brown) with PAA-TSC (pink). The secondary structure of the protease
behind the molecular surface (created with 90% transparency for better presentation of the molecule)
is also shown.



Separations 2023, 10, 73 21 of 30

Separations 2023, 10, x FOR PEER REVIEW 21 of 30 
 

 

of the protease behind the molecular surface (created with 90% transparency for better presentation 
of the molecule) is also shown. 

The lower panel of Figure 14 was generated with BIOVIA Discovery Studio Visual-
iser and shows a 2D diagram of the interactions between Mpro and PAA-TSC. 

Based on these images, we see that the following amino acids form the binding 
pocket: ALA285, ASN277, LEU286, LEU271, MET276, GLY278, LEU287, GLY275, TYR239, 
LEU272 and TYR237. The formation of conventional H–bonds involves LEU271 with the 
hydroxyl group of PAA-TSC, MET276 with nitrogen from the quinazolinone ring and 
TYR239 with the thiosemicarbazone amino group (CSNH2). LEU 286 interacts with the 
methyl group via alkyl and π–alkyl bonds. 

Other aa (ALA285, ASN277, GLY278, LEU287, GLY275, LEU272, TYR237, THR199) 
participate in vdW interactions with PAA-TSC. 

Figure 15. Mpro with PAA. The upper panel shows a 3D model of Mpro with a binding site (cavity) 
on its surface PAA. The lower panel shows the binding mode of the PAA compound with the amino 
acid residues of Mpro. Figure 15 was created with UCSF Chimera (upper panel) and BIOVIA Dis-
covery Studio Visualiser (lower panel) and shows the best docking pose of PAA on Mpro. We can 

 

  

Figure 15. Mpro with PAA. The upper panel shows a 3D model of Mpro with a binding site (cavity)
on its surface PAA. The lower panel shows the binding mode of the PAA compound with the amino
acid residues of Mpro. Figure was created with UCSF Chimera (upper panel) and BIOVIA Discovery
Studio Visualiser (lower panel) and shows the best docking pose of PAA on Mpro. We can also
see where PAA is placed on the Mpro surface and a general view of the complex of Mpro (green–
cyan–brown) with PAA (pink). The secondary structure of the protease behind the molecular surface
(created with 90% transparency to better illustrate the molecule) is also shown.

Other aa (ASP289, LEU286, VAL204, GLY275, LEU271, LEU272, TYR237, ASN238)
participate in vdW interactions with PAA.

The lower panel of Figure 16 was generated with BIOVIA Discovery Studio Visualiser
and shows a 2D diagram of the interactions between Mpro and T8H-TSC.
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Based on these images, we see that the following amino acids form the binding
pocket: ASP 187, TYR54, HIS41, MET49, PRO168, MET165, GLN189, LEU167, HIS164,
ARG188, GLN192, THR190, GLU166, CYS145, ASN142 and GLY143. In the formation of
conventional H-bonds, ARG188 and THR190 interact with the amine group of T8H-TSC.
CYS145 participates in forming π–donor H–bonds. HIS41, MET49 and MET165 participate
in the formation of alkyl and π–alkyl bonds with aromatic rings of T8H-TSC.

Other aa (ASP187, TYR54, PRO168, GLN189, LEU167, HIS164, GLN192, GLU166,
ASN142, GLY143) participate in forming vdW interactions with T8H-TSC.

The lower panel of Figure 17 was generated with BIOVIA Discovery Studio Visualiser
and shows a 2D diagram of the interactions between Mpro and T8H.
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Figure 16. Complex of CoV-2 Mpro with T8H-TSC. The upper panel shows a 3D model of Mpro
with a binding site (cavity) on its surface T8H-TSC. The lower panel shows the binding mode of the
T8H-TSC compound with the amino acid residues of Mpro. Figure was created with UCSF Chimera
(upper panel) and BIOVIA Discovery Studio Visualiser (lower panel) and shows the best docking
pose of T8H-TSC on Mpro. We can also see where T8H-TSC is placed on the Mpro surface and a
general view of the complex of Mpro (green–cyan–brown) with T8H-TSC (pink). The secondary
structure of the protease behind the molecular surface (created with 90% transparency to better
illustrate the molecule) is also shown.
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Figure 17. Complex of Mpro with T8H (tryptanthrin). The upper panel shows a 3D model of Mpro
with a binding site (cavity) on its surface T8H. The lower panel shows the binding mode of T8H with
the amino acid residues of Mpro. Figure was created with UCSF Chimera (upper panel) and BIOVIA
Discovery Studio Visualiser (lower panel) and shows the best docking pose of T8H on Mpro. We
can also see where T8H is placed on the Mpro surface and a general view of the complex of Mpro
(green–cyan–brown) with T8H (pink). The secondary structure of the protease behind the molecular
surface (created with 90% transparency for better presentation of the molecule) is also shown.

Table 4. Binding energy and association constant of PAA, PAA and T8H and T8H-TSC for Mpro.

PAA PAA-TSC T8H T8H-TSC

Binding energy (kcal/mol) −6.32 −7.94 −7.2 −8.56

Ka/M/1000 42.9 66.1 189.5 1882.2

Based on these images, we see that the following amino acids form the binding pocket:
GLU166, HIS164, LEU167, HIS41, MET165 GLN189, THR190, PRO168, ASP187, ARG188
and GLN192. In the formation of conventional H–bonds, GLN 192 and THR190 interact
with carbonyl oxygen from the indolinone group of T8H. HIS41, MET165, PRO168, and
GLN189 take part in forming the π–bonds, π–π T–shaped, π–alkyl and π–sigma, respectively.



Separations 2023, 10, 73 24 of 30

Another aa (GLU166, HIS164, LEU167, ASP187) participates in forming vdW interac-
tions with tryptanthrin.

As in the case of PLpro, the T8H-TSC compound has a similar binding pocket (cav-
ity) as tryptanthrin and includes almost the same set of amino acids for both ligands
(Figures 18 and 19). However, in this example, we can see that the PAA-TSC and PAA have
a similar location.

Similar to the previous docking studies with PLpro, these computer calculations sug-
gest that tryptanthrin and its derivative T8H-TSC bind to Mpro via their common interac-
tions with ASP187, HIS41, PRO168, MET165, LEU167, GLN189, HIS164, ARG188, GLN192,
THR190 and GLU166, and they have almost the same position in the binding pocket.

Nevertheless, again, we found little difference in the mode of interaction. For example,
T8H-TSC forms common conventional hydrogen bonds (THR190) with tryptanthrin, but
tryptanthrin forms an unfavourable acceptor–acceptor interaction with ARG 188 instead of
regular H–bonds with it (similar to those of tryptanthrin).

Additionally, we should note that PAA-TSC has a higher binding energy than PAA
(−7.94 kcal/mol instead of −6.32 kcal/mol).

Now, we will compare the interactions between the two derivates of tryptanthrin. As
noted above, PAA-TSC and T8H-TSC have completely different binding pocket locations
(certain sides of the proteases), and in contrast to the previous calculations, they do not
have a common link.
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3.4. Inhibition of SARS-CoV-2 Replication in Vero Cells

The predicted antiviral effect of the prepared compounds was tested in an in vitro
model using Vero cells. In the presence of the two compounds, a significant decrease in
the levels of SARS-CoV-2 RNA in culture supernatants representing viral particles was
observed (Figure 20). Though T8H-TSC displayed inhibitory effects at both 10 and 1 µM (a
decrease to 40% of that of the controls), the effects of PAA-TSC were rather insignificant,
with an inhibitory effect observed only at 10 µM. Accordingly, a significantly higher
binding ability for the SARS-CoV-2 proteases (Mpro and PLpro) and iron ions was found
in T8H-TSC.
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The observed results strongly suggest that tryptanthrin represents a promising struc-
tural motif for designing novel antiviral agents.

3.5. Lipinski’s Rule Analysis, Drug-likeness and Drug Score Factor

Lipinski’s rules use five criteria to analyse if a substance is drug-like (ensuring its
potential oral bioavailability). The rules are as follows: a molecule must have hydrogen
bond acceptors (maximally ten), hydrogen bond donors (maximally five), a suitable molec-
ular weight (under 500 Da), a cLogP lower than 5 and no more than one violation of the
above four rules [45]. In addition, another standard, evaluated criterion is regarding polar
surface area (lower than 140 A2). All the compounds fulfilled Lipinski’s five criteria; the
data are summarised in Table 5. Moreover, drug-likeness and the drug score factors were
determined using Osiris Property Explorer [46]. The drug-likeness score is a parameter
that describes a substance with respect to Lipinski’s rules, including substructure fragment
contributions. A positive value suggests that a compound predominantly contains frag-
ments which are frequently present in commercial drugs. The drug score is function of
the drug-likeness factor, cLogP, logS, molecular weight and predicted toxicity of analysed
compounds. It allows us to predict the compound’s overall potential in the drug design;
the drug scores of all compounds were higher than 0.53 (Table 5). It is comparable with the
drug score of many antiviral agents used.



Separations 2023, 10, 73 27 of 30

Table 5. Lipinski’s rule parameters for tryptanthrin derivatives.

Trypan. H-Bond
Acceptors

H-Bond
Donors Mw [Da] cLogP

Polar
Surface Area

[A2]

Drug-
Likeness Drug Score

T8H 4 0 248.24 1.73 49.74 3.28 0.94
PAA 5 1 306.32 1.81 69.97 2.20 0.53

T8H-TSC 6 2 321.36 1.67 115.17 3.89 0.92
PAA-TSC 7 3 379.44 1.75 135.40 4.87 0.71

The drug score of T8H-TSC (0.92) was significantly higher than that of PAA_TSC (0.71).
This suggests that T8H-TSC could be a more prospective antiviral agent than PAA_TSC.
According to this hypothesis, T8H-TSC displays a higher affinity for Fe(II) and Fe(III) ions
and PLpro and Mpro proteases. On the other hand, PAA_TSC displays a significantly
higher binding ability for Cu(II) ions. The calculated values of the binding constants
imply that T8H-TSC displays a preference for iron ions, whereas PAA_TSC exhibits potent
selectivity for Cu(II) ions. Nevertheless, we cannot exclude the possibility that a higher
iron level is a risk factor for COVID-19, and chelation has been studied as a treatment
method [9–11]. However, the role of Cu(II) ions may be ambiguous, and their possible
chelation can also have a negative effect on COVID-19 therapy [12]. More importantly,
the antiviral activity of T8H-TSC was significantly more potent than that of PAA_TSC.
Accordingly, the calculated values of the binding energy and associated constant for both
Mpro and PLpro were highest for T8H-TSC. It could be suggested that T8H-TSC represents
a suitable structural motif for treating COVID-19.

However, this result still does not necessarily mean that the combination of thiourea
and the T8H structure motif is the optimal method for designing anti-COVID-19 agents.
For example, the original drug score of T8H (0.94) was slightly better than that of T8H-TSC.
Nevertheless, the predicted affinity to SARS-CoV-2 proteases represented by binding energy
was calculated to be higher for T8H-TSC than for T8H. It could be suggested that T8H alone
represents a promising building block, and its substitution by thiourea could be a possible
method for preparing novel pharmacophores. In addition, for PAA, this substitution
increases its drug score from 0.53 to 0.71. Nevertheless, both values are significantly lower
than in this case of the original T8H. Admittingly, this fact could strongly limit the usability
of this design strategy, and the effect of the discussed substitution on the antiviral effectivity
of tryptanthrin derivates should be further validated in future studies.

4. Conclusions

In this study, we prepared two novel trypantrine derivatives (PAA-TSC and T8H-TSC)
with a chelation group (thioguanine) for Fe(II/III) and Cu(II) ions. PAA-TSC and T8H-TSC
display a significant preference for Cu(II) and Fe(III) ions, respectively. The results from
the molecular docking strongly imply that the prepared compounds, especially T8H-TSC,
displayed potent inhibitory effects against the PLpro and Mpro proteases. Accordingly,
T8H-TSC potently represses SARS-CoV-2 replication in Vero cells. The antiviral effect
of PAA-TSC was significantly smaller. The obtained results suggest that the structural
motif of thiosemicarbazone could represent a promising starting point for designing novel
antiviral agents.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/separations10020073/s1: Figure S1: Titration and titration curves
of PAA-TSC receptor with Fe(III) ion; Figure S2: Titration and titration curves of PAA-TSC receptor
with Fe(II) ion; Figure S3: Titration and titration curves of T8H-TSC receptor with Cu(II) ion; Figure
S4: Titration and titration curves of T8H-TSC receptor with Fe(III) ion; Figure S5: Titration and
titration curves of T8H-TSC receptor with Fe(II) ion; Figure S6: Colour change after addition of Cu(II)
ion to receptors (PAA-TSC and T8H-TSC); Figure S7: Infrared spectra of PAA-TSC receptor and its
complex with Cu(II) ion; Figure S8: Raman spectra of PAA-TSC receptor and its complex with Cu(II)
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