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Abstract: The wide spread of phenols and their toxicity in the environment pose a severe threat to the
existence and sustainability of living organisms. Rapid detection of these pollutants in wastewaters
has attracted the attention of researchers from various fields of environmental science and engineering.
Discoveries regarding materials and method developments are deemed necessary for the effective
detection and remediation of wastewater. Although various advanced materials such as organic
and inorganic materials have been developed, secondary pollution due to material leaching has
become a major concern. Therefore, a natural-based material is preferable. Clay is one of the potential
natural-based sorbents for the detection and remediation of phenols. It has a high porosity and
polarity, good mechanical strength, moisture resistance, chemical and thermal stability, and cation
exchange capacity, which will benefit the detection and adsorptive removal of phenols. Several
attempts have been made to improve the capabilities of natural clay as sorbent. This manuscript will
discuss the potential of clays as sorbents for the remediation of phenols. The activation, modification,
and application of clays have been discussed. The achievements, challenges, and concluding remarks
were provided.

Keywords: clays; environment; extraction; remediation; recovery; reusability; wastewater

1. Introduction

Water is essential for the continuing survival of all organisms. However, constant
disturbance of water bodies due to pollution from chemical substances have been observed
over the last five decades. Water contamination is due to the industrial demands of
chemicals and energy [1], urbanization [2], agricultural mechanization [3], transportation,
mining, and crude oil extractions [4,5]. To a smaller extent, natural phenomena such as
bush burning, decay of organic matter, earthquakes, petroleum seep, volcanic eruptions,
and wildfires contribute to water contamination [6,7]. However, major sources of pollutants
are chemical processing industries [8,9], mining, and exploration sites [10,11]. Ground and
surface waters serve as the major reservoir of these pollutants which, in turn, pose serious
threat to waters and disharmony to the existence of living organisms [12,13].
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Phenols are among the most frequently detected organic species in environmental
waters. They are a class of aromatic compounds with hydroxyl group(s) directly bonded to
aromatic ring(s). They mostly result from industrial effluents from petroleum refining [14],
petrochemical [15], pharmaceuticals [16], textile, cosmetics, wood, and leather processing
industries [17,18]. Although small quantities of phenols are produced from the decom-
position of plants and animals [19,20], the majority results from anthropogenic sources.
Different research findings have shown the presence of phenols and their derivatives at both
higher and lower concentrations in wastewater, reaching up to thousands of mg/L [21,22].
These compounds are primarily insoluble, hydrophobic, and non-biodegradable, thus
persist in the environment for a long period of time [23,24]. They bioaccumulate in living
organisms and enter the human body through the food chain [25,26]. They are known to
pose serious threats to the human system, associated with carcinogenicity, skin diseases,
respiratory ailments, diarrhea, irritations of the eyes, and urine coloration [27,28]. Conse-
quently, environmental regulatory agencies marked them as priority pollutants (POPs) in
wastewater [29,30]. The chemical structure and physicochemical properties of phenols is
highlighted in Table S1 of the Supplementary Material.

Despite the established fact that phenols represent a large group of organic pollutants
frequently detected in wastewater, and the fact that numerous articles were presented on
their trace determination and adsorptive remediation using clays due to their potential
properties such as good porosity, mechanical strength, cationic exchange capacity, as well
as their relative abundance, no review on the subject was published. Thus, in this work,
an attempt was made to discuss and analyze, past and present, the application of raw and
modified clays for microextraction and adsorptive removal of phenols from wastewaters.
The major rationale behind the use of clays for the remediation of phenols was due to
their availability and low cost, as well as higher adsorption capacities. Furthermore, this
review also aimed at addressing the shortcomings of the findings on the application of
clay materials towards phenols detection and remediation. The modification of the clays,
methods optimization, reusability, isotherms, and kinetics of the process for improving
the remediation efficiency has been extensively discussed. Lastly, recommendations have
been proposed, and the future direction of the research has been highlighted towards better
understanding of the subject matter. Figure 1 shows the graph on the trends of publication
on microextraction and adsorptive removal of phenols from wastewater from 2010–2022,
as obtained from ScienceDirect data. It can be observed that the trend is increasing each
year for the past 12 years, indicating the significant progress in the field.Separations 2023, 10, x FOR PEER REVIEW 3 of 34 
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Figure 1. Trends in article publications from 2010–2021 on the adsorption and solid-phase extraction
of phenols. The data were extracted from ScienceDirect repository on 7 January 2023.



Separations 2023, 10, 125 3 of 32

1.1. Sources of Phenols

Various routes by which phenols enter the environment have been studied. There
are several industries that have contributed to the mass production of phenols as wastes.
Examples include crude oil refining [31] petroleum tankers and ships [32]. Crude oil refining
refers to the production of fuel components such as gasoline, diesel, kerosine etc. This
process is usually associated generation of by-products such as phenols, which are often
discharged into the water bodies. Moreover, oil spillage has also been widely recognized as
a major source of phenols. Every year, about 5–30 million tons of crude oil are estimated
to spill into the oceans due to either accidents or leakage of containers from the shipping
industry and oil tankers [33,34]. Recent spills include the Ambarnaya River, Russia [35],
and the Mauritius coast [36]. It caused devastating effects and resulted in surface water
obstruction and widespread of pollutants (particularly phenols and PAHs) into the water
bodies. Phenols are also deposited in petroleum sludge, which is usually transferred into
the soils, causing the pollutants to enter the surface and ground waters [14,37]. Similarly,
the significance of petrochemical industries in the economic development of every country
is vital. The major products include olefins and essential oils, cosmetics, personal care,
and dyes [38,39]. These industries consume large quantities of water during production,
which are subsequently discharged as effluents into the water bodies [40]. The wastewater
usually contains phenols as the major organic components and other inorganic species
such as dyes and heavy metals [29,41,42]. Additionally, coal processing also contributed to
the presence of phenols in the water bodies. The coal is used as an alternative source of
for power generation which is cheap for industrial and domestic consumption. In the coal
plants, a water circulation system is created for cooling engines which is when discharged
established direct contact with the surface water, causing detrimental pollution. According
to EPA, coal processing plants immensely contributed to the persistent global warming
and water pollution problem. Phenols have been identified as major pollutants and can be
found at high and lower concentrations in the coal-processed wastewater [43,44].

Apart from industry, natural disasters also could cause the unintentional distribution
of phenols to the environment. Flood water contains suspensions of organic and inorganic
particles from roads, warehouses, petrol stations, tanks, and waste disposal [45,46]. This
catastrophe is more pronounced in tropical areas with high amounts of rainfall. According
to some studies, phenols have been detected in flood-consumed regions [47,48]. This could
cause the pollutants to enter the water bodies and easily disseminate to plants, aquatic
organisms, and humans [49,50].

1.2. Toxicities of Phenols to Humans

The toxicities of phenols to humans have been well investigated. The primary source
of human exposure is associated with consumption of contaminated foods and water, or
inhalation of polluted air [51,52]. The pollution is more intense in petroleum exploration
and refinery sites as well as coastal areas, where discharged wastes are directly transported
to the water bodies [53]. Thus, people living around these areas are at potential risk
from these toxic chemicals and their detrimental effects. Due to their toxicities, they
are classified as endocrine disruptors, and long-term exposure to phenols may result in
carcinogenic, mutagenic, and other sublethal effects [54,55]. The toxicity increases due to
biochemical alterations in the human body, leading to hematological and physiological
effects associated with breast, lungs, kidney, and bladder cancer [56,57]. Moreover, it was
reported that phenols may lead to immune suppression [58], causing protein coagulation,
denaturation of cells, skin damage, affecting the central nervous system and respiratory
tract [16,59].

1.3. Environmental Regulations on Phenols

Due to their environmental impact and apparent human toxicities of phenols, regula-
tory agencies such as the United States Environmental Protection Agency (USE PA) and
World Health Organization (WHO) have set some restrictions on their usage. The aim is
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to limit their environmental impact from higher level in parts per million (ppm) to much
lower levels, in parts per billion (ppb). The US EPA has determined the content of phenol
in potable and mineral waters to 0.5 ppb and in wastewater discharges between 0.5 and
1.0 ppm [60], while the allowable level of phenols in drinking water regulated by WHO
was identified as 0.001 ppm [61].

1.4. Trace Level Extraction and Adsorptive Removal of Phenols from Waters

In recognition of the toxicities and mobility of phenols in environmental waters,
prompt action has been desired for their mitigation and possible elimination. Researchers
and environmental regulatory agencies have focused on developing suitable means for
effective extraction and identification. Moreover, investigations on the detection and
remediation of phenols using various techniques have been employed. These include
conventional techniques of coagulation and flocculation [62,63], solvent extraction [64],
reverse and forward osmosis [65,66], membrane technologies [67,68], photocatalytic degra-
dation [69,70] and electrochemical oxidations [71,72]. However, most of these methods
suffer from major drawbacks, partly due to the lower solubility of the compounds. They
have shown strong resistance to biodegradation [73,74], while chemical remediation causes
secondary pollution due to the generation of oxygenated species that are equally haz-
ardous [75,76]. Additionally, some of these techniques are not economical. Thus, the quest
to explore other means remained endless.

Solid-phase extraction (SPE) technologies have been recognized as way forward for ef-
fective determination of phenols from environmental waters. In solid phase extraction, the
pollutant (phenol molecules) is adsorbed from the sample matrix by an extractant material
(which is solid materials known as sorbents) and is widely used for the removal of a wide
range of organic and inorganic pollutants from the aqueous media due to their prospects to
effectively remove the pollutants, even in trace amounts, from the environmental waters [77,78].
Thus, numerous sorbents of natural and synthetic originality have been proposed and
employed for SPE determination of phenols from the wastewaters. The method is more
straightforward, low-cost, and effective than most extraction technologies [32,79].

1.5. Clay Minerals

Clays are naturally occurring deposits of hydro aluminum silicates found in the
Earth’s crust. They contain cations of alkali and alkaline earth metals [80], that can be
found abundantly in different parts of the world, each constituting different compositions
with varying sizes and textures [81]. They have been utilized for various applications
ranging from commercial to academic purposes. For example, clays are widely used
as building materials due to their textual and mechanical properties in making bricks,
tiles, replacement in cement, mortars, and concrete reinforcement [82,83]. They are also
used as geopolymer materials as an alternative to cement or other conventional binders for
construction and protection barriers towards sea water, and coating of materials [84]. Owing
to their porous nature, they are employed in environmental remediation for toxic pollutant
adsorption from water [85,86]. Natural clays are classified into nine groups according to
their chemical compositions and atomic structures, including kaolinite (halloysites, lizardite
and chrysotile), pyrophyllite (Illite, glauconite and celadonite), vermiculite, mica, smectite
(montmorillonite, nontronite and saponite), chlorite (sudoite, clinochlore and chamosite),
sepiolite, palygorskite, interstratified (rectorite, corrensite and tosudite), and allophane-
imogolite clays [87]. Figure 2 shows the molecular structure and chemical compositions of
some clays.
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Figure 2. Schematic diagram showing various clay minerals: (a) montmorillonite, 2:1 layer type
clay mineral with interlayer cations and water molecules; (b) illite, 2:1 layer type clay mineral
and potassium ions locked up in the interlayers; (c) kaolinite, 1:1 layer type clay mineral with no
substitution; (d) schematic of palygorskite, 2:1 type layer-chain type clay mineral with zeolitic water
and (e) partially enlarged structural details of (d); (f) halloysite, 1:1 layer type clay mineral with a
tubular structure [88].

For water remediation applications, clays have been well explored for pollutants
adsorption. Some researchers compiled findings reporting on the employment of various
clays for the adsorption applications. The work of Awad et al. (2019) discussed the
application of clays for organic pollutants adsorption. Although various clays have been
reported and have demonstrated good adsorptive performances, micro-level extraction
of the pollutants was not considered, and the findings were limited only to the synthetic
wastewater [89]. Han et al. (2019)’s review was mainly focused on natural and composites
clays for heavy metals and dyes adsorption [90] and did not consider the adsorbents’
reusability and their application for trace detection of the pollutants. Similarly, Chari et al.
(2019) and Uddin. (2017) reported mainly on pristine clays for dyes and heavy metals
adsorption, respectively [91,92]. Del et al. (2020) addressed the application of biopolymer–
clay nanocomposites towards organic pollutants adsorption [8]. In all cases, trace extraction
and regeneration of the clays and the real wastewater applications were not considered.

1.5.1. Activation of Clays

Often, raw clays require activation prior to the intended application. Clay activation is
a process to increase the clay character to obtain the desired properties in accordance with
its use. Physical treatments such as acid [93], thermal [94], and alkaline [95] activations
have been explored. Thermal treatment is costly and often disrupts the clay’s interlayered
structure and the alkaline treatment. The most widely used chemicals are sulfuric acid and
sodium hydroxide. Alkaline activation enhanced mechanical and physical properties of the
clay and improved its water-resistant ability. However, it lowered its capillarity [95]. Thus,
acid activation has been identified as the simplest approach to improve the characteristic
features of the clays for effective performance. Clay surface area and pore volume can
be increased through treatment with mineral acids [87]. Researchers have investigated
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the acid activation using various inorganic acids. For instance, bentonite activated with
HCl has shown improvement in the surface porosity. The Brunner–Emmett–Teller (BET)
surface area was 65.89 m2/g and 50.93 m2/g for the modified and pristine bentonites,
respectively [96]. Furthermore, the activation of Moroccan clay with sulfuric acid at 110 ◦C
for 12 h has resulted in higher BET specific surface area of 74.43 m2/g and 51.42 m2/g for
the activated and pristine clays, respectively [97].

1.5.2. Modifications of Clays

Alternatively, surface modification and functionalization have been proposed as the
best approach to improve the performance of the clays. Polymer incorporation [98], grafting
with organic compounds [99,100], surface charged modification with cations [101], etc.,
have shown positive improvement in the performance of the clays. They not only alter the
surface structure of the materials, but also improve the physicochemical properties such as
surface porosity, polarity, texture, and cation-exchange capacity [102,103].

Of the techniques, surfactant modification has been considered the most effective
method to improve the clays’ intrinsic properties and performance. Usually, it resulted
in organoclays with improved surface porosity, mechanical stability, and polarity for
more efficient applications [96,104]. Richards and Bouazza (2007) explored the use of
hexadecyltrimethylammonium (HDTMA) and Phenyltrimethylammonium (TMPA) for
the surfactant modification of basaltic and bentonite clays. The BET specific surface area
of the pristine bentonite and basaltic clays was 370 and 170 m2/g, and the ion exchange
capacity was 63 and 50 meq/g, respectively. The BET surface slightly reduced to 327
and 153 m2/g, while the cationic exchange capacity significantly improved to 81 and
84 meq/100 g for the HDTMA-bentonite and HDTMA-basaltic clays, respectively [105].
Similarly, the carbon content of the composites was much higher than the pristine, related to
the increased in the level of organic matter and the number of active sites on the surface of
the modified clay [105]. The surface modification of montmorillonite with hexamethylene
bis-pyridinium dibromides (HMBP) formed reduced-charge montmorillonites (RCMs) with
smooth surfaces and uniformly sized particles [100]. For the first time, modification of
Na-montmorillonite with surfactant, bis-hexadecyldimethyl-p-phenylenediammonium
dibromide (BHPD) was reported [106]. The composite has demonstrated fascinating
properties such as good mechanical strength, higher chemical and moisture stability and
improved surface porosity compared to the unmodified. The higher adsorption capacity of
the former was attributed to its stronger hydrophobicity and the number of delocalized
π-electrons [106].

Charged ions (such as Na+, Cs+, Ca2+, NH3
+) and metal oxide nanoparticles (such as

Fe2O3, CuO, ZnO, etc.), have also been reported to improve the surface properties of the
pristine clays [107]. Physical properties and crystal structures improved upon modification
with weakly hydrated cations (such as K+), hence improved their adsorption efficiency [108].
The effect of sodium ion (Na+) on the surface property enhancement of montmorillonite
was reported. Based on the result, the Na-montmorillonite have a well-defined crystalline
structure, good thermal stability and dispersibility in water and organic solvent [109].
Another study on Ghanaian Muscovite clay functionalized with Ca2+, Mg2+, Na2+, and K2+

has also shown that this has better porosity and cation exchange capacity [110].
Polymer incorporation and grafting with other functionalized organic functional ma-

terials have also been described as alternative approaches to enhance the properties and
efficiency of the clays. Composites of the clays with activated carbon [111], biochar [112],
graphene [113], chitosan [114], geopolymers [84], etc., have demonstrated improved perfor-
mance of the minerals. The composites are often considered low-cost and possess good
BET specific surface area and pore volumes [115,116]. They also possess superior chemical
properties, good thermal stability, and mechanical resistance to the pristine clays [9,90].
In addition, they are characterized by higher adsorption efficiency and cationic exchange
capacity [117]. However, despite the advantages of improved surface properties, mechani-
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cal strength, and thermal stability, the high costs of the modifications served as the major
shortcomings of the materials.

2. Clays for Environmental Water Remediation
2.1. Clays in Trace-Level Determination of Phenols from Environmental Water

Analytical determination of phenols in environmental samples involves multiple steps,
starting from sample preparation, extraction until detection. The sample preparation step
helps to isolate the analyte(s) of interest, and to clean-up and preconcentrate the analyte(s)
for better detection. Moreover, sample preparation is important for enhancing the selec-
tivity and sensitivity of the analytical method [118]. Sample extraction is a technique in
which sorbent is used to extract analyte(s) from the sample. Depending on the extrac-
tion mode, the extractant could be in a solid (sorbent) or liquid (solvent) phase [119]. In
solid-phase techniques, the sorbent plays a crucial role in determining the success of the
process. Several criteria need to be considered in determining good sorbents, such as
their large surface area, sorbent–analyte interaction, and sorbent–solvent interaction. The
unique features demonstrated by both raw and modified clays allow for their utilization
as good sorbents for extracting phenols from the wastewaters. Different extraction modes
(Figure 3) such as solid phase extraction (SPE), solid phase microextraction (SPME), disper-
sive solid phase extraction (DSPE), magnetic solid phase extraction (MSPE), rotating disk
adsorption extraction (RDSE), and stir bar sorptive extraction (SBSE) have been explored
as discussed below.
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2.1.1. Solid-Phase Extraction (SPE)

SPE is one of the most widely used techniques for analyte(s) isolation and preconcen-
tration in waters [120], food [121], and pharmaceutical analysis [122]. In SPE, a sample
solution is loaded into a cartridge containing sorbent that retains the targeted analyte(s)
and removes the undesired components. The target analyte(s) is then eluted using solvent
and transferred to a collection tube [123]. It has been widely used due to its simplicity,
high enrichment factor advantage, and lower solvent consumption [122]. However, one
of the major drawbacks in SPE is the selection of sorbent that can extract the pollutants in
trace level. The sorbent C18 (a form of silica sorbent) is the commonly used material in SPE.
Nevertheless, it is incapable of extracting a polar analyte, which limits its application. Thus,
various materials have been developed and applied as an alternative to replace the con-
ventional C18. Examples are multiwalled carbon nanotubes [124,125], Oasis HLB 6cc, MAX
6cc 150 [126], graphene [127] and molecularly imprinted polymer [128,129]. Moreover, the
potential of natural and modified clays as sorbents in SPE has also been investigated.

Chu et al. (2015) prepared a natural clay composite 4-butylaniline-modified attapulgite
to determine bisphenol A (BPA) in water. Attapulgite comprises silica tetrahedral chains
linked by octahedral species of oxygen and hydroxyl groups of aluminum (Al) and mag-
nesium (Mg) ions with a chain-like inverted structure. The large surface area and porous
structure are capable of the cation exchange of the material, which makes it suitable to be
utilized as a sorbent in SPE. The composite was used to extract BPA from river water sam-
ples by spiking the sample at concentration levels of 22.8, 45.6, and 68.4 µg/L, respectively,
determined by HPLC. The recoveries for the three spiked samples obtained from the river
water samples were in the range of 93.0–96.6%, with a root-mean-square deviation (RMSD)
of less than 2% [122]. Chai et al. (2018) also utilized polyethyleneimine (PEI) modified with
attapulgite as a sorbent for SPE for the determination of chlorophenols (CPs) in environ-
mental water [130]. The PEI has the capability to donate electrons due to the presence of
numerous amine groups in its structure, which can be utilized for the adsorption of polar
analytes [131]. The result of its analytical performances on three targeted chlorophenols,
4-chlorophenol (4-CP), 2,6-dichlorophenol (2,6-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP),
have shown that the coefficient of determination (R2) obtained was larger than 0.99, with
limit of detection (LOD) and quantification (LOQ) obtained ranging from 0.26 to 0.08 µg/L
and 0.27 to 1.88 µg/L, respectively. Moreover, the method also shows good accuracy
and precision within 84.4–96.8% for all the target analytes when applied in river water
samples with analyte concentrations of 10, 100, and 200 µg/L. The RMSDs obtained were
less than 4.56 and 6.30% for inter- and intraday, respectively [130]. This result indicates
that PEI-attapulgite has greater potential to be utilized as an adsorbent in SPE with good
accuracy and precision.

2.1.2. Dispersive and Magnetic Solid-Phase Extraction (DSPE and MSPE)

DSPE is another mode of solid-phase extraction. The major difference between DSPE
compared to conventional SPE is that, in DSPE, the solid sorbent is introduced directly to
the sample solution without any conditioning process. The extraction procedure relies only
on agitation such as sonication, vortex, shaking and centrifugation [132]. The target analytes
retained on the adsorbent will then be separated through filtration or centrifugation with
an organic solvent prior to instrumental analysis.

MSPE is an extraction technique where the target analyte’s preconcentration is carried
out using magnetizable sorbents [133]. MSPE employs the same principle as DSPE, where
the sorbent will be introduced directly to the sample followed by an agitation process to
disperse it throughout the sample solution (Figure 4). The employment of magnetic sorbent
simplifies the recovery of the extractant from the sample without requiring centrifugation,
as is necessary for DSPE [134].
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Liu et al. (2011) reported the utilization of polysulfone microcapsule organic mont-
morillonite magnetic nanoparticles (montmorillonite/Fe3O4@PSF) for the determination
of 2-CP and 4-CP in river and wastewater samples. Several parameters have been op-
timized and validated prior to application to real samples. The result showed that the
reported method has a good enrichment factor of 58 and 251 for 2-CP and 4-CP, respec-
tively. The technique was also applied to two types of matrices (river and wastewater) to
determine the method’s accuracy. Before the extraction step, two different concentrations
(0.99 and 1.73 µg/L) were spiked into the sample. Good recovery was obtained, ranging
between 90.9–115.0%, which shows the method has good accuracy with an RMSD of less
than 7% [136]. Similarly, Salehinia et al. (2016) reported on hydrophobic magnetic mont-
morillonite composite to extract BPA in water samples. Under the optimum condition,
hydrophobic magnetic montmorillonite can remove the BPA from water samples with a
LOD and LOQ of 0.15 and 0.35 µg/L, respectively. The precision was investigated by carry-
ing out extraction in a spiked sample at two different concentrations (50 and 200 mg/L).
The result indicated that the reported method had a good precision with RMSD less than
2.5%, and an enrichment factor of 34. Additionally, to investigate its capability in real
samples, the authors applied the method to several water samples (well, wastewater, river,
and leachates) by spiking the sample at three concentration levels (10, 20 and 50 µg/L).
Relative recoveries of >95% were obtained, with RMSD 2.7% and 3.8% for inter- and intra-
day, respectively. This indicates that the reported method has a good sensitivity with no
significant effect on the matrices from the samples [135].

Another MSPE technique was reported by Peng et al. (2020), where the application
is slightly different compared to other reported methods. In this technique, magnetic
montmorillonite was used to remove the interferences present in the sample prior to the
extraction of the BPA. A negatively charged Fe3O4/montmorillonite surface at the entire ex-
traction pH condition made it suitable to remove the interferences from the sample without
affecting the target analyte. The BPA was extracted by ultrasound-assisted methanol–water
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mixture (1:1, v/v). The reported method has shown good LOD and LOQ ranging from
5.1–8.6 and 16.9–29.2 µg/L, respectively. Furthermore, the method’s precision by conduct-
ing five parallel experiments for the analyte at a concentration of 100 and 300 µg/L has
indicated that the method has good precision with RMSD lower than 7%. Furthermore, the
accuracy of the method was investigated by assessing the relative recoveries of the BPA at
three different concentrations (200, 400 and 800 ng/g, respectively). The relative recoveries
obtained ranged from 84.3–98.2%, with an RMSD of less than 7% [137].

2.1.3. Stir Bar Sorptive Extraction (SBSE)

Generally, SBSE is a solid based extraction technique where sorbent is coated onto
a glass-coated magnetic bar. The bar will be introduced into the sample solution and
stirred for extraction process. The bar will then be removed from the sample, dried, and
desorbed using solvent [118]. Thus, in the technique, montmorillonite was coated onto the
glass magnetic bar by using an epoxy resin, which exhibited robust support with excellent
mechanical stability. Under the optimum SBSE condition, the technique demonstrated good
linearity and R2 of 0.9922. The LOD and LOQ were 0.02–0.34 µg/L, and 0.06–0.92 µg/L,
respectively with good RMSD within the range of 2.8–4.3% for all the analytes. The bar-to-
bar RSDs obtained were in the range of 4.6–5.1% (n = 6). The method has been successfully
applied in different types of environmental waters (well, leachates, and wastewater) and
good relative recoveries higher than 88.0% were achieved [138]. These results indicate that
the developed techniques have good sensitivity and ability to determine chlorophenols at
trace levels. Furthermore, the employment of montmorillonite is also capable of enhancing
the extraction efficiency and enrichment factor of the technique.

2.1.4. Rotating Disk Sorptive Extraction (RDSE)

RDSE is an improvised SBSE extraction technique where a Teflon disk coated with poly-
dimethylsiloxane (PDMS) film on one of its surfaces is used instead of a stir bar. The PDMS
surface will act as the extraction phase to extract the target analyte from the samples. The
main advantage of RDSE is the utilization of a Teflon disk which has a larger surface area
than the stir bar and will improve the contact area of the extraction phase. Apart from that,
since the extraction phase and the container are separated, it allows high velocity stirring
to be carried out (facilitating the mass transfer of analyte) without damaging the extraction
phase [139]. Thus, Fiscal-Ladino et al. (2017) employed the RDSE method using montmo-
rillonite 1-hexadecyl-3-methylimidazolium bromide montmorillonite (montmorillonite-
HDMIM-Br) for the determination of phenols in water. The technique has good accuracy
and precision with low LOD and LOQ of 0.003–0.043 µg/L and 0.007–0.100 µg/L, respec-
tively. Furthermore, the method achieved good reproducibility and high recovery of the
analytes at different extraction disks (n = 6) with analytes concentration of 1.0 µg/L in a
water sample. The recovery ranged between 35.8–55.5%, with an RMSD of less than 25%.
The developed method has revealed that the montmorillonite-HDMIM-Br composite can
retain most polar PCBs compared to other non–polar sorbents [140]. The finding demon-
strated the capability of the modified clay to be employed for phenols determination in
environmental waters.

2.1.5. Solid Phase Microextraction (SPME)

Numerous modifications of montmorillonite have been carried out to improve the sen-
sitivity and extraction efficiency. As an example, in the SPME technique, a montmorillonite-
based composite was synthesized and utilized as fiber as an alternative to PDMS fiber.
SPME technique is another example of SPE in which a coated fiber will be inserted into the
samples and the analytes are transported from the sample matrix to the vicinity of the fiber
(extracting phase) through the agitation process [141]. Abolghasemi et al. (2015) reported
on the SPME technique for phenol determination in water. In the method, montmorillonite
was directly intercalated with polyaniline, a long chain cationic surfactant. The polyaniline
was chosen due to its promising properties such as high surface area, and capability to
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establish π-π and hydrophobic interaction. Addition of polyaniline to the montmorillonite
caused a change in polarity of the material from hydrophilic to hydrophobic and was able
to extract phenols from the water. Moreover, the reported technique has a good LOD in
the range of 0.005–0.014 µg/L with corresponding R2 between 0.993–0.998. The technique
also has good precision (4.6–9.1%) and reproducibility (14.3–7.9%). The result has indicated
that polyaniline–montmorillonite fiber was able to improve the chromatographic responses
to 2.5–3.5 times higher than the results acquired using conventional PDMS fibers [142].
Abolghasemi et al. (2014) also synthesized montmorillonite composite by adding polypyr-
role polymer for modification of interlayer surface of montmorillonite. This composite
was able to improve the adsorption of the phenols by increasing surface area, thermal and
mechanical properties of the SPME fiber. The LOD obtained for the study was between
0.05–1.3 µg/L with R2 ranging between 0.996–0.998. The method was also compared with
other reported SPME fibers such as 3-(trimethoxysilyl) propyl amine/PDMS, polyacrylate,
dodecylsulfate-doped polypyrrole, and oxidized multiwalled carbon nanotubes and it has
shown that montmorillonite-polypyrrole composite has comparable LOD [143].

Apart from montmorillonite, other natural clays have also been used as SPME fiber
such as halloysite nanotubes and hydroxyapatite. Abolghasemi et al. (2016) reported
another approach by using halloysite coated with polyaniline polymer for determination of
CPs in water. The presence of hollow tubular structure in the halloysite-coated polyaniline
resulted in high surface area and improved the phenols extraction. The analytical perfor-
mance of the newly developed SPME fiber was evaluated and, based on the result, the
method has good LOD ranging from 0.01–100 µg/L with a precision lower than 10%. The
reproducibility of the fiber was also investigated and RSD less than 13% was recorded.
Moreover, the reported SPME fiber achieved a lower LOD, with better precision compared
to commercial fibers [144]. Additionally, Abolghasemi et al. (2016) have utilized hydrox-
yapatite coated onto nanoporous anodized alumina wire for SPME fiber extraction of
phenols. It possessed good mechanical strength, high adsorption capacity, and exceptional
biocompatibility for the extraction process. It shows good LOD of 0.5–1.2 µg/L, and R2

of 0.995–0.997 with good precision of <8.3%. Furthermore, the study also revealed that
the nanocomposite fiber has a better mechanical strength, flexible thermally stability, and
robustness for reusability, compared to the conventional SPME fiber [145].

In summary, the pristine and modified clays have shown a good capacity for trace
level extraction and determination of phenols from the environmental waters. Table S2 in
the supplementary material highlighted more studies reported on clays for the extraction
of phenols from environmental waters. Among the various clays, montmorillonite is
widely used, owing to its promising properties, particularly its large surface area and
cation exchange capacity [137]. Apart from that, the ease of its surface modification from
hydrophilic to hydrophobic makes it a versatile sorbent for such applications [140].

2.2. Clays for Adsorptive Removal of Phenols
2.2.1. Natural Clays Phenols Adsorption

The application of natural clays such as quartz, montmorillonite, halloysite, dickite,
nacrite, and bentonite has been widely explored for the adsorption of various pollutants
from environmental waters [71,146]. They are characterized as nanostructured porous ma-
terials with large surface areas and uniform surface conformations [147,148]. Furthermore,
they are also known to possess interlayer microstructures with good mechanical strength,
which enable them to retain large and small molecules from an aqueous medium [149,150].
Thus, both natural and modified clays have been widely applied for wastewater treatment
applications due to their availability, cost effectiveness, and ease of application.

Researchers have investigated the adsorption of phenols onto various natural clays.
Liu et al. (2015) studied the adsorption of phenols onto montmorillonite clay. The strong
adsorption of the pollutants onto the adsorbent is attributed to the affinity of the homoionic
Na, K, and Cs ions from the clay towards the pollutants [151]. Ben-Moshe et al. (2018)
studied the phenol adsorption onto montmorillonite, hectorite, sepiolite, and halloysites
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with improved efficiency [152]. The binding of aromatic cations to both charged and
neutral sites of the adsorbents elucidated the porous nature of the clays and the formation
of multilayer surface adsorption [153]. Previously we have reported on the adsorption of
2,4,6-TCP onto halloysite nanotube with BET specific surface area of 30 m2/g. The adsorbent
achieved maximum adsorption capacity of 139 mg/g with the adsorbate concentration
of 200 mg/L within 4 h [101]. The adsorption of organic pollutants onto the halloysite
nanotubes occurs via multiple surfaces; the external surface, the interlayer surface, and
the internal lumen of the adsorbent [154,155]. Calcination of the raw clays at higher
temperature improved their adsorption capacity, which was attributed to the increased
in surface porosity of the clays. This was proven by the work of Ouallal et al. (2019) on
the adsorption of phenol onto calcined Moroccan clay. The porosity of the calcined clay
(at 1000 ◦C) was higher compared to the uncalcined clay with BET specific surface area of
62.20 m2/g (calcined clay) and 25.35 m2/g (uncalcined clay). Thus, the calcined clay has
achieved higher adsorption capacity (2.93 mg/g) than the uncalcined (1.64 mg/g) [156].

Usually, the activated clays offer a better retaining capacity of the pollutants from
the aqueous medium [105]. Thus, researchers have investigated the activation of clays
using acidic reagents. For instance, acid activation of bentonite with HCl resulted in
the improved porosity of the material, with a BET specific surface area of 65.89 m2/g
and 50.93 m2/g for the modified and pristine bentonite, respectively. Consequently, the
modified bentonite achieved higher phenol adsorption of 55 mg/g within 30 min [96].
Furthermore, the activation of Moroccan clay with sulfuric acid at 110 ◦C for 12 h resulted
in the materials with BET specific surface area of 74.43 m2/g (activated) and 51.42 m2/g
(pristine), while the adsorption capacity of the activated clay was 6.80 mg/g, compared
to 2.71 mg/g for the pristine [97]. Table 1 highlighted more on the adsorption of phenols
onto the natural clays. In addition, the adsorption capacities and equilibrium time were
discussed comprehensively to understand the adsorbent’s performance.

Table 1. Adsorption of phenols onto natural clays.

Adsorbent Pollutant Concentration
(mg/L)

Adsorption
Capacity (mg/g)

Equilibrium
Time (min) Ref.

Natural clay
Na-Montmorillonite phenol 5 11.1

18.9 15 [157]

Natural clay phenol 400 37.6 120 [158]
Bentonite phenol 500 1.8 360 [159]
Raw clay

Activated clay phenol 50 2.7
6.8 180 [97]

Stevensite phenol 100 8.9 180 [160]

Clay
Phenol

3,4-DCP
2,5-DCP

100
14.5
48.7
45.5

720 [161]

Montmorillonite clay 4-CP
phenol 10 0.5

0.4 555 [98]

Kaolinite clay
Metakaolinite phenol 100 25.5

24.0 40 [94]

Natural clay
Calcined clay phenol 98 10.6

59.1 1440 [162]

Natural clay 2-CP 100 27.5 60 [163]
Calcined clay phenol 40 12.0 840 [164]

Muscovite clay phenol 5 - 600 [110]
Magadiite phenol 50 52.1 60 [165]

Palygorskite BPA 50 30.0 120 [166]
Montmorillonite BPA 100 1.3 240 [167]
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2.2.2. Modified Clays for Phenols Adsorption

Notwithstanding the application of various clays in adsorption studies, some re-
searchers argued on the lack of selectivity of the pristine clay towards pollutants adsorption,
particularly those pollutants containing cationic and ionic functional groups [26,168]. Thus,
surface modification has been proposed as the best approach to improve their adsorption
properties. Various modifications using surfactants [169], polymer incorporation [98], or-
ganic compounds [99], metal oxide nanoparticles and surface charged ions [101], have been
shown to effectively increase the surface porosity and cation exchange capacity of the clays
for the adsorption performance [102,170]. Moreover, the modifications also improved the
physicochemical properties of the pristine clay, such as the polarity of the clay, which is
vital for the adsorption process [103,171].

Cationic surfactants have demonstrated effective performance of the clays for adsorp-
tion application. They were shown to improve the porosity, stability, and polarity of the
clays [104]. For instance, Richards and Bouazza (2007) explored the physical features of
HDTMA surfactant in the modification of bentonite and basaltic clays, forming composites
with good cationic exchange capacity and enhanced adsorption efficiency for phenols
adsorption [105]. Furthermore, potential properties of octadecyl trimethyl ammonium
chloride (OTMAC)-modified attapulgite was also investigated for phenol adsorption and
the material was capable to completely removed the pollutant within 60 min of the batch
adsorption experiment [172]. The surfactant modification of montmorillonite with HMBP
resulted in montmorillonite with effective adsorption of phenol in the aqueous solutions,
achieving the highest adsorption capacity of 30.6 mg/g [100]. Another report has shown
that surfactant modification of montmorillonite using HDTMA resulted in composites
with improved adsorption efficiency towards elimination of phenol and 4-CP at room
temperature and shorter equilibrium time of 25 ◦C and 15 min, respectively [98].

Similarly, adsorption of phenols was reportedly investigated using charged-ions-
modified and metal-oxide-nanoparticles-modified clays. These materials were shown to
significantly improve the clays’ surface properties and adsorption performance. Compari-
son studies were reported by Berraaouan et al. (2020) for the adsorption of carvacrol onto
bentonite and Na-modified bentonite. The cation exchange capacity of the Na-bentonite
increased compared to the pristine bentonite, 83.33 meq/g (Na-bentonite) and 61.84 meq/g
(pristine bentonite). Similarly, the BET specific surface area and pore volume of the compos-
ite was 94.25 m2/g and 0.166 cm3/g respectively, which was much higher than the pristine
bentonite, with BET surface area and pore volume of 3.89 m2/g and 0.006 cm3/g, respec-
tively. Thus, the Na-bentonite offers higher adsorption sites for the adsorbate molecules,
achieving an adsorption capacity of 110 mg/g at equilibrium [104]. The effect of Na+ for
the enhancement of montmorillonite adsorption capacity towards phenol was reported
and the adsorbent possessed good thermal stability and dispersibility in both water and
organic solvent, thus, showing good efficiency in phenols adsorption [109]. Previously,
our group has also demonstrated the adsorption performance of halloysite nanotubes for
the 2,4,6-TCP adsorption upon introduction of Cu2+ ions on the surface of the clay. The
monolayer adsorption capacities were 196 and 217 mg/g for the pristine and functionalized
material, respectively [101]. Higher adsorption efficiency of dual-cation montmorillonite
for phenol adsorption was also reported [173]. The BET surface area of the adsorbent was 46
and 50 m2/g for the pristine and modified clays, respectively. Thus, the latter attained equi-
librium within 10 min. The adsorption of phenols and CPs were reported with Ghanaian
Muscovite clay functionalized with Ca2+, Mg2+, Na2+, and K2+, achieving better adsorption
efficiency than the pristine clay [110]. On the application of metal-oxide nanoparticles,
the materials have also shown improved in the clays’ adsorption performance [107]. The
composites possessed superior chemical properties, good thermal stability, and mechanical
resistance than the pristine clays. The adsorbent can also be regenerated with a magnetic
bar, such as in the case of magnetic oxide nanoparticles [9,90].

Composites of clays with activated carbon [111], biochar [112], graphene [113], chi-
tosan [114], geopolymers [84], and transition metal complexes [174], were investigated for
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the phenol’s adsorption. They were mostly characterized by higher adsorption efficiency
and good mechanical stability. Table 2 represents the previously reported studies on the
adsorption of phenols onto various modified clays. Higher adsorption capacity and shorter
equilibrium time have been emphasized as their major advantages. Despite the significance
of the composites, the high cost of the modification served as their major shortcoming.

Table 2. Adsorptions of phenols onto modified clay minerals.

Adsorbent Pollutant Concentration
(mg/L)

Adsorption
Capacity (mg/g)

Equilibrium
Time (min) Ref.

Na-Montmorillonite Phenol 5 18.9 15 [157]
Chitosan-coated
montmorillonite Phenol 100 28.4 240 [175]

Modified
montmorillonite

Phenol
3-CP 250 10.0

15.0 240 [176]

HDTMA-stevensite Phenol 100 13.2 180 [160]
C14-4-C14im-Vt

organo-clay
C14-4-C14im-SiNSs

organo-clay
C14-4-C14im-Mt

organo-clay

BP 200
400.2
230.8
220.3

180
20

120
[177]

HDTMA-bentonite Phenol 200 50.0 30 [96]
OTMAC-modified

attapulgite Phenol 0.05 0.8 60 [172]

HMBP-montmorillonite Phenol 47 8.3 120 [100]
Surfactant-bentonite
Surfactant-kaolinite Phenol 60 8.4

3.5
30
50 [147]

DDTMA-
montmorillonite

DDDMA-
montmorillonite

p-CP
p-NP
p-CP
p-NP

100
4.1

11.5
12.9
14.3

80 [178]

CTAB-modified clay phenol
m-NP

1.0
0.7

28.0
31.0 720 [179]

BHPD-montmorillonite 2-napthol
phenol

160
100

124.0
34.0 40 [106]

CHS-STAC-
montmorillonite phenol 40 2.6 120 [173]

Surfactant-aluminum-
pillared

montmorillonite

4-NP
2-NP 20 14.0

17.0 70 [180]

FTMA-montmorillonite Phenol 200 18.5 420 [181]
HDTMA-bentonite

Na exchanged bentonite phenol 30 22.4
2.6 60 [182]

HDTMAB-Modified
Palygorskite BPA 50 108.2 120 [166]

Ca-montmorillonite BPA 100 34.2 240 [167]

2.3. Parameters Optimization for Phenols Adsorption

Adsorption study is usually accompanied by stoichiometric factors and represented
as the rate of the removal of pollutants. Studying these factors enables researchers to
ascertain the performance of a given adsorbent and correlate the mechanism of the process.
It enables the researchers to ascertain best experimental design of the process according to
the effects of the individual parameters. Various factors such as the stirring rate, volume
of the sample used, contact time, dosage of adsorbent, concentration of the analyte, pH of
the medium, temperature, desorption time, etc., are the most widely employed methods
to describe adsorption processes. Evaluation of these factors is usually conducted at
predefined range of values by a trial-and-error approach or based on the literature studies.
The most widely used approach is one factor at a time. However, it is time consuming and
involves multiple steps. Alternatively, multi-variable optimization tools, such as response
surface methodology (RSM) and Taguchi optimizations, can be used to overcome these
shortcomings. For phenols adsorption onto clays, the parameters widely employed include
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contact time, clay loading, concentration, pH, and temperature (Figure 5). Findings on the
effects of these individual parameters are illustrated and analyzed below.
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2.3.1. Contact Time

The effect of contact time on trace level extraction and adsorptive removals of phenols
using various clays was widely studied. It is a vital parameter used to estimate the
efficiency of the materials. Typically, a clay is rated based on its uptake of pollutant
molecules from the aqueous medium within the shortest possible time. The time for
the completion of adsorption has been explored. Salehinia et al. (2019) discussed the
performance of C16-silica/magnetic montmorillonite for BPA microextraction. About 90%
of the analyte was extracted within 5 min at sorbent dosage and BPA concentration of
5 mg and 5 mg/L, respectively. The adsorption capacity achieved at the equilibrium was
4.36 mg/g [135]. Dehmani et al. (2020) reported on the rapid extraction of phenol onto raw
and activated Moroccan clays. The equilibrium was achieved within 180 min with 3 times
the magnitude of the raw clay, attributed to its higher BET specific surface area [97]. The
superior performance of the composite was attributed to the enhanced affinity of the BPA to
the hydroxyl alkyl chain functional groups of the composite. Abolghasemi et al. (2015) also
reported on headspace SPME extraction of 4-CP, 2,4-DCP, 2,6-DCP, 2,4,6-TCP, 3-NP, and
4-NP from water onto a fiber coated with a polyaniline-montmorillonite nanocomposite.
The extraction profile indicated the affinity and efficiency of the fiber to adsorb analyte
until equilibrium was attained within 50 min [142].

For adsorption application, surfactant-modified montmorillonite composite was used
for adsorption of 4-NP and 2-NP. The equilibrium was attained within 70 min for both single
and multi-component adsorption systems. Additionally, the process was characterized by
two adsorption steps: the rapid adsorption of the molecules to the surface of the composite
and the steady state associated with the adsorption of the molecules onto the internal
pores of the composite [180]. Phenol removal onto surfactant-modified bentonite has also
been reported, with optimum contact time achieved within 60 min [182]. The Moroccan
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stevensite and its corresponding surfactant-modified form adsorbed phenol molecules
gradually until equilibrium was established at 180 min [160]. The complete adsorption of
2-napthol and phenol was achieved within 40 min by surfactant-modified montmorillonite.
The adsorption capacity of 2-napthol and phenol using surfactant-modified stevensite were
107 mg/g and 21 mg/g, respectively. (Figure S1 in Supplementary Material). The reason for
the higher adsorption capacity of phenol and 2-napthol resulted from extra phenyl in the
structure, which caused delocalization of π-electron density and stronger π-π interactions
between the pollutant and the clay adsorbent [106]. Thus, a clay mineral or composite is
classified as efficient because it achieves complete uptake of pollutant molecules within the
shortest possible time.

2.3.2. Clay Loading

The amount of clay used strongly influences the recovery and adsorptive removal of
the phenols from the medium. In most cases, higher dosage resulted in higher adsorption
capacity and shorter equilibrium time due to more available adsorption sites [123]. There-
fore, Liu et al. (2011) have investigated the effect of sorbent dosage on the MSPE extraction
of CPs by montmorillonite/Fe3O4@PSF composites. The amount of sorbent used was
studied in a range of 20 to 150 mg with a sample volume of 25 mL, containing 10 µg/mL
of the analytes. The findings indicated that a high amount of sorbent was required to
sufficiently recover the analytes. Thus 80 mg was maintained as the dosage for the process
optimization [136]. Peng et al. (2020) reported on the use of DSPE for BPA microextraction
using magnetic montmorillonite. The sorbent dosage significantly impacted the extraction
efficiency and ease of recovery. The amount of Fe3O4/montmorillonite was varied from
10 to 50 mg, and the extraction efficiency is presented in a chromatogram presented in
Figure S2 in supplementary material. It indicated that higher recovery of the analytes was
achieved at 50 mg of adsorbent [137].

The amount of kaolinite and metakaolinite for phenol uptake was investigated by
Ghogomu et al. (2015). Varying the dosage from 0.1 to 0.7 g increased the removal
efficiency [94]. Tabana et al. (2020) have shown that adsorption of phenol onto calcined
clay increased as the amount of sorbent loading increases from 5 to 10 g, achieving the
adsorption efficiency of 68–83%. However, no significant removal efficiency was observed
when the clay dosage was increase from 15 to 20 g. This is due to the saturation of active site
of the clays by the phenol molecules in a sequential manner. Increasing the dosage above
the optimum limit decreased the dispersion efficiency of the clay, leading to agglomeration
and blocking of adsorption sites [164]. The sorbent dispersion in an aqueous solution
occurs uniformly up to a certain point at which all the active sites become exposed and
fully occupied by adsorbates [183]. Thus, optimum adsorption was achieved at a moderate
dosage of the sorbents.

2.3.3. Concentration

Phenol concentration has significant effect on the adsorption efficiency of the clay
materials. Higher concentrations resulted in the increase of the adsorption capacity due
to mass transfer of the pollutants from the aqueous phase to the vacant sites of the sor-
bent’s surface. According to Liu et al. (2011), increases in both extraction time and initial
concentrations of the 2-CP and 4-CP resulted in the enrichment of an SPE for CPs microex-
traction using montmorillonite and montmorillonite/Fe3O4@PSF composite. Thus, better
recovery, of 90–109%, was achieved for all the real water samples studied at the higher
concentration of the analytes [136]. Banat et al. (2000) reported that phenol adsorption
onto bentonite increased with increasing pollutant concentration from 50 to 500 mg/L.
Due to the abundant adsorption sites on the surface of the clays, the phenol molecules
were completely adsorbed even at the higher concentrations. [159]. According to Maarof
et al. (2002), the adsorption of phenol, 3-CP and o-cresol onto montmorillonite increases,
as the concentration of the pollutants increases from 25 to 200 mg/L. Phenol has higher
solubility compared to the other pollutants; resulting in lower adsorption efficiency (70%)
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compared to o-cresol (88%) and 3-CP (97%) [176]. Ghogomu et al. (2015) emphasized that
the uptake of phenol by kaolinite and metakaolinite increases as the initial concentrations
increases from 20 to 160 mg/L. This is related to the collision of phenol molecules with the
active sites of the adsorbent’s surface. At higher concentration, the maximum adsorption
capacity achieved was 24.48 mg/g for kaolinite and 31.1 mg/g for metakaolinite [94].
Yang et al. (2015) also studied the adsorption of phenol and 2-napthol onto gemini surfac-
tant organo-montmorillonite at different concentrations of 0.4 to 2.0 mg/L (Figure S3 in
Supplementary Material). The adsorption capacity increased with the concentrations and
the findings indicated that 2-napthol has higher adsorption capacity compared to phenol at
similar conditions, attributed to the stronger hydrophobicity of 2-naphthol and delocalized
π-electron density [106]. Chidi et al. (2018), reported that the adsorption of phenol onto
surfactant-modified bentonite at 298K increased steadily with concentrations from 30 to
120 mg/L. The equilibrium was achieved within 60 min even at the highest concentration,
attributed to the available adsorption sites on the surface of the composite [182].

2.3.4. pH of the Solution

The pH of the medium at which the extraction occurs is an important factor in mi-
croextraction study. In phenol microextraction, the pH affects the extraction efficiency
and recovery of the sorbent. It influences the chemical form and solubility of phenols
existing in the solution. Generally, phenols exist in ionic form at pH higher than their
pKa [26]. Liu et al. (2011) studied the influence of pH on the extraction of 4-CP and 2-CP
onto montmorillonite/Fe3O4@PSF composite. The extraction was favored by the acidic pH
of 2–6, attributed to the hydrophobicity of the analytes and the cation-exchange interaction
existing between the composite and the analytes. When the sample pH is adjusted to
pH higher than 8.0, the extraction efficiency decreases, attributed to the deprotonation of
phenols [136]. Ghani et al. (2016) stated that extraction of CPs onto montmorillonite/epoxy
occurred at acidic pH. The highest extraction efficiency of 2,4,6-TCP and penta-CP was
achieved at sample pH 5.0, which is due to the retention of analytes onto the montmo-
rillonite through electrostatic interaction between the analytes and the functional group
on the solid support. The pKa of the analytes were 6.59 and 4.90 for the 2,4,6-TPC and
penta-CP, respectively [138].

Investigations have been made on the effect of pH toward the adsorptive removal
of the phenols. Park et al. (2013) have shown that an acidic condition was better for
p-chlorophenol and p-NP adsorption onto surfactant modified-montmorillonite. This can
be explained by the presence of a siloxane (Si-O) group in the form of tetrahedral sheets on
the external surface of the montmorillonite that becomes weaker and leads to the formation
of Si-O−, a bond that eventually converts to Si-OH depending on the variation of the
pH. Upon increasing the pH, the surface functional group of the montmorillonite became
fully or partially deprotonated, thus forming a negatively charged surface. The surfactant
molecules in the interlayer space of the organoclays acted as an efficient partition medium,
and the predominant hydrophobic interaction and van der Waals interaction resulted in
the better adsorption of the pollutants [178]. Similar observation was made by Li et al.
(2018) using FTMA-montmorillonite. The adsorption capacity decreased when the sample
pH exceeded 9 (Figure S4 in supplementary material). The reason was due to electrostatic
repulsion between the adsorbent and the phenol solution [181]. A recent finding from
Ouallal et al. (2019) has also reported on the decreased of the adsorption capacity of phenol
onto calcined clay when the sample pH increases. The qe values were 2.88 and 2.54 mg/g at
pH 4 and 11, respectively. This was attributed to the predominance of negative charges on
the surface of the adsorbent at the alkaline pH, which coincided with the negative charge
on the phenol at pH above 9, forming phenolates (C6H5O−) with a pKa value of 9.95. Thus,
repulsion has resulted between the two surfaces [156].
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2.3.5. Temperature

The effect of temperature on the phenol adsorption onto clay materials have been
extensively explored. Increase in temperature will increase the adsorption performance,
due to swelling effect of the clays. Investigation carried out by Li et al. (2018) has shown
an increased in the adsorption capacity from 17.60 to 19.30 mg/g at 25–35 ◦C for phenol
adsorption onto FTMA-montmorillonite [181]. They have attributed the findings to the
swelling of the adsorbent as the temperature increased. The extraction efficiency of phenols
onto the polyaniline-montmorillonite nanocomposite using headspace SPME was also
found to increase with temperature. As the temperature increased, the rate of transfer of the
analytes onto the surface of the adsorbent increased [142]. Dehmani et al. (2020), pointed
out that the adsorption of phenol onto the raw and activated Moroccan clay is affected
by the increase in temperature. For activated clay, adsorption temperature was studied at
30–50 ◦C, achieving adsorption capacities of 5.84–6.84 mg/g, respectively. Similarly, for
the raw clay, adsorption capacity was between 1.39–2.71 mg/g. The endothermic behavior
observed was attributed to the increase in the mobility of the phenol molecules to the clay
surfaces at the higher temperature due to the dissipation of energy to the system [97].

However, a significant decrease in the adsorption capacity was observed with an
increase in temperature from 25–55 ◦C for the HMBP-montmorillonite (Figure S5 in
Supplementary Material) [100]. This is due to the decrease in the interaction between
phenol and the adsorbent as the temperature is increased (Luo et al. 2015). Li et al. (2018)
reported that, at temperatures above 35 ◦C, the adsorption capacity of phenol onto the
FTMA-montmorillonite drastically decreased, associated with the weakening of the ad-
sorptive forces between the active site of the adsorbent and the phenol [181]. From the
finding of Salehinia et al. (2016), an increase in temperature from 25 to 65 ◦C decreased
the adsorption efficiency. The maximum adsorption capacity at 25 and 65 was 59.17 and
38.76 mg/g, respectively [135].

2.4. Modeling Kinetics

The kinetic study of adsorption describes the process’s mechanism and rate-controlling
steps [184]. Thus, the kinetics for the uptake of phenols by clay materials have been studied.
Various adsorption models such as pseudo-first order, pseudo-second order, intra-particle,
and Elovich models were employed. The aim was to determine the process’s steady
state and the rate-controlling steps by subjecting the experimental data to the models.
Tai et al. (2014) studied various kinetic models for the adsorption of 2-naphthol onto
organopolygorskite (Figure 6). It was found that the adsorption process of 2-naphthol onto
organopolygorskite fit the pseudo-second-order model. According to the obtained results,
its R2 and calculated adsorption capacity (qe cal) values were 0.9999 and 19.08 mg/g, re-
spectively, which has shown good agreement with the experimental qe value of 18.86 mg/g.
Moreover, from the intra-particle model, the adsorption proceeds via two steps. The first
step involved the adsorption of the 2-napthol molecules onto the surface of the clay, while
the second step represented a diffusion of the molecules onto the clay’s pores [185]. Chidi
et al. (2018) studied the adsorption of phenol onto Na-bentonite and surfactant-modified
bentonite clays. The results also indicated that the adsorption process fit the pseudo-
second-order model, indicating a chemisorption process. The adsorption was higher for
the surfactant-modified bentonite than the Na-bentonite, attributed to the increased in the
affinity of the adsorbent to the phenol molecule upon the surfactant modification [182].
Similarly, the characteristic parameters for the phenol’s adsorption onto the pristine and
thermally modified kaolinitic clays obeyed the pseudo-second-order model [94]. Hamdaoui
et al. (2018) explained the adsorption of phenols onto the Moroccan stevensite, otherwise
known as Rhassoul clay and the HDTMA surfactant modified clay. The adsorption was
associated with the rapid phenol uptake at the initial stage of the process. The process
was also described as pseudo-second order based on the result of linear regression fit-
ting [160]. Xiang et al. (2019) also described the adsorption of bromophenol blue onto
imidazolium-based gemini surfactant organoclays followed pseudo-second-order model,
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indicating a chemisorption process between the clays and bromophenol. This is due to the
present of abundance sites on their surfaces that allow the chemical interaction between
bromophenol and imidazolium-based gemini surfactant organoclays to occur [177]. In
conclusion, it can be observed that the adsorption kinetics of phenols onto clay material
are mainly dominated by chemisorption process, which is reflected in the availability of
adsorption sites and functional group on the surface of the clays.
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2.5. Modeling Isotherms

The isotherm studies are conducted to describe the equilibrium process, the interaction
between the adsorbent and adsorbate and the surface properties of the adsorbent. Adsorp-
tion isotherms were predicted using different models, e.g., Langmuir, Freundlich, Temkin,
Dubinin–Radushkevich, Redlich–Peterson. An isotherm studies was conducted for the
adsorption of 2,4,6-TCP onto raw and Cu2+-Halloysite clay. The finding revealed that, the
adsorption isotherm was dominated by Langmuir model, implying a monolayer coverage.
The Cu2+-Halloysite clay also exhibited higher monolayer adsorption capacity (qmax) value
of 217 mg/g as compared to the raw clay with qmax value of 196 mg/g. The observed
difference was attributed to the presence of Cu2+ ions on the surface of the halloysite
clay [101].

In contrast, Cardenas et al. (2008) described the adsorption of 3,4-DCP and 2,5-DCP
onto natural clay as multilayer adsorption process according to the Freundlich model. The
adsorption capacity increased exponentially with concentration of the pollutants in the
aqueous phase. The qe experimental values were 45.5 and 14.5 mg/g for the 3,4-DCP
and 2,5-DCP, respectively. However, at higher concentrations the adsorption process
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favored the Langmuir model, signifying a monolayer coverage. This phenomenon is due
to the saturation of active sites at higher concentration of 3,4-DCP and 2,5-DCP. [161].
Park et. (2013) also reported the adsorption of p-CP and p-NP onto surfactant modified
montmorillonite via multilayer adsorption rather than the monolayer process. The binding
of the pollutants onto the adsorbent surface implied its higher number of adsorption sites,
and hence the higher adsorption capacity [178]. Luo et al. (2015) explored several isotherm
models for the phenol adsorption onto HMBP-montmorillonite at various temperatures
(Figure 7). Based on the linear regression analysis, Langmuir, and Redlich–Peterson models
best described the isotherms of the adsorption process, according to R2 values of the
two models. Additionally, the monolayer formation and the separation factor (RL) value
lies between 0–1, which signifies the dominance of Langmuir model for the adsorption
process [100].
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2.6. Regeneration and Reusability of the Clay Minerals

The economic aspect of microextractions and adsorption processes is the ability of the
adsorbent to be reused continuously without decrease in its efficiency over considerable
number of cycles [186]. An ideal adsorbent can remove pollutants from water continuously
without posing additional risk to the water or causing harm to the environment [187,188].
The regeneration and reusability of clays is important for economic practicability, ease of
operation, environmental sustainability, and viability of the microextraction and adsorption
techniques. Clays are considered essential and not known to pose potential harm to the
environment and toxicity to living organisms. Thus, they demonstrated potential and
promising application for environmental water remediation.
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Tai et al. (2014) reported on the reusability of organopolygorskite for 2-napthol
adsorption. The adsorption mixture was subjected to rotary shaking at 150 rpm at 298 K for
4 h before separating the supernatants by centrifugation. The adsorption was then subjected
to further adsorption cycles, i.e., each clay was regenerated for five consecutive cycles. Little
or no reduction in the adsorbent dosage was observed. The obtained adsorption capacities
were 27.0 and 23.8 mg/g, at 1st and 5th cycles, respectively [185]. Li et al. (2018) studied the
recovery of surfactant-modified montmorillonite using a reduction method conducted at
constant potential of +0.0 V for 21 h under N2 atmosphere at 25 ◦C. The adsorption cycle was
terminated at the 5th run due to the gradual decrease in the adsorption capacity and the loss
of the clay during regeneration. The adsorption of 4-NP onto coconut shell–clay composite
was investigated by Adebayo and Areo (2021). The adsorbent was regenerated using 90%
acetone and subjected to reusability for five consecutive cycles as shown in Figure 8 [40].
The observed decrease in the adsorption capacity of the clay was attributed to the decrease
in the adsorption sites due to incomplete electrochemical oxidation surfactant [181]. The
reusability of thermally modified double-layered hydroxide clay via calcination at 500 ◦C
for 4 h was also reported. The regenerated clay was able to achieve 86–60% adsorption
efficiency at 1st, 2nd, 3rd, and 4th cycles, respectively [164]. Some researchers have stated
that the calcination of regenerated clay could improve its adsorption performance [189,190].
However, others argued that higher temperature calcination usually leads to a decrease in
the clay’s adsorption capacity because of decreases in its crystallinity [162,191].
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2.7. Mechanisms for the Phenol Adsorption onto Clays

Some research has attempted to propose a mechanism for the adsorption onto clays.
The ways in which phenols interact with the clays include hydrophobic, electrostatic, and
molecular interactions [192]. An investigation of the adsorption of phenol on Algerian clay
was reported. The mechanism of the adsorption studied revealed that the phenol molecules
interacted with the silanol group on the clay surface via hydrogen bonding. Ouallal et al.
(2019) pointed out that hydrogen bonding was predominant for the adsorption of phenol
onto raw and calcined Moroccan clay. This is because the kaolinite structure of the clay
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contained sodium cation (Na+) with water of hydration on its surface. Thus, at higher
concentrations, the phenol molecules could penetrate the intermediate layer of the kaolinite
and form hydrogen bonding with the clay [156].

Apart from hydrogen bonding, electrostatic interaction, π-π interaction and van der
Waals interaction are also involved in the adsorption process. Li et al. (2015) investigated
various possibilities for 4-CP and 2,4-DCP adsorption onto dodecyltrimethylammonium
bromide (DTAB) and cetyltrimethylammonium bromide (CTAB)-modified montmoril-
lonites. The surface characteristics of the clay organophilic upon modification enhanced
the composite’s adsorption properties. The negatively charged CP molecules interact with
the electrostatic bonding with positively charged surfaces of the DTAB-montmorillonite
and CTAB-montmorillonite.

Additionally, π-π interaction existed between the benzene ring of the 4-CP and 2,4-
DCP and the exterior and interior surface sites of organoclays [193]. Luo et al. (2015)
explored possible pathways for the adsorption of phenol, PCP, PMP, and PNP onto HMBP-
modified montmorillonite. HMBP formed a heteroatomic ring with the clay via monolayer
in a direction parallel to the siloxane surface of the clay (Figure 9). As such, chances
for the hydrophobic interaction between the phenols and the surface of the clay and the
phenol molecules were limited. Similarly, the possibility of the formation of electrostatic
attraction between the negatively charged HMBP-montmorillonite and the phenols was
unfavorable due to the acidic pH of the solution. Thus, the possibility of π-π interaction
was considered. Since HMBP contained a pyridine ring, the adsorption occurred via π-π
bonding between the phenol and HMBP surface. For PCP, PMP, and PNP, the presence of
an electron-withdrawing group on their surface weakened the interaction by decreasing
the aromatic ring’s π electron density. Hence the adsorption capacity for phenol was higher
(30.6 mg/g) than the other pollutants [100]. These findings agreed with various studies
reported elsewhere [193,194].
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3. Application of Clays for Phenols Remediation in Real Water Samples

Clays have been extensively used as an ideal sorbent for environmental water re-
mediation [195]. Its efficiency in various real water samples was examined and well
reported. Researchers have extended the work to real samples’ phenol microextractions
and adsorptive removal. Peng et al. (2020) studied the extraction of five bisphenols using
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DSPE with magnetic montmorillonite. Good recovery of the analytes was achieved in
the range of 84.3–98.2 (Figure 10). Additionally, inter-day and intra-day RMSD of the
method was in the range of 2.9–6.8% and 2.6–5.6%, respectively [137]. The applicability of
montmorillonite/epoxy-coated stir bars for recovering CPs from different environmental
water samples was studied. The relative recovery was obtained by measuring the ratio
of the analyte concentration in the real samples to that in the pure water samples spiked.
Thus, the recovered analytes reported were 88.5–98.5% for the studied CPs [138]. Liu
et al. (2011) reported on the SPE extraction to determine 4-CP and 2-CP in environmen-
tal waters using montmorillonite/Fe3O4@PSF composite. The recoveries of the analytes
were in the range of 97.1–105.1% in a river water sample, whereas 109–115% were recov-
ered in the wastewater samples. The higher recovery achieved demonstrated the clay
material’s suitability for extracting the analytes [136]. Preconcentration of BPA in trace
amount using attapulgite as SPE sorbent was also reported. The relative recovery of the
analyte in real water samples achieved was 93–97%, indicating the effectiveness of the
material for the BPA extraction [122]. Salehinia et al. (2016) demonstrated the efficiency of
C16-silica/magnetic-montmorillonite for the extraction of BPA from river water samples.
The relative recovery of the analyte achieved was higher than 95% [135]. These findings
emphasized the efficiency of the clays as adsorbent for sample preparation technique.
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3.1. General and Concluding Remarks
3.1.1. Achievement

Based on the literature work covered by this research, it is sufficient to mention that
tremendous achievements have been recorded on the application of raw clays and modified
clays for phenols remediation from environmental waters. Over the last two decades,
various attempts have been made to modify clays to suit the applications on microextraction
and adsorptive removal of phenols. The materials served as good sources of natural and
low-cost sorbents with good porosity and excellent mechanical strength, water, chemical,
and thermal stability for environmental remediation applications. The mesoporous and
heterogenous surface of the clays rendered them able to trap large and small molecules from
the aqueous media. Thus, they have demonstrated good performance for microextraction
and adsorptive removal of phenols from environmental waters. Montmorillonite, being
the most widely explored clay, has shown excellent performance for phenol molecules
extraction. Its hydrophilic and porous surface has been the dominant factor and tremendous
success compared to the other clays. It also possessed cationic charge on its surface and
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the silanol group. Thus, it interacted with the phenols through different mechanisms. The
surface functionalization by various processes such as surfactant modification, grafting
with organic compounds, and cations functionalization had been vital for the improvement
of the properties and performance of the clays. Thus, both raw and modified clays have
presented better adsorption efficiency for the remediation of phenols.

3.1.2. Challenges

Apart from the overwhelming success achieved, there are some gaps that require the
attention of researchers. In accordance with the literature, the discoveries were mostly lim-
ited to batch processes at laboratory scale. As such, investigations on integrated adsorption
process using continuous flow system, column, and membrane technologies need to be ex-
plored for both pilot and industrial scale applications. Moreover, for better understanding
of the performance and prospects of the materials, design-of-experiment (DOE) models
such as response surface methodology (RSM) and Taguchi, etc., should be studied. Addi-
tionally, use of computational techniques such as molecular docking, dynamics, density
functional theory (DFT), ab initio, etc., should be applied to ascertain the actual bonding
interactions taking place at molecular levels.

Another challenge is the issue of discharge of the spent clays after subsequent usage.
Recovery studies served as an alternative to utilize the clays for large number of extraction
or adsorption cycles. However, the issue of disposal remains a challenge. Sometimes, they
are a secondary pollution to the environment, particularly when used as a composite in
combination with other chemical substances. Thus, proper means of disposal are needed to
mitigate these shortcomings and maintain a greener environment. Incineration is mostly
considered. However, it has higher operation cost, poses environmental risk, and could
led to air pollutions. Researchers are therefore encouraged to discover more innovative
technologies for the sustainable disposal of the spent clays.

3.1.3. Conclusions

The application of clays for trace determination and adsorptive removal of phenol
from environmental waters recently gained more recognition. The natural source and
relative abundance of the minerals was emphasized as one of their major advantages.
They possessed high porosity, good mechanical strength, and cationic exchange capacity.
Montmorillonite has been the most widely employed clay due to its higher BET specific
surface area and cation exchange capacity. Acid and thermal activation has shown to
improve the adsorptive performance of the natural clays. Thus, they interacted with the
phenol via both hydrogen bond formation and van der Waals interactions. Activation
processes via calcination, acid, and alkaline treatment have been shown to improve the
promising features of the raw clays. Thus, the performance of the activated clays has
exceeded that of raw clay in all ramifications.

Surface modifications and functionalization have also been shown to enhance the
characteristic features of the clays. They have good impact on the adsorption efficiency
of clays towards phenols extraction. Processes such as surfactant modification, grafting
with organic molecules, polymer, and metal oxide nanoparticles incorporation, as well as
charged ions functionalization, explicitly improved surface properties of clays, mechanical
strength, polarity, cationic exchange capacity, water, moisture, and chemical stability for
better performance in the microextraction and adsorptive removal of phenols from the
environmental waters. The surfactant modifications proved the more positive of the various
modification techniques. Similar metal oxide nanoparticles resulted in clay composites with
improved characteristics of adsorption performance and ease of sorbent generation. The
effective recovery and reusability of the materials for the microextraction and adsorptive
removal of the phenols clearly indicate their potentialities and prospects for pilot and
industrial scale application.
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concentrations of the adsorbate; Figure S4: Effect of pH on the removal of phenol using surfactant
modified montmorillonite; Figure S5: Effect of temperature changes for adsorption of phenol onto
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nols: Table S2: Various Solid-Phase Extraction Techniques Reported on Determination of Phenols.
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18. Michałowicz, J.; Włuka, A.; Cyrkler, M.; Maćczak, A.; Sicińska, P.; Mokra, K. Phenol and chlorinated phenols exhibit different
apoptotic potential in human red blood cells (in vitro study). Environ. Toxicol. Pharmacol. 2018, 61, 95–101. [CrossRef]

19. Anku, W.W.; Mamo, M.A.; Govender, P.P. Phenolic Compounds in Water: Sources, Reactivity, Toxicity and Treatment Methods; Intech
Open: London, UK, 2016; pp. 419–443.

20. Călinoiu, L.F.; Vodnar, D.C. Thermal processing for the release of phenolic compounds from wheat and oat bran. Biomolecules
2020, 10, 21. [CrossRef] [PubMed]

21. Bazrafshan, E.; Mostafapour, F.K.; Mahvi, A.H. Phenol removal from aqueous solutions using pistachio-nut shell ash as a low cost
adsorbent. Fresenius Environ. Bull. 2012, 21, 2962–2968.

22. Yangui, A.; Abderrabba, M.; Sayari, A. Amine-modified mesoporous silica for quantitative adsorption and release of hydroxyty-
rosol and other phenolic compounds from olive mill wastewater. J. Taiwan Inst. Chem. Eng. 2017, 70, 111–118. [CrossRef]

23. Fathy, M.; Selim, H.; Shahawy, A.E.L. Chitosan/MCM-48 nanocomposite as a potential adsorbent for removing phenol from
aqueous solution. RSC Adv. 2020, 10, 23417–23430. [CrossRef]

24. Mahmad, A.; Shaharun, M.S.; Zango, Z.U. Adsorption of bisphenol A: Characterisation of ZIF–8, UiO–66(Zr) and MIL–88(Fe)
metal–organic frameworks (MOFs). AIP Conf. Proc. 2022, 2454, 050038. [CrossRef]

25. Dong, R.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Enhancement of organic pollutants bio-decontamination from aqueous
solution using newly-designed Pseudomonas putida-GA/MIL-100(Fe) bio-nanocomposites. Environ. Res. 2019, 100, 237–245.
[CrossRef]
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