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Abstract: In this work, a common third-generation environmentally friendly quaternary ammonium
salt disinfectant, dimethyl dioctadecyl ammonium chloride (DDAC), was used as the modifier to
achieve one-step rapid preparation of the modified red-mud-based adsorption material under the
condition of microwave assistance, and applied it to the adsorption phosphorus in solutions. After
the process of this modification, the structure of the red mud (RM) was not changed, and the DDAC
modification could provide more adsorption active sites. The adsorption experiments indicated that
the novel modified red mud (NMRM) exhibited a good adsorption performance for phosphorus.
The adsorption capability of NMRM for phosphorus was significantly enhanced, and was about
eight times higher than that of the initial RM. The kinetics model of the pseudo-second-order, which
implied that phosphorus was chemically adsorbed on the surface of the NMRM, could accurately
represent the adsorption procedure of NMRM. The adsorption equilibrium of NMRM could be better
depicted using the isotherm model of Freundlich. It was speculated that the ion exchange might
be responsible for the adsorption mechanism of NMRM for phosphorus. Thus, the NMRM is a
potential material for the treatment of phosphorus-containing wastewater due to its outstanding
adsorption capability.

Keywords: red mud; modification; ion exchange; phosphorus; adsorption

1. Introduction

Red mud (RM) is a red-polluting solid industrial waste generated during the produc-
tion of aluminum oxide [1]. For every ton of aluminum oxide produced, 1–2 tonnes of RM
would be produced [2]. However, with the high-quality bauxite deposits used up, the baux-
ite grade continues to drop, leading to an increase in RM production during the production
of aluminum oxide [3]. RM, as a bulk solid waste in aluminum oxide production, has a
comprehensive utilization rate of less than 6%, and most RM is piled up [4]. RM is basically
stored in the open air, occupying a large amount of land [5]. Due to the high alkalinity of
red mud, its stockpiling over a long time not only uses considerable land resources, but
also results in air pollution and land alkalization, thereby contaminating the groundwater,
and it also results in a lot of maintenance costs [1,6–9]. In addition, RM could erode dams
because of its high alkalinity, which might pose serious safety issues [10].

The environmental pollution caused by the long-term storage of RM limits the sus-
tainable growth of the aluminum sector. Therefore, to reduce the environmental pollution,
global scholars have carried out various reuse studies according to the characteristics and
composition of RM [11,12]. For the past several decades, the research on RM utilization
has mainly focused on the valuable metal’s recovery [13,14], the production of building
materials [15,16], and reaction catalysts [17–19]. Recently, the physicochemical properties
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of RM, for example its high dispersion and high specific surface area, have been widely
considered by researchers. These features make it a potential adsorption material [7,20–23].

In recent years, eutrophication has become the most serious water pollution prob-
lem in many natural water bodies [24–26]. The primary cause of this issue is the mas-
sive discharge of phosphorus-containing wastewater from phosphorus chemical enter-
prises [27–29]. Eutrophication will directly change the physical and chemical characteristics
of rivers and lakes, affect the living environment of aquatic organisms, and finally destroy
the stability of aquatic ecosystems [30,31]. Therefore, strict phosphorus removal before
wastewater discharge is an important way to prevent water eutrophication. The existing
phosphorus removal methods mainly include biological methods [32,33] and chemical
methods [25,34,35]. The biological process is mainly suitable for treating low-concentration
and organic phosphorus-containing wastewater, but the control of phosphorus removal
conditions is strict and the cost is high [36]. Chemical methods mainly include coagulation
sedimentation, ion exchange, and reverse osmosis, which are normally suitable for the
removal of inorganic and high-concentration phosphorus-containing wastewater, but these
technologies are faced with complex operation and easy to produce secondary pollution
and other issues [37–39]. The adsorption method has a low operating cost, high phospho-
rus removal efficiency, and does not easily produce secondary pollution, so it has strong
applicability in actual industrial sewage treatment [40–42]. The development of highly
effective adsorbents is a crucial goal for industrialization and environmental protection,
since the absorbent is key to the adsorption process [43].

The physicochemical properties of RM make it display tremendous potential in the
preparation of adsorbents. It will be environmentally advantageous with double benefits in
cases where such a large variety of solid waste from industry could be utilized to remove
phosphorus from wastewater with high efficiency, while, owing to the original RM’s poor
adsorption ability, it must be modified to enhance its adsorption ability [44]. Acidification,
thermal treatment, organic modification, neutralization, composite material synthesis, and
so on, are the common modification methods [45]. According to reports, these modifications
enhanced the phosphorus adsorption effectiveness of the conventional adsorption material.
In this paper, a common third-generation environmentally friendly quaternary ammonium
salt disinfectant, dimethyl dioctadecyl ammonium chloride (DDAC), was first introduced
in modifying RM to develop the novel high-efficiency adsorption material for phospho-
rus, combined with microwave-assisted conditions. The high efficiency of modified red
mud has been confirmed by phosphorus adsorption experimental results. The adsorption
kinetics, isotherms, and thermodynamics were also explored, and the adsorption mech-
anism of the modified red mud (NMRM) for phosphorous, based on the analysis results
of scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), Fourier
transform infrared spectroscopy (FTIR), and zeta potential. This method makes full use
of the resource contents of red mud, and greatly improves adsorption performance of red
mud. The modification method is simple and easy to scale up. Therefore, it is demonstrated
that the NMRM had good prospects for the cleanup of phosphorus-containing wastewater.

2. Experiment
2.1. Minerals and Reagents

The RM used in this study was obtained from a certain aluminum factory in Guizhou,
China. The chemical composition of RM used for this study was examined via X-ray
fluorescence spectroscopy (ARLAdvant X IntellipowerTM3600, ThermoFisher, Carlsbad,
CA, USA). The analysis findings are displayed in Table 1. Trisodium phosphate anhy-
drous (Na3PO4), dimethyl dioctadecyl ammonium chloride (DDAC), ascorbic acid, am-
monium molybdate, and potassium antimony tartrate were purchased from Macklin
(Shanghai, China). Meanwhile, the sulfuric acid (H2SO4) used in the study was bought
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). For all aqueous solutions
in the study, deionized water was used.
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Table 1. Chemical composition of RM (wt%).

Components Al2O3 CaO SiO2 Fe2O3 TiO2 K2O MgO SO3 Na2O ZrO2 other

Content 25.95 25.51 19.59 14.62 7.36 2.61 2.08 0.74 0.73 0.26 0.57

2.2. Mechanism Analysis Methods

The micro-morphology, the distribution of surface elements, and their difference in
terms of the initial RM before and after modification and adsorption were studied by
scanning electron microscopy (SEM, FEI-QUANTA FEG250, Orlando, FL, USA) equipped
with an energy dispersive spectrometry (EDS, JOEL-JSM-5910LV, Tokyo, Japan). Fourier
transform infrared spectroscopy, which is Nicolet iS50 produced by Thermo, was utilized
to investigate the infrared spectra of the initial RM before and after modification and
adsorption and analyze their differences. The zeta potentials of the initial RM before
and after modification and adsorption were measured using a zeta potential analyzer
(Nano-ZS90, Malvern Panalytical, Malvern, UK). The crystal phase compositions and
differences of RM and NMRM were investigated via an X-ray diffraction analyzer, which
is D8 Advance produced by Bruker, Germany. The RM’s and NMRM’s specific surface
area was measured and analyzed by Brunauer Emmett Tells (BET, ASAP 2020 Plus HD88,
Micromeritics, Atlanta, GA, USA).

2.3. Analysis of P Concentration

The concentration of phosphorus was analyzed by spectrophotometry [46]. Taking a
1 mL solution to be tested in a 5 mL volumetric flask, add 0.1 mL of ascorbic acid solution to
it, then add 3.7 mL of deionized water, mix for 30 s, then add 0.2 mL of molybdate solution,
and stand for 15 min. After determining the sample’s absorbance with an ultraviolet
spectrophotometer (UV-8000, METASH, Shanghai, China) at its typical wavelength of
700 nm, the phosphorus (P) concentration of the solution was calculated employing the
standard curve of concentration and absorbance for phosphorus (Figure 1).
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Figure 1. Standard curve for P’s concentration–absorbance relationship.

2.4. Preparation of the NMRM

A certain amount of the initial RM tailings after magnetic separation was infused into
the 20 mmol/L DDAC solution to perform the novel high-efficiency adsorption material
for phosphorus NMRM. The solid-to-liquid ratio of samples in the preparation of the
NMRM was 1:50. Then, the suspension that resulted was spread out using ultrasound
for 5 min. Next, the above suspension was heated with a microwave oven for 10 min
(power = 400 W). Finally, after being extracted from the suspension by high-speed cen-
trifugation (6000 r/min), the samples of the NMRM were dried for 12 h at 90 ◦C. Figure 2
displays the preparation process of the NMRM.
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2.5. Adsorption Experiments

The phosphorus solution (10 mL), with a concentration of 5–50 mg/L, was put into a
tube of sealable plastic containing NMRM (0.5–6 mg/L). After adsorption for a certain time
in a thermostatic shaker, the concentration of P in solutions was quantitatively determined
using spectrophotometry. The adsorption quantity (q, mg/g) was calculated by Formula (1),
and the adsorption efficiency (η, %) was computed by Formula (2).

q (mg/g) =
V(C0 − C1)

m
(1)

η (%) =
C0 − C1

C0
× 100 (2)

where V means the solution volume (mL), m means the adsorbent mass (g), and C0 and C1
represent P concentration (mg/L) in the solution before and after adsorption, respectively.

3. Results and Discussion
3.1. Characterization of the NMRM

To understand the morphology and elemental composition of the initial RM before
and after modification, SEM and mapping EDS were performed. The results are displayed
in Figures 3 and 4. The diameter of the initial RM particles before modification was smaller,
and distributed evenly and loosely. The diameter of the initial RM particles modified by
DDAC was larger. From Figure 4, it is obvious that the main elements of the initial RM
were O, Si, P, and C. After modification, the content of C in NMRM obviously increased,
and a new element N appeared, which indicated that DDAC was successfully loaded on
the RM.

The static N2-adsorption capacity technique was used to calculate the BET surface
area for both samples (RM and NMRM). The BET analyses findings of RM and NMRM
are presented in Table 2. It can be seen from Table 2 that the initial RM contained small
particles, which became larger following the DDAC modification. After the modification,
the RM’s BET surface area lowered significantly, from 11.60 m2/g to 0.52 m2/g. Meanwhile,
it was visible that the RM’s total pore volume also lowered, and the values decreased from
0.057 cm3/g to 0.004 cm3/g, while after the modification, the average particle size of the
RM rose from 19.73 nm to 31.32 nm. These suggest that the particle size of RM modified
by DDAC increased, its specific surface area reduced, and the adsorption behavior could
mainly depend on the adsorption sites of the NMRM-based adsorption material.
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Table 2. BET analyses of the initial RM before and after modification.

Samples SBET (m2/g) VTotal (cm3/g) DAver (nm)

Before modification 11.60 0.057 19.73
After modification 0.52 0.004 31.32

The FT-IR spectra of the initial RM before and after modification are displayed in
Figure 5. The peaks that occurred at about 561 cm−1, 620 cm−1, and 679 cm−1 in the RM
spectrum were linked to the stretching or bending vibrations of the Si-O tetrahedron or
the Al-O tetrahedron functional group [47]. There was a peak at 1003 cm−1 in the FT-IR
spectra of RM before and after modification, respectively, which corresponded to the Al-
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O tetrahedron shift. After modification, a new absorption peak of 2916 cm−1 appeared
in the RM spectrum, which is related to alkanes. Additionally, the absorption peaks of
C4N+ at 1474 cm−1 also appeared on RM [48]. These features indicate that the DDAC was
successfully loaded onto the RM, and the modification did not change the structure of
the RM.

Separations 2023, 10, x FOR PEER REVIEW 6 of 17 
 

 

DDAC increased, its specific surface area reduced, and the adsorption behavior could 
mainly depend on the adsorption sites of the NMRM-based adsorption material. 

Table 2. BET analyses of the initial RM before and after modification. 

Samples SBET (m2/g) VTotal (cm3/g) DAver (nm) 
Before modification 11.60 0.057 19.73 
After modification 0.52 0.004 31.32 

The FT-IR spectra of the initial RM before and after modification are displayed in 
Figure 5. The peaks that occurred at about 561 cm−1, 620 cm−1, and 679 cm−1 in the RM 
spectrum were linked to the stretching or bending vibrations of the Si-O tetrahedron or 
the Al-O tetrahedron functional group [47]. There was a peak at 1003 cm−1 in the FT-IR 
spectra of RM before and after modification, respectively, which corresponded to the Al-
O tetrahedron shift. After modification, a new absorption peak of 2916 cm−1 appeared in 
the RM spectrum, which is related to alkanes. Additionally, the absorption peaks of C4N+ 
at 1474 cm−1 also appeared on RM [48]. These features indicate that the DDAC was suc-
cessfully loaded onto the RM, and the modification did not change the structure of the 
RM. 

 
Figure 5. FT-IR spectra of RM before and after modification. 

To investigate the influence of RM surface charge properties on adsorption, the zeta 
potentials of RM before and after modification were evaluated, which are displayed in 
Figure 6. It can be seen that the zeta potential of the NMRM was negative at pH > 11.2; 
however, that of the initial RM was negative at pH > 8.1. It also indicates that the increase 
of the initial RM’s isoelectric point could be due to the adsorption of the bound N+ ions on 
the NMRM surface [49]. Thus, the phosphorus ions with negative charges were easier to 
absorb on NMRM with more positive charges. The above findings were conformed to the 
results of FT-IR, which show that DDAC was successfully loaded onto the RM. The XRD 
analysis was used to compare the crystal phase composition difference of the RM and the 
NMRM, which is displayed in Figure 7. It is visible that the crystal phase composition of 
the RM had not changed before and after modification. The above analysis results show 
that the DDAC modification did not change the structure of RM, but could change the 
surface charge properties and might provide more active adsorption sites. 

4000 3000 2000 1000

  2916
alkanes

Tr
an

sm
itt

an
ce

Wanvenumbers (cm-1)

 Before modification
 After modification

1474
C4N+ 1003

Al-O

679/620/561
  Al-O/Si-O

Figure 5. FT-IR spectra of RM before and after modification.

To investigate the influence of RM surface charge properties on adsorption, the zeta
potentials of RM before and after modification were evaluated, which are displayed in
Figure 6. It can be seen that the zeta potential of the NMRM was negative at pH > 11.2;
however, that of the initial RM was negative at pH > 8.1. It also indicates that the increase
of the initial RM’s isoelectric point could be due to the adsorption of the bound N+ ions on
the NMRM surface [49]. Thus, the phosphorus ions with negative charges were easier to
absorb on NMRM with more positive charges. The above findings were conformed to the
results of FT-IR, which show that DDAC was successfully loaded onto the RM. The XRD
analysis was used to compare the crystal phase composition difference of the RM and the
NMRM, which is displayed in Figure 7. It is visible that the crystal phase composition of
the RM had not changed before and after modification. The above analysis results show
that the DDAC modification did not change the structure of RM, but could change the
surface charge properties and might provide more active adsorption sites.
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3.2. Adsorption Performance of the NMRM for P

To study the influence of the NMRM dosage for P adsorption, different NMRM dosages
were introduced into the solution to obtain the optimal condition of NMRM for removing P
from the solution. The findings are displayed in Figure 8. It is evident that, with an increase
in the NMRM dosage, the adsorption of phosphorus first increased and then tended to
be steady, while the adsorption capacity of phosphorus slowly decreased. This is mainly
because when the adsorbent dosage is low, the adsorbent will soon reach adsorption
saturation, and then increasing the adsorbent dosage will reduce the unit adsorption
capacity of the adsorbent [50]. When the NMRM dosage was 4 mg/L, the phosphorus
adsorption efficiency reached the maximum, the phosphorus adsorption efficiency of
NMRM was 90.56%, and the adsorption capacity was 2.29 mg/g. It is also visible that, at
an NMRM dosage of 2 mg/L, the adsorption efficiency was 87.8%, and the adsorption
capacity was 4.41 mg/g. Although the adsorption efficiency at this time was slightly lower
than that at 4 mg/L, the adsorption capacity was higher. Therefore, the NMRM dosage
was 2 mg/L in the subsequent adsorption experiment.
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Figure 8. The effect of the NMRM dosage on removing the P from the NMRM. (10 mg/L, 25 ◦C,
pH = 12).

The effect of the initial phosphorus concentration for removing the P of the NMRM
is displayed in Figure 9. From Figure 9, with the rise of P concentration, the adsorption
efficiency of NMRM to P increased initially, then reduced. However, the adsorption capacity
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of the NMRM to P gradually rose to over 8 mg/g, given the rise in the initial P concentration.
This is mainly because increasing the solute concentration will increase the solute diffusion
rate, accelerate the adsorption to saturation, and then improve the adsorption capacity. It is
also evident that, at the initial P concentration of 10 mg/L, the adsorption efficiency of the
NMRM to the P was the highest, the adsorption efficiency was 71.02%, and at this time, the
adsorption capacity was 3.53 mg/g.
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Figure 9. The effect of the P concentration on removing the P from the NMRM. (NMRM dosage = 2 mg/L,
25 ◦C, pH = 12).

The experimental results for the adsorption of P by the NMRM at different tempera-
tures are displayed in Figure 10. It is obvious that the adsorption capacity and adsorption
efficiency of P by NMRM showed a gradual downward trend as the temperature rose.
When the adsorption temperature was increased from 25 ◦C to 45 ◦C, the adsorption ca-
pacity of P by NMRM reduced from 4.05 mg/g to 2.20 mg/g; meanwhile, the adsorption
efficiency reduced from 82.80% to 44.93%. It can be concluded that the process for remov-
ing P from the NMRM was an exothermic process. Therefore, the best temperature for
removing P from the NMRM in the study was 25 ◦C.
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Figure 10. The effect of temperature on removing the P from the NMRM. (10 mg/L, NMRM
dosage = 2 mg/L, pH = 12).

The solution pH not only affects the form of the phosphate in the solution, but also
affects the surface properties of the RM. Thereby, the effect of the solution pH on removing
the P from the NMRM was studied. The relevant findings are displayed in Figure 11. It is
obvious from Figure 11 that when the pH changed from 2 to 6, the adsorption efficiency
of P decreased from 78.89% to 72.71%. When the pH increased gradually from 4 to 12,



Separations 2023, 10, 562 9 of 17

the P adsorption efficiency of NMRM increased gradually, and the adsorption efficiency
of P rose from 72.71% to 86.34%. This could be due to the fact that, with the increase in
pH values, the hydrogen phosphate in the solution dissociated gradually, and the more
completely the phosphate dissociated, the more charged the ions were, and the easier
it was to adsorb on the NMRM [51]. Moreover, when the pH was 12, the P adsorption
efficiency and capacity of NMRM reached the maximum value, which was 86.34% and
4.19 mg/g, respectively, while under the same conditions, the adsorption effect of RM on
phosphorus before modification was poor, with a P adsorption capacity of only 0.5 mg/g.
The modification could significantly improve its phosphorus adsorption effect to almost
eight times higher than that of the initial RM.
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Figure 11. Effect of pH for removing P of NMRM. (10 mg/L, NMRM dosage = 2 mg/L, 25 ◦C).

3.3. Adsorption Kinetics

To explore the adsorption rate and kinetic mechanism involving the P adsorption on
NMRM, Equations (3) and (4) were introduced in the study. Equation (3) was a model of
pseudo-first-order kinetics. Equation (4) was a model of pseudo-second-order kinetics.

ln(qe − qt) = lnqe − k1t, (3)

t
qt

=
1

k2q2
e
+

t
qe

, (4)

where qt represents the t min absorption capacity (mg/g), qe represents the equilibrium
absorption capacity (mg/g), t means the absorption time (min), k1 represents the kinetics
rate constant of the pseudo-first-order, and k2 represents the kinetics rate constant of the
pseudo-second-order, respectively.

The findings from the experiment and kinetic model fitting are also displayed in
Figure 12. From Figure 12a, it is clear that the P adsorption of NMRM moved along quite
quickly, achieving equilibrium in about 25 min. The adsorption capacity of NMRM to
phosphorus grew quickly over time, especially in the initial 5 min, and then grew slowly
until reaching the adsorption equilibrium of NMRM. It could be attributed to the sufficient
adsorption sites or the strong driving force generated by large concentration differences,
which resulted in the quick rise of the initial adsorption capacity. When the adsorption
sites of NMRM were progressively occupied by the phosphorus ions in the solution, the
repulsive force generated at the interface between solid and liquid might increase, and
the driving force generated by large concentration differences gradually decreased. Thus,
it is clear that the adsorption rate of NMRM to phosphorus gradually decreased until it
attained the adsorption equilibrium. Figure 12b,c shows the fitting curves with the kinetic
models of the pseudo-first-order and the pseudo-second-order for the NMRM adsorption
to phosphorus in the solutions, and the calculated parameters of the kinetic models for
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the NMRM adsorption to phosphorus are also presented in Table 3. It is clear that the
correlation coefficient (R2) obtained by the pseudo-second-order model was 0.99, and was
greater than that of the pseudo-first-order model, in which R2 was 0.91. Additionally,
it also can be seen that the actual experimental values (4.08 mg/g) and the predicted
values of qe acquired from the kinetic model of pseudo-second-order were almost identical.
According to the above results, the kinetic adsorption of NMRM to phosphorus in the
solutions was better illustrated by the pseudo-second-order kinetic equation. Meanwhile,
the rate-limiting step of NMRM to phosphorus could be due to the chemical absorption
between them. It could also be concluded that the existing amount of adsorption sites on
the NMRM surface affected its retention rates more than the ion concentration in solutions.
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Table 3. Adsorption kinetics parameters.

qe,exp
(mg/g)

Pseudo-First-Order Kinetics Pseudo-Second-Order Kinetics

k1 qe (mg/g) R2 k2 qe (mg/g) R2

4.08 0.08 3.14 0.91 0.09 4.44 0.99

3.4. Adsorption Isotherms

To evaluate the process for removing P of NMRM in the solution, the adsorption
isotherm models of Langmuir and Freundlich were utilized, and could be represented by
Equations (5) and (6), respectively:

1
qe

=
1

qmKLCe
+

1
qm

(5)
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lnqe =
lnCe

n
+ lnKF (6)

where qe means the equilibrium absorption capacity (mg/g), qm means the maximum
adsorption capacity (mg/g), Ce means the P equilibrium concentration (mg/L), KL means
the Langmuir adsorption constant, and KF and n are constants involved in adsorption
capacity and intensity, respectively.

The adsorption isotherms of the P on the NMRM are displayed in Figure 13. Mean-
while, their associated computed parameters are provided in Table 4. The findings indicate
that the fitted isotherm’s correlation coefficient R2 for the two models of the NMRM adsorp-
tion are 0.97 and 0.98, respectively. This indicates that the adsorption process of NMRM for
phosphorus in solutions was assigned to multilayer adsorption. Meanwhile, the computed
Langmuir constant KL was 0.02 and within the range of 0 to 1, which exhibited the benefits
to the adsorption process of NMRM. It could also be concluded that the adsorption process
of MRM might involve some chemical and multilayer adsorption reactions, given that
R2 was not sufficiently close to 1. The saturation adsorption capacity of the NMRM to P
obtained from the Langmuir isotherm model was 17.7 mg/g, which markedly contrasted
with the actual value. Thus, it could be concluded that the Freundlich adsorption isotherm
model could provide a more accurate description of the adsorption equilibrium of the
NMRM to the P in the solution.
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Table 4. Parameters of adsorption isotherms.

Langmuir Freundlich

KL qm (mg/g) R2 KF n R2

0.02 17.7 0.97 0.60 0.69 0.98

3.5. Adsorption Thermodynamics

The adsorption thermodynamics were analyzed to measure the adsorption of NMRM
for P at different temperatures. The thermodynamic parameters (∆G0, ∆H0, and ∆S0) were
obtained from thermodynamic Equations (7)–(9).

∆G0 = ∆H0 − T·∆S0 (7)

lnkd =
∆S0

R
− ∆H0

R·T (8)
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kd =
qe

Ce
(9)

where, ∆G0 means Gibbs free energy (kJ/mol), ∆H0 means adsorption enthalpy change
(kJ/mol), ∆S0 means entropy change (J mol−1 K−1), T means the absolute temperature (K),
R means the ideal gas constant (8.314 J/(mol·K)), and kd means the equilibrium constant.

The linear relationship between lnkd and 1/T of NMRM is depicted in Figure 14. The
calculated thermodynamic parameters are given in Table 5. It is obvious from Figure 14
that the thermodynamic parameters lnkd fitted well with 1/T. Additionally, it is clear in
Table 5 that ∆H was negative, indicating that the process of NMRM’s adsorption to P was
a spontaneous exothermic process, and heating up was not conducive to the adsorption
of the NMRM, which indicates that NMRM had a better treatment effect on phosphorus-
containing wastewater at a lower temperature. The negative ∆S from the study was due
to the adsorption process of phosphorus by the NMRM in this system, accompanied by
the desorption of the water molecules, and the entropy added in the desorption process
of the water molecules was less than the entropy reduced in the adsorption process of
phosphorus, resulting in the whole process of ∆S being less than 0. At 25 ◦C, ∆G was
negative, indicating that the adsorption reaction between the MRM and the phosphorus
was spontaneous at this temperature, and the NMRM had a strong adsorption performance
for phosphorus in the solution.
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Figure 14. Adsorption thermodynamics of P on NMRM.

Table 5. Adsorption thermodynamics parameters of P on NMRM.

T (K) ∆H0 (kJ/mol) ∆S0 (J mol−1 K−1) ∆G0 (kJ/mol)

298
−70.1 −0.23

−2.05
308 0.24
318 2.52

3.6. Adsorption Mechanism

To study the adsorption mechanism of the novel NMRM for P, SEM and mapping
EDS were conducted and analyzed, which are displayed in Figure 15. The findings reveal
that, before and after P adsorption (compared with Figure 4b), the element content of P
in mapping changed from 0.83% to 0.98%, which confirmed the adsorption of NMRM to
phosphate in the solution.
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Figure 15. The SED-EDS of NMRM after adsorption.

FTIR spectra of NMRM-adsorbing P were also detected for the study of the adsorption
mechanism, and the correlation analyses are displayed in Figure 16. The peak was about
2916 cm−1, which appeared in the FTIR spectrum of NMRM, and could correspond to
the stretching vibration of alkanes [52]. After adsorption, a new absorption peak of about
1253 cm−1 appeared in NMRM spectrum, corresponding to the stretching vibration of
phosphate radical (PO4

3−). Furthermore, the characteristic peaks of C4N+ in the FTIR
spectrum of NMRM-adsorbing P existed remarkably as a red shift phenomenon, which
moved from 1481 cm−1 to 1466 cm−1. These findings demonstrate that there was a chemical
adsorption reaction between NMRM and phosphate, which might occur at the C4N+ site of
the NMRM.
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Figure 16. FT-IR of NMRM before and after adsorption.

To further explore the mechanism of phosphorus removal by the NMRM through
the change in surface charge, the surface zeta potential of the NMRM before and after the
phosphorus adsorption was measured in this study. The measured findings are shown in
Figure 17. The zero potential point (pHPZC) of the NMRM was 11.26, and its surface was
positively charged in a large pH range, which was beneficial to phosphorus removal in
the solution. After adsorption, the surface zeta potential of NMRM had certain changes
towards the negative. The reason for this phenomenon was that there was an adsorption
reaction between NMRM and phosphorus, meanwhile negative charge on the NMRM
surface increased due to the adsorption of phosphorus, while they changed little. It could
be concluded that the chemical adsorption reaction, which might be the ion exchange,
played a significant role in removing phosphorus by NMRM in the solution [53].
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In conclusion, based on the analysis results of SEM, EDS, FT-IR, and zeta potential,
the strong adsorption of the phosphorus in the solution by the NMRM could be attributed
to chemisorption, mainly ion exchange.

4. Conclusions

Considering the severe environmental damage brought on by the prolonged storage
of RM and phosphorus pollution, the NMRM was designed and first used to remove
phosphorus from wastewater in order to achieve dual benefits for the environment. Un-
der microwave-assisted conditions, a common third-generation environmentally friendly
quaternary ammonium salt disinfectant, DDAC, was first used as the modifier to achieve
one-step rapid preparation of the novel modified red-mud-based adsorption material. The
analyses of the characterization results of the RM before and after modification show that
the DDAC modification did not change the structure of the initial RM, but could adsorb
on the surface and provide more active adsorption sites. The study of phosphorus adsorp-
tion performance indicates that the NMRM exhibited an excellent adsorption capacity to
phosphorus. When the dosage of NMRM was 2 mg/L, pH was 12, and the concentration
of phosphorus in solution was 10 mg/L, the adsorption efficiency was 86.34%, and the
adsorption capacity was 4.19 mg/g. Under the same conditions, the phosphorus adsorption
capacity of unmodified red mud was only 0.5 mg/g. The phosphorus adsorption capacity
of red mud was increased by 88.07% after modification. The adsorption behavior of the
NMRM matched perfectly with the Freundlich isotherm model and the pseudo-second-
order kinetics model. It could be concluded that the phosphorus was chemically adsorbed
on the MRM surface, which was mainly the ion exchange. RM, a widely sourced solid
waste, was used to manufacture phosphorus adsorption materials with dual environmental
advantages in addition to economic efficiency. Therefore, it was demonstrated that the
NMRM had good prospects for the cleanup of phosphorus-containing wastewater.
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