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Abstract: A chemical recognition algorithm is an integral part of any autonomous microscale gas
chromatography (µGC) system for automated chemical analysis. For a multi-detector µGC system, the
chemical analysis must account for the retention time of each chemical analyte as well as the relative
response of each detector to each analyte, i.e., the detector response pattern (DRP). In contrast to the
common approaches of heuristically using principal component analysis and machine learning, this
paper reports a rule-based automated chemical recognition algorithm for a multi-cell, multi-detector
µGC system, in which the DRP is related to theoretical principles; consequently, this algorithm
only requires a small amount of calibration data but not extensive training data. For processing
both the retention time and the raw DRP, the algorithm applies rules based on expert knowledge to
compare the detected peaks; these rules are located in a customized software library. Additionally, the
algorithm provides special handling for chromatogram peaks with a small signal-to-noise ratio. It also
provides separate special handling for asymmetrical peaks that may result from surface adsorptive
analytes. This work also describes an experimental evaluation in which the algorithm used the
relative response of two complementary types of capacitive detectors as well as a photoionization
detector that were incorporated into the µGC system of interest. In these tests, which were performed
on chromatograms with 21–31 peaks for each detector, the true positive rate was 96.3%, the true
negative rate was 94.1%, the false positive rate was 5.9%, and the false negative rate was 3.7%. The
results demonstrated that the algorithm can support µGC systems for automated chemical screening
and early warning applications.

Keywords: microscale gas chromatography; orthogonal detectors; detector response pattern;
expert system

1. Introduction

With the research and development dating back to the 1970s [1,2], microscale gas
chromatography (µGC) systems are now achieving commercial significance and becoming
increasingly promising for in situ measurements of volatile organic compounds (VOCs).
A µGC system typically incorporates pump(s), valve(s), separation column(s), preconcen-
trator(s), and detector(s) [3]. There are two steps necessary to generate a chromatogram:
the sampling and separation steps. During the sampling step, analytes are adsorbed by
the preconcentrator(s). During the subsequent separation step, the analytes are desorbed
and injected into the separation column(s), where the analytes are separated based on
volatility as they pass through the separation column(s). A chromatogram is produced
by the output of each detector that is located downstream of a column. The temporal
delay of each analyte peak is called the elution (or retention) time and is a characteristic
of the analyte for the particular separation column and test conditions. To enhance the
differentiation of analytes with similar retention times, some µGC systems incorporate
multiple complementary detectors [4–9].
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Our group has recently reported a multi-cell, multi-detector µGC system based on a
multi-sensing progressive cellular architecture (MPCA) [9]. This MPCA system monolithi-
cally integrates three cells, each incorporating a preconcentrator and a separation column
that are tailored for a specific volatility range of analytes. Downstream of each separation
column in an MPCA cell are located three detectors in series: two capacitive detectors
with different polymer coating thicknesses (CapDetA and CapDetB) and an arrayed inte-
grated photoionization detector (AiPD). By their inherent nature, these detectors provide
complementary responses to chemical analytes, leading to well-differentiated responses.

An analytical run in an MPCA system includes a single (collective) sampling step
followed by three sequential separation sub-steps—one for each cell. In the sampling
step, the sampled vapor passes the three preconcentrators that are ordered by the sorbent
adsorptivity, from lowest to highest. As such, the least adsorptive preconcentrator, which
is located upstream, traps the least volatile chemicals, whereas the downstream, more
adsorptive preconcentrators trap more volatile chemicals. In the subsequent separation sub-
steps, one for each cell, the corresponding preconcentrator injects the adsorbed chemicals
into the separation column within its cell, with the separation column being tailored for the
volatility range of that cell. The output of the three detectors in each cell is tracked to create
the overall chromatogram.

The essential information that emerges from an analytical run is the retention time
of each analyte and the relative intensity of the response of each detector in each cell to
each analyte that passes across it. The relative response of each detector to each analyte
is defined as the detector response pattern (DRP) in this work. This paper focuses on an
automated algorithm that recognizes chemicals based on the detected peaks in an MPCA
µGC system using a combination of retention time and the DRP; the findings can be applied
more generally to other µGC systems.

The DRP is a valuable metric for chemical recognition [10]. Various tools for DRP
recognition have been reported. One of the most common statistical tools is the principal
component analysis (PCA) [8,11], which is often used to reduce data dimensions while
maximally preserving information [12]. For chemical recognition from the DRP, the PCA
result is often combined with visual inspection [13], Fisher ratio (F-ratio) analysis [13], or
other tools [14–16] to cluster the data so that statistical boundaries for different chemicals
may be established. Another common statistical tool is library lookup [17] combined with
machine learning techniques [18–21], which is also used to cluster the data for recognition.

Although statistical tools have achieved various degrees of success, they tend to have
some limitations. First, most statistical tools neglect expert knowledge about the DRP that
is intrinsically determined by the sensing principles of the detectors. Consequently, when
processed by statistical tools, certain DRP features that benefit the use of expert knowledge
may be reduced or eliminated. Second, these tools typically require a substantial amount of
data for training, especially for machine learning techniques like neural networks [22,23].
This requirement increases the burden of performing extensive experimental characteriza-
tions, even though the experimental efforts can sometimes be alleviated by Monte Carlo
simulation. Efforts to fully automate the recognition have been reported [19,24,25] but have
not been targeted towards multi-detector µGC systems.

To effectively treat the DRP with expert knowledge and a relatively small amount of
experimental characterization, a rule-based algorithm can be used for the raw DRP without
statistical processing. The rules can be constructed by setting up an acceptable range of
values for each feature of interest to account for uncertainty in the feature, essentially
forming a fuzzy logic system [26–29]. In fuzzy logic, a membership function assigns to each
object a score of membership ranging between 0 and 1, where a score closer to 1 indicates
that the object is more likely a member of a certain class [30]. The membership function
can be determined by statistical data, e.g., derived from the probability density function
of a feature of the object. Alternatively, the membership function can be a mathematical
expression of expert knowledge [31]. Triangular, trapezoidal, Gaussian, rectangular, and
piecewise functions are commonly used for membership functions [31].
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This paper reports an automated, rule-based chemical recognition algorithm for the
MPCA system, in which expert knowledge is applied to construct a set of fuzzy logic
rules. After the peaks are detected from a raw chromatogram, this algorithm uses the peak
information (including the retention time, asymmetry, and peak heights) as the input. The
recognition uses a chemical library that is constructed from a small number of experiments
and applies the rules on the retention time and DRP parameters. Additionally, special rules
are implemented for handing surface adsorptive chemicals and peaks with low signal-to-
noise ratios. Finally, for each peak, the algorithm provides a list of possible candidates with
likelihood scores as the output.

2. Operating Principle and Method
2.1. Overall Algorithm Flow

For ease of discussion, the temporal response of each detector in the MPCA system
during the analysis of an analytical run is defined as a sub-chromatogram. For the whole
MPCA system with two effective cells and three detectors in each cell; the ensemble of the
6 sub-chromatograms forms a chromatogram. In the following description, a peak in the
chromatogram refers to the responses from all three detectors at a matched retention time.

The raw chromatograms must first be processed with a peak detection algorithm. For
the MPCA system, the information provided by the peak detection algorithm includes, for
each peak, the cell number, retention time, peak asymmetry, and peak heights from the
three detectors. For each set of peaks corresponding to an analyte, the chemical recognition
algorithm (Figure 1) compares the experimentally observed retention time to values in the
chemical library and selects matching candidates. Among these candidates, the algorithm
further compares the DRP of this set of peaks against those in the chemical library. Both
comparisons use custom-defined recognition rules, which are combined to provide an
overall likelihood score.
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In this process, multiple special handling cases may be triggered. First, a known
reference chemical may be introduced by the user into the sample and used as a reference
for the retention time. In this case, the algorithm first finds the peak for the reference
chemical based on the chemical library, then converts the retention times of all other peaks
to retention times relative to the reference chemical and uses these relative values for
recognition. Second, for surface absorptive analytes such as the phosphonate esters that
usually exhibit asymmetric peaks, the retention times may vary with the injected masses in
the retention peaks. For these certain analytes, the retention times are not independently
incorporated in the library. Instead, the relationship between retention time and peak
height must be pre-determined experimentally, and this height-dependent retention time
must be incorporated into the library. Third, when analyte is such that the responses of
the detectors are highly orthogonal, some detectors may show strong responses, whereas
others may show very weak or zero responses. Such cases may result in small detector
signals, which require special handling that overrides the result of direct DRP matching.

2.2. Chemical Library and Recognition Parameters

The chemical library stores all the parameters of the expected system response to each
chemical and of the recognition criteria. The library is constructed as a tabulated file using
Microsoft Excel; all the parameters can be edited readily. The chemical library incorpo-
rates a basic library, an expanded library, and other algorithmic parameters. The basic
library contains chemical properties and system response parameters of all target chemi-
cals (Table 1). The chemical properties obtained from online databases include molecular
weight, Kovats retention index (RI), dielectric constant, and ionization potentials. These
chemical properties are retained for background but not for recognition by the algorithm.
The system response parameters include nominal values of the retention time, DRP, the pri-
mary cell used for recognition, detector sensitivities, and chemical peak asymmetry. These
parameters are obtained from a minimum set of experimental calibration runs, where the
system is operated to sample and analyze custom-prepared chemical standards that contain
well-separable chemicals. Such calibration runs are normally performed on any system
and may include experimentally obtained values combined with theoretically interpolated
values. These parameters are used for recognition by the algorithm.

The expanded library includes windows for the retention time and the DRP. Here,
each window is a range defined by a lower bound value and an upper bound value. A
parameter of an experimentally observed peak is considered a match to the corresponding
parameter in the library if the experimental value is between the upper and lower bounds.
The expanded library also includes parameters for the relationship between retention time
and peak height of the surface adsorptive chemicals, which are dependent on the peak
heights (Table 2).

Other parameters include identifying whether a reference chemical has been used, the
name of the reference chemical, the limits of detection of the detectors, the sampling time
of the run, the retention time windows (as fractions of the nominal values) for the surface
adsorptive chemicals, and peak asymmetry threshold for treatment as surface adsorptive
chemicals. The purpose of these parameters is described in the following sub-sections.

The library established for this work incorporates a total of 28 chemicals. Among
these, three are surface adsorptive chemicals that were characterized together (i.e., in mix-
tures) by 10 experimental runs that covered a practical range of concentrations. The other
25 chemicals were characterized either as neat chemicals or in mixtures of 2–6 chemicals
in a total of 7 experimental runs. Each run was performed at a single concentration that
provided enough signal-to-noise ratios for most of the detector responses.
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Table 1. Example of the basic chemical library that contains the chemical properties and MPCA system response characteristics.

Physical Properties Retention Time Sensitivity Nominal Response Ratio

Chemical
Analyte

Mol
Weight
(g/mol)

Kovats
RI

Dielectric
Constant

Ionization
Potential

(eV)

Primary
Cell

Retention
Time (s)

CapDetA
(fF/ppb
/min)

CapDetB
(fF/ppb
/min)

AiPD
(mV/ppb

/min)

CapDetA/AiPD
(fF/mV)

CapDetB/
CapDetA

(fF/fF)

CapDetB/AiPD
(fF/mV) Asym

Benzene 78.1 654 2.3 9.2 2 43.5 1.91 × 10−4 −4.43 × 10−5 8.45 × 10−2 2.26 × 10−3 −2.32 × 10−1 −5.25 × 10−4 0
2,3-Butanediol 90.1 753 21.6 Unknown 2 123.6 9.01 × 10−3 1.47 × 10−2 3.75 × 10−2 2.40 × 10−1 1.63 × 100 3.92 × 10−1 0
Butyl Acetate 116.2 796 5.1 10.0 2 129.4 2.63 × 10−3 3.47 × 10−3 1.55 × 10−2 1.70 × 10−1 1.32 × 100 2.24 × 10−1 0

Carbon
Tetrachloride 153.8 658 2.2 11.5 2 45.1 1.35 × 10−4 −1.00 × 10−4 0 infinity −7.63 × 10−1 -infinity 0

Cyclohexane 84.2 662 2.0 9.9 2 46.5 1.00 × 10−4 −2.64 × 10−4 4.78 × 10−2 2.09 × 10−3 −2.64 × 100 −5.52 × 10−3 0
Decane 142.3 1000 2.0 9.7 3 33.5 5.60 × 10−3 −1.08 × 10−2 7.82 × 10−2 7.16 × 10−2 −1.93 × 100 −1.38 × 10−1 0
DEMP 152.1 975 13.4 Unknown 3 42.6 3.98 × 10−2 5.62 × 10−2 1.35 × 10−2 2.95 × 100 1.41 × 100 4.16 × 100 1
DIMP 180.2 1073 7.7 Unknown 3 61.1 5.51 × 10−2 6.45 × 10−2 3.13 × 10−2 1.76 × 100 1.17 × 100 2.06 × 100 1

DMMP 124.1 840 20.3 10.0 2 230.5 1.55 × 10−2 3.25 × 10−2 1.03 × 10−2 1.50 × 100 2.10 × 100 3.16 × 100 1
o-Xylene 106.2 881 2.6 8.6 2 196.5 6.51 × 10−4 2.93 × 10−4 3.39 × 10−2 1.92 × 10−2 4.49 × 10−1 8.63 × 10−3 0

Table 2. Example of the expanded chemical library incorporating additional parameters for use by the algorithm.

Retention Time Likelihood Window DRP Likelihood Window Surface Adsorptive Chemical Fitting
Parameters

Chemical Cell tR.HC.L(s) tR.HC.U(s) tR.MC.L(s) tR.MC.U(s) BAL
(fF/fF)

BAU
(fF/fF)

BDL
(fF/mV)

BDU
(fF/mV)

ADL
(fF/mV)

ADU
(fF/mV) p1 p2 p3 p4 p5

Benzene 2 40.9 46.1 39.1 47.8 −1 1 −9.45 × 10−4 −1.05 × 10−4 4.52 × 10−4 4.07 × 10−3

2,3-Butanediol 2 116.2 131.0 111.2 136.0 1 3 7.84 × 10−2 7.06 × 10−1 4.81 × 10−2 4.32 × 10−1

Butyl Acetate 2 121.6 137.1 116.4 142.3 1 3 4.48 × 10−2 4.03 × 10−1 3.39 × 10−2 3.06 × 10−2

Carbon
Tetrachloride 2 42.4 47.8 40.6 49.6 −1 1 -infinity −1.00 × 100 1.00 × 100 infinity

Cyclohexane 2 43.7 49.3 41.9 51.2 -infinity −1 −9.94 × 10−3 −1.10 × 10−3 2.09 × 10−4 3.77 × 10−3

Decane 3 31.4 35.5 30.1 36.8 -infinity −1 −2.49 × 10−1 −2.76 × 10−2 1.44 × 10−2 1.30 × 10−1

DEMP 3 0 0 0 0 1 3 8.33 × 10−1 7.49 × 100 5.89 × 10−1 5.30 × 100 47.69 0.25 18.92 0.01 29.00
DIMP 3 0 0 0 0 1 3 4.12 × 10−1 3.71 × 100 3.52 × 10−1 3.17 × 10−0 22.95 0.06 14.73 0.38 53.00

DMMP 2 0 0 0 0 1 3 6.13 × 10−1 5.68 × 100 3.03 × 10−1 2.73 × 100 46.85 0.59 246.30 0.01 0.01
o-Xylene 2 184.7 208.3 176.9 216.2 −1 1 1.55 × 10−2 1.73 × 10−3 3.84 × 10−3 3.46 × 10−2

o-Xylene 3 14.9 16.9 14.3 17.5 −1 1 1.55 × 10−2 1.73 × 10−3 2.52 × 10−3 2.27 × 10−2

Cell indicates the cell that provides the peak to the chemical. tR.HC.L and tR.HC.U indicate the lower bound and upper bound of the retention time high-confidence window, respectively.
tR.MC.L and tR.MC.U indicate the lower bound and upper bound of the retention time medium-confidence window, respectively. BAL and BAU indicate the lower and upper bound of the
CapDetB/CapDetA window, respectively. BDL and BDU indicate the lower and upper bound of the CapDetB/AiPD window, respectively. ADL and ADU indicate the lower and upper
bound of the CapDetA/AiPD window, respectively.
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2.3. Recognition by Retention Time and Cell Number

As noted previously, the first step to recognizing a peak is to find chemicals in the
library with matching retention times. The repeatability in the retention time is determined
by the repeatability in the column flow rate and temperature, which may drift in field
environments. Surface-adsorptive chemicals eluting a µGC column without sufficient
deactivation may cause asymmetric peaks, for which the retention times may vary with
concentration. Therefore, an appropriate window must be selected for the retention time
based on the knowledge of the µGC system hardware.

The algorithm leverages the characteristics of the microsystem to which it is applied.
Because the MPCA system incorporates multiple cells, the chemicals in the library are
first pre-filtered by the cell that detected the peak. Within the MPCA system architec-
ture, some chemicals may have responses in only one cell, whereas others may have
responses in two cells. In the latter case, usually, one cell is superior to the other cell for
recognition because of better peak separation or a taller peak. Hence, the superior cell
is defined in the library as the primary cell for this chemical and used for recognition
and quantification; the response of the other cell is excluded from the library, except for
special cases (e.g., a reference chemical that has responses in two cells and can serve both
the cells).

Next, the algorithm checks the peak asymmetry. A peak with significant tailing (i.e.,
with a tail portion that is much longer than the duration of the rising edge) is typically
caused by a surface adsorptive chemical, which requires pre-treatment with an adjustment
of the retention time, as discussed below. For a symmetrical peak (i.e., without significant
tailing), the algorithm checks if its retention time falls within the retention time windows
of each chemical in the library. For the retention time, the recognition involves the use of
a high-confidence window and a medium-confidence window (which encloses the high-
confidence window). If the retention time of the peak is located within the high-confidence
window of a chemical, the chemical is considered a candidate and assigned a retention
time likelihood score (StR) of 1. If the peak is located outside the high-confidence window,
but within the medium-confidence window of a chemical, the chemical is also considered a
potential candidate but is assigned a lower StR of 0.5. The combination of these windows
forms a piecewise membership function (Figure 2). By default, the bounds of the high-
confidence window and medium-confidence window are empirically set at ±6% and ±10%
around the nominal retention times, respectively.
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propyl methylphosphonate (DIMP), the surface adsorption along the fluidic paths causes
not only peak tailing but also retention time variation with concentration. For recogni-
tion, the latter factor must be specially treated. The peak tailing is a good indicator to
trigger this special treatment. However, in a µGC system, peak tailing may also result
from imperfections, such as slow preconcentrator desorption or leakage. To reduce the
number of special treatments required, a second indicator can be added based on the fact
that the surface adsorptive chemicals typically have high polarity, which produces positive
responses in both the capacitive detectors [9]. Therefore, the algorithm implements a rule
such that, if the asymmetry of a peak exceeds a certain threshold defined in the library, and
both the CapDetA and CapDetB peaks are positive, this peak is considered likely a surface
adsorptive chemical. Empirically, this threshold value is set to 3.

The next step is to determine whether this peak can be recognized as a surface adsorp-
tive chemical in the library. For each of the applicable surface adsorptive chemicals in the
library (i.e., in the same cell as this peak), its projected retention time (tRp) can be calculated
based on a pre-characterized function of the actual peak height (H), which is empirically
formulated as

tRp = p1e−p2 H + p3e−p4 H + p5 (1)

where p1, p2, p3, p4, and p5 are fitting parameters obtained from multiple prior experimental
characterization runs over a concentration range of interest (Figure 3). Considering the
relatively large capacitive detector responses to the surface adsorptive chemicals, the peak
height for this function is obtained from a capacitive detector (in this case, CapDetA). In
prior experimental characterization, the fitting parameters for all the tested phosphonate
esters provided R2 values ≥ 0.99 (Figure 3). Next, for each surface adsorptive chemical in
the library, the bounds of the high-confidence window and medium-confidence window
are empirically set at ±10% and ±20% around the tRp, respectively. The algorithm then
searches for the surface adsorptive chemical candidates that have retention time windows
enclosing the retention time of the detected peak. If no such candidate is found, the
algorithm falls back to treat the peak as a normal peak.
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2.4. Recognition by DRP

After the selection of chemical candidates by retention time, leveraging the multi-
detector benefit offered by the MPCA system, the DRP is further used for chemical recog-
nition. In the MPCA system, the DRP consists of the three peak height response ratios
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representing ratios of the three detectors, i.e., CapDetB/CapDetA, CapDetA/AiPD, and
CapDetB/AiPD. The nominal values of these response ratios are stored in the library. In the
general case, a library lookup process is applied to each response ratio. If a response ratio
of a detected peak falls within the corresponding window of a chemical candidate in the
library, this response ratio is considered a match to the library and is assigned a likelihood
score of 1; otherwise, it is assigned a likelihood score of 0. As a result, the membership
function for each individual response ratio is essentially a rectangular function. The DRP
match scores are denoted as SBA (for CapDetB/CapDetA), SAD (for CapDetA/AiPD), and
SBD (for CapDetB/AiPD).

The CapDetB/CapDetA response ratio is a reliable indicator of the chemical polar-
ity. CapDetA is designed to always provide a positive response, which is dominated by
swelling of the detector coating (i.e., polydimethylsiloxane) upon chemical absorption. In
contrast, CapDetB is designed to provide either a positive response or a negative response,
depending on the dielectric constant difference between the chemical and the detector
coating [9]. The CapDetB/CapDetA response ratio is most useful for differentiating among
the following three chemical categories: (1) highly non-polar chemicals such as alkanes, for
which this ratio is typically <−1; (2) less non-polar chemicals such as aromatic hydrocar-
bons, for which this ratio typically is between −1 and 1; and (3) polar chemicals, for which
this ratio is typically between 1 and 3. However, within each chemical category, this ratio is
less reliable in differentiating individual chemicals [9]. Therefore, in the expanded library,
the windows for this ratio are coarsely set at these ranges rather than fixed percentages
around the nominal values. For certain chemicals whose CapDetB/CapDetA response
ratios are experimentally verified to deviate from the ranges above, the windows can be
adjusted accordingly in the library. For example, 1-octanol is a polar chemical but has been
experimentally verified to have a nominal CapDetB/CapDetA response ratio of 0.89; its
CapDetB/CapDetA response window is adjusted to be from 0.45 to 1.35 in the library.

In contrast, the AiPD response is dominated by the ionization potential of the chemical,
which is minimally or not correlated with the capacitive detector responses. In principle,
relatively narrow windows can be used for the CapDetA/AiPD and CapDetB/AiPD
response ratios. However, in practice, one must consider the inaccuracies in the peak height
values provided by the peak detection algorithm, which can be caused by the slightly non-
linear AiPD response to concentration [9], baseline drift, noise, asymmetry, and coelution
(i.e., overlap of peaks).

In practice, for a combination of detectors with a high level of orthogonality (e.g., the
3 types of detectors in the MPCA system), it is not uncommon for one or more detectors
to provide nearly zero peak heights. This scenario can cause significant variability in
the calculation of the response ratios in the detected peaks. To address this scenario, a
subroutine is implemented for comparing the response ratios of the detected peaks to the
chemical library. In this subroutine, for each detector, a peak height threshold (Hth) is
set at 6 times the detector noise (represented by the standard deviation σ), below which
the response is considered potentially compromised. As a result, the Hth values for both
the CapDetA and CapDetB are set at 0.24 fF, and that for the AiPD is set at 0.36 mV.
Corresponding to the number of peaks with heights below Hth, the following three cases
are considered: (1) All three peaks with heights below Hth; (2) two peaks with heights
below Hth, (3) only one peak with a height below Hth. In the first case, for a chemical
peak, if all three detectors provide peak height magnitudes below the thresholds, this
peak is considered not recognizable by response ratio, and all three DRP match scores are
set to zero.

The second is that in which two detectors provide peak height magnitudes that are
below their corresponding thresholds, whereas the third detector provides a peak height
magnitude that is above its thresholds. The DRP match score for the response ratio between
the first two detectors is assigned zero. For each of the other two DRP scores, a projected
peak height is calculated as the product of the third detector (above Hth) and the library
value of the response ratio of respective first or second detector to the third detector. It is
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possible that the projected peak height magnitude of the first or second detector is also
below the respective Hth. In such a case, the small magnitude of the detected peak height is
confirmed, and subsequently, an exception is created where the DRP match score for the
response ratio between this detector and the third detector is assigned to be 1, indicating a
match of this response ratio to the chemical candidate. However, if the projected peak height
magnitude of a detector is above Hth, the small magnitude of the detected peak height
cannot be confirmed. In such a case, the exception above is not created, and the DRP match
score for the peak height ratio between this detector and the third detector is determined
by the library lookup result (Figure 4). As an example, assume that both the detected
CapDetA and CapDetB peak height magnitudes are below their Hth, whereas the detected
AiPD peak height magnitude is above its Hth. In this case, SBA is automatically assigned a
zero. The projected CapDetA and CapDetB peak height magnitudes are calculated based
on the detected AiPD peak height. If the projected CapDetA peak height is also below its
corresponding Hth, the SAD is assigned a 1. Otherwise, the SAD is dependent on the library
lookup result. The same judgment procedure is applied to the CapDetB and the SBD.
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The third case is that in which one detector provides a peak height magnitude below
its Hth, whereas the other two detectors provide peak height magnitudes above their Hth
(Figure 4). In this case, the DRP match score for the peak height ratio between the latter two
detectors (S23) is determined by the library lookup result. Then, two projected peak heights
are calculated for the former detector, each based on the detected peak height of one of the
latter detectors. If a projected peak height magnitude is below its Hth, the DRP match score
for the response ratio between the former detector and the corresponding latter detector
is assigned to be 1. If a projected peak height magnitude is above its Hth, the DRP match
score for the peak height ratio between the former detector and the corresponding latter
detector is determined by the library lookup result (Figure 5). As an example, suppose the
CapDetA peak height magnitude is below its Hth, whereas both the CapDetB and AiPD peak
height magnitudes are above their Hth, the SBD is determined by the library lookup result.
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Two projections of the CapDetA peak height are calculated from the detected CapDetB
and AiPD peak heights. If the CapDetA peak height magnitude that is projected from
CapDetB Is below the Hth of CapDetA, SBA is assigned 1. Otherwise, the SBA is determined
by whether the library lookup result for the CapDetA/CapDetB response ratio. The same
judgment procedure is applied to the SAD.
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2.5. Total Score for Recognition

To quantify the overall likelihood of a chemical recognition result, a total score (STotal)
is calculated for each chemical candidate of a peak. The STotal is defined based on the
individual retention time and DRP match scores:

STotal = StR

3

∑
i=1

wiSi (2)

where, Si is the ith DRP match score, wi is the corresponding weight assigned by the user,
and StR is the previously defined retention time likelihood score. The three DRP match
scores are combined by summing rather than multiplication; a single DRP match score of 0
does not eliminate a possible chemical candidate. In contrast, the StR and the sum of the
DRP match score are multiplied (rather than being added) because a 0 in either of these two
values is a good indicator of mismatch between a peak and a listed chemical in the library.
By default, the wi values are all set to be 1/3. For a chemical candidate, as StR can be either
1 or 0.5 and Si can be either 1 or 0, the possible values of STotal include 0, 0.17, 0.33, 0.5, 0.67,
and 1. For those users who prefer only binary results (i.e., presence or absence of target
chemicals), the STotal criterion for positive recognition (i.e., presence of a target chemical)
is set to be ≥0.67, i.e., with StR = 1 and at least two Si values to be 1. For other users who
prefer more granularity in the results, the STotal value can provide additional insights. For
example, a STotal of 1 represents higher confidence in the recognition than a STotal of 0.67,
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whereas a STotal of 0.5 may be set as an indicator for further investigation. Note that the
weights of the DRP and the criterion for positive recognition can be changed by the user
if needed.

2.6. Estimated Concentration

After chemical recognition, the algorithm provides an estimate of the chemical con-
centration, even though the quantification is not the focus of this work. To minimize the
impact of quantification error from the detector noise, the algorithm selects in the primary
cell the detector that provides the largest signal-to-noise ratio to compute the concentration
associated with a peak. The concentration C is calculated by

C =
Hi

tsamplingαi
(3)

where Hi is the peak height for the detector with the largest signal-to-noise ratio, αi is the
sensitivity of the corresponding detector, and tsampling is the sampling time.

2.7. Using a Reference Chemical

If the user specifies a reference chemical to be used for recognition of other chemicals,
the algorithm first verifies the presence of the reference chemical among all the detected
peaks in both cells. This verification checks the retention time and the DRP between the
detected peaks and the reference chemical information in the library using a similar process
as described above. If the reference chemical is recognized in a cell, for all the other peaks
in this cell, the algorithm computes the relative retention times (tR.r) as the ratios between
the raw retention times and that of the reference chemical. All the retention time bounds
are also ratioed accordingly. Then, the algorithm searches for chemical candidates, scores
them as described above, and computes the relative concentrations (Cr) as a ratio to that of
the reference chemical.

3. Results and Discussion

The chemical recognition algorithm was assessed using the peak detection results
of the MPCA system chromatograms as the input data. In this work, the peak detection
results were provided by a wavelet-based algorithm [32] that was further adapted for the
MPCA system chromatograms. This peak detection algorithm provides a set of processed
chromatograms for user visualization and provides tabulated peak information of all the
detected peaks to be used for chemical recognition. The tabulated peak information includes
the peak number, retention time, peak asymmetry, CapDetA peak height, CapDetB peak
height, and AiPD peak height. To facilitate user inspection, the tabulated peak information
is repeated in the output results table of the chemical recognition algorithm (e.g., Table 3)
in the columns “Chemical Number”, “Retention time (s)”, “Asymmetry”, “CapDetA (fF)”,
“CapDetB (fF)”, and “AiPD (mV)”, respectively. The output results table also includes the
recognition scores StR, SBA, SAD, SBD, and STotal in the corresponding columns. The names
and estimated concentrations of the recognized chemicals are reported in the columns
“Chemical Name” and “C (ppb)”, respectively. For recognition results obtained with reference
chemicals, the estimated concentration is labeled “Cr (ppb)” instead. Each recognized
chemical contains all the information above in a row, which is uniquely numbered in the
column “Chemical Number” using the format of “x.y.(z)”, where x indicates which cell the
peak is from, y indicates which peak in the cell it is referring to, and z is the chemical
candidate number. For example, the first possible chemical candidate for the third peak
detected in Cell2 is numbered as “2.3.(1)”. In this work, only the Cell2 and Cell3 data
are used for recognition; Cell1 is in continuing development and will be included in
the future [9].
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Table 3. Recognition results for the first example. The labels on the left indicate comparison to the
ground truth, in which the bold italic text indicates chemicals that are in the library. This section
describes three representative examples of the chemical recognition results. In each example, the
recognition results are compared against the true list of chemicals, i.e., the ground truth, on a
peak-by-peak basis.

Ground
Truth

Output from Chemical Recognition Algorithm
Chemical
Number

Chemical
Name tR (s) Asym CapDetA

(fF)
CapDetB

(fF)
AiPD
(mV) Str SBA SAD SBD Stotal C (ppb)

Unknown 3 2.1.(1) Unknown#1 17.1 1.14 0.00 −0.32 2.50 0 0 0 0 0

Hexane
3 2.2.(1) Hexane 29.2 3.96 0.00 −0.41 7.03 1 1 1 1 1 70.26

3 2.2.(2) Ethyl Acetate 29.2 3.96 0.00 −0.41 7.03 1 0 0 0 0

Heptane
3 2.3.(1) Heptane 63.5 2.51 0.00 −0.18 6.23 1 0 1 1 0.67 66.21

3 2.3.(2) 1-Nitropropane 63.5 2.51 0.00 −0.18 6.23 1 0 0 0 0

Toluene 3 2.4.(1) Toluene 93.3 1.69 0.00 −0.05 4.63 1 0 1 1 0.67 5.05

Octane

3 2.5.(1) Octane 128.1 1.35 0.00 −0.24 6.20 1 1 1 1 1 114.48

3 2.5.(2) 2,3-Butanediol 128.1 1.35 0.00 −0.24 6.20 1 1 0 0 0.33

3 2.5.(3) Butyl Acetate 128.1 1.35 0.00 −0.24 6.20 1 1 0 0 0.33

Unknown 3 2.6.(1) Ethylbenzene 176.8 0.96 0.00 0.01 0.65 0.5 0 1 1 0.33

o-Xylene 3 2.7.(1) o-Xylene 199.9 0.83 5.86 1.55 204.29 1 1 1 1 1 602.61

Unknown 3 2.8.(1) Unknown#2 298.5 0.92 0.00 −0.02 0.53 0 0 0 0 0

Unknown 3 3.1.(1) Unknown#3 11 1.80 0.00 −0.48 3.23 0 0 0 0 0

Unknown 3 3.2.(1) o-Xylene 16.2 1.25 0.00 −0.77 10.66 1 0 1 0 0.33

Nonane 3 3.3.(1) Nonane 18.1 3.71 0.00 −1.20 10.98 1 1 1 1 1 18.26

Decane
3 3.4.(1) Decane 32.7 2.77 0.48 −2.18 16.67 1 1 1 1 1 21.32

3 3.4.(2) Limonene 32.7 2.77 0.48 −2.18 16.67 0.5 0 1 0 0.17

Unknown 3 3.5.(1) Limonene 35.5 2.83 0.00 0.00 13.21 1 0 1 0 0.33

Unknown 3 3.5.(2) Decane 35.5 2.83 0.00 0.00 13.21 1 0 0 0 0

Undecane 3 3.6.(1) Undecane 60.8 1.14 0.97 −2.80 14.96 1 1 1 1 1 26.42

Unknown 3 3.7.(1) Unknown#4 96.8 0.93 0.49 0.10 6.10 0 0 0 0 0

Dodecane 3 3.8.(1) Unknown#5 107.6 0.94 1.82 −4.33 13.34 0 0 0 0 0

Unknown 3 3.9.(1) Unknown#6 136.2 6.83 1.79 1.74 0.35 0 0 0 0 0

Unknown 3 3.10.(1) Unknown#7 167.3 2.19 0.63 −0.31 0.00 0 0 0 0 0

Unknown 3 3.11.(1) Unknown#8 171.9 5.65 0.00 −0.58 0.45 0 0 0 0 0

Unknown 3 3.12.(1) Unknown#9 179.8 3.57 5.61 4.97 0.00 0 0 0 0 0

Legend: 3 Correct recognition of a peak as a chemical in the library. 3 Correct recognition for true unknowns and
chemicals not in the library.

The first example is a relatively simple chromatogram, which contains eight detected
peaks in Cell2 and 13 detected peaks in Cell3. The chromatogram shows all the peaks
with known identities and whether they are in the library (Figure 6). Among the other
peaks with unknown identities, Peaks 3.4, 3.7, 3.9, and 3.12, and part of Peak 2.4 resulted
from system outgassing, as verified by separate chromatograms of blank runs (i.e., with
zero-grade air as the samples), which also contained these peaks. The remaining unknown
peaks likely resulted from trace impurities in the sample. After the algorithm performed
chemical recognition, the output (Table 3) showed that all the chemicals that were within
the library were correctly recognized, with a total score of 0.67 or higher. The peak for
dodecane, which was not in the library, was correctly treated as unknown and not falsely
recognized as another chemical in the library.
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Using Peak 2.2 as an example to navigate the recognition algorithm, it was recognized
as follows. In the first step, the algorithm decided that this peak was unlikely to be a
surface adsorptive chemical, and hence, no special treatment was needed. Despite a peak
asymmetry of 3.96 (which exceeded the threshold value of 3 for being considered to have
significant tailing), this decision was made because neither peak height from CapDetA
and CapDetB was a positive value, indicating that this peak was unlikely to be from a
polar chemical. In the second step, based on the cell number and the retention time (29.2 s),
both hexane and ethyl acetate were found as possible candidates. In the library, hexane
has a nominal retention time of 29.2 s, a high-confidence window of 27.5–31.1 s, and a
medium-confidence window of 26.3–32.1 s. Therefore, the StR for hexane was 1. In the
library, ethyl acetate has a nominal retention time of 31.1 s, a high-confidence window of
29.2–33.0 s, and a medium-confidence window of 28.0–34.2 s. Therefore, the StR for ethyl
acetate was also 1.

The third step used the DRP information. For Peak 2.2, the detected CapDetA peak
height magnitude was below its Hth; in fact, the peak detection algorithm did not detect a
CapDetA peak for it. Therefore, Peak 2.2 was treated as the third case in the DRP subroutine.
Assuming that this peak was generated by hexane, the CapDetA peak height was projected
from both the detected peak heights from CapDetB and AiPD, based on the nominal DRP
for hexane. The former projected values were 0.06 fF and 0.03 fF, respectively; both were
smaller than their corresponding Hth values. Therefore, both SBA and SAD were assigned
to be 1. The CapDetB/AiPD peak height ratio was −5.68 × 10−2, which was within the
corresponding window in the library (−6.09 × 10−2 to −6.76 × 10−3); therefore, SBD was
assigned as 1. As a result, hexane received a STotal of 1, indicating that this peak was likely
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generated by hexane. Subsequently, the concentration was calculated for hexane using
Equation (3); based on the peak height of the AiPD, which provided the strongest signal-
to-noise ratio among the three detectors, the concentration was estimated to be 70.26 ppb.
Next, assuming that this peak was generated by ethyl acetate, the CapDetA peak height
was projected. However, neither the projected value was below the corresponding Hth.
In the subsequent comparison of the peak height ratios against the library, none of the
ratios formed a match. Therefore, ethyl acetate received a 0 in every DRP match score and
consequently a STotal of 0, indicating that this peak was unlikely to have been generated by
ethyl acetate.

The second example is a more complex chromatogram with 31 peaks. The complexity
was manifested in the extent of partially and even fully coeluting peaks, for which the peak
detection algorithm may produce inaccurate peak information, particularly on the peak
heights and hence the DRP. The chromatogram in Figure 7 shows all the peaks with known
identities and indicates whether or not they are in the chemical library. Other peaks corre-
spond to unknown chemicals that resulted from system outgassing or sample impurities.
Apart from methyl isobutyl ketone (MIBK), m-xylene, 1-chloroheptane, nitrobenzene, and
dodecane, the other known chemicals were in the library. After the algorithm performed
chemical recognition, the output (Table 4) showed that most of the chemicals that were
within the library were correctly recognized, with a total score of 0.67 or higher. The peaks
for m-xylene, 1-chloroheptane, nitrobenzene, and dodecane, which were not in the library,
were correctly treated as either unknowns or a chemical with STotal < 0.67, i.e., they were
not falsely recognized as another chemical in the library.
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Table 4. Recognition results for the second example. The labels on the left indicate comparison to the
ground truth, in which the bold italic text indicates chemicals that are in the library.

Ground
Truth

Output from Chemical Recognition Algorithm
Chemical
Number

Chemical
Name tR (s) Asym CapDetA

(fF)
CapDetB

(fF)
AiPD
(mV) Str SBA SAD SBD Stotal C (ppb)

Unknown 3 2.1.(1) Unknown#1 7.8 3.50 1.53 1.19 0.00 0 0 0 0 0

Unknown 3 2.2.(1) Unknown#2 13.7 3.27 0.00 −0.05 7.51 0 0 0 0 0

Unknown 3 2.3.(1) Unknown#3 26.1 2.94 1.32 2.18 52.08 0 0 0 0 0

Cyclohexane

3 2.4.(1) Cyclohexane 46.8 0.48 0.00 0.00 50.22 1 0 1 1 0.67 105.07

3 2.4.(2) Benzene 46.8 0.48 0.00 0.00 50.22 0.5 0 1 1 0.33

3 2.4.(3) Carbon
Tetrachloride 46.8 0.48 0.00 0.00 50.22 1 0 0 0 0

3 2.4.(4) 2-Pentanone 46.8 0.48 0.00 0.00 50.22 0.5 0 0 0 0

Pentanal

3 2.5.(1) Pentanal 52.7 1.69 2.21 3.77 38.90 1 1 1 1 1 233.61

3 2.5.(2) 2-Pentanone 52.7 1.69 2.21 3.77 38.90 0.5 1 1 1 0.5

3 2.5.(3) Isooctane 52.7 1.69 2.21 3.77 38.90 0.5 0 1 0 0.17

Heptane

3 2.6.(1) Heptane 62.8 1.90 0.00 −0.53 25.76 1 1 1 1 1 273.72

3 2.6.(2) Isooctane 62.8 1.90 0.00 −0.53 25.76 0.5 1 1 1 0.5

3 2.6.(3) 1-Nitropropane 62.8 1.90 0.00 −0.53 25.76 1 0 0 0 0

Pinacolyl
alcohol +

MIBK
7 2.7.(1) Pinacolyl

Alcohol 77.8 1.52 9.38 14.86 88.95 1 1 0 0 0.33

Toluene 3 2.8.(1) Toluene 92.2 2.09 0.74 0.00 104.29 1 1 1 1 1 113.73

Butyl
Acetate

7 2.9.(1) 2,3-Butanediol 129.6 1.40 6.05 8.93 21.50 1 1 1 1 1 57.32

3 2.9.(2) Butyl Acetate 129.6 1.40 6.05 8.93 21.50 1 1 1 0 0.67 138.69

3 2.9.(3) Octane 129.6 1.40 6.05 8.93 21.50 1 0 1 0 0.33

Ethylbenzene 3 2.10.(1) Ethylbenzene 166.3 0.61 1.20 −0.17 75.60 1 1 1 1 1 258.91

m-Xylene 3 2.11.(1) Ethylbenzene 173.2 63.00 0.78 −0.18 63.12 0.5 1 1 1 0.5

o-Xylene 3 2.12.(1) o-Xylene 195.7 1.41 1.42 0.42 64.00 1 1 1 1 1 188.78

Unknown 3 2.13.(1) Unknown#4 224.1 0.98 0.00 −0.06 0.61 0 0 0 0 0

1-
Chloroheptane 3 2.14.(1) Unknown#5 253.5 1.22 3.09 4.12 4.07 0 0 0 0 0

Unknown 3 2.15.(1) Unknown#6 257.2 24.50 0.00 0.83 3.15 0 0 0 0 0

Nitrbenzene 3 2.16.(1) Unknown#7 318.6 1.27 2.11 4.02 1.11 0 0 0 0 0

Unknown 3 3.1.(1) Unknown#8 11.3 1.67 0.43 0.39 0.00 0 0 0 0 0

Unknown 3 3.2.(1) Unknown#9 14.2 2.40 0.54 −0.99 87.00 0 0 0 0 0

o-Xylene 3 3.3.(1) o-Xylene 16.0 1.83 1.29 −0.57 84.28 1 1 1 0 0.67

Nonane 3 3.4.(1) Nonane 18.0 0.90 1.08 −7.37 55.10 1 1 1 0 0.67 91.67

Unknown 3 3.5.(1) Mesitylene 23.5 1.00 11.89 11.75 0.00 1 1 0 0 0.33

Mesitylene 3 3.6.(1) Mesitylene 25.1 15.00 5.36 −1.35 166.32 1 1 0 1 0.67 109.42

Decane
3 3.7.(1) Decane 32.9 0.83 2.22 −8.55 44.08 1 1 1 1 1 56.36

3 3.7.(2) Limonene 32.9 0.83 2.22 −8.55 44.08 0.5 0 1 0 0.17

Unknown 3 3.8.(1) Unknown#10 43.4 1.50 26.67 34.71 11.39 0 0 0 0 0

2-Nonanone
3 3.9.(1) 2-Nonanone 52.4 0.74 19.97 23.01 23.75 1 1 1 1 1 100.9

7 3.9.(2) 1-Octanol 52.4 0.74 19.97 23.01 23.75 1 1 1 0 0.67 360.02

Undecane 3 3.10.(1) Undecane 59.9 1.21 1.95 −5.22 23.15 1 1 1 1 1 40.88
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Table 4. Cont.

Ground
Truth

Output from Chemical Recognition Algorithm
Chemical
Number

Chemical
Name tR (s) Asym CapDetA

(fF)
CapDetB

(fF)
AiPD
(mV) Str SBA SAD SBD Stotal C (ppb)

Unknown 3 3.11.(1) Unknown#11 87.5 1.04 0.36 0.42 0.00 0 0 0 0 0

Dodecane 3 3.12.(1) Unknown#12 104.8 1.15 0.54 −1.41 4.07 0 0 0 0 0

Unknown 3 3.13.(1) Unknown#13 138.9 4.23 1.17 1.37 0.00 0 0 0 0 0

Unknown 3 3.14.(1) Unknown#14 179.0 3.87 5.98 5.52 0.00 0 0 0 0 0

Unknown 3 3.15.(1) Unknown#15 199.1 0.02 0.00 −0.05 2.10 0 0 0 0 0

Legend: 3 Correct recognition of a peak as a chemical in the library. 3 Correct recognition for true unknowns and
chemicals not in the library. 7 False positive. 7 False negative.

However, there were some cases of misrecognition. Peak 2.7, which resulted from
full coelution of pinacolyl alcohol (in the library) and MIBK (not in the library), was
not recognized correctly. Based on the retention time, pinacolyl alcohol was correctly
found as the possible candidate with a StR of 1. In the subsequent recognition based on
the DRP, all three detector peak height magnitudes were above their corresponding Hth
values, so all DRP ratios were directly compared to the windows in the library. Only
the CapDetB/CapDetA response (1.59 × 100) was within the corresponding window
(1–3), whereas CapDetB/AiPD (1.67 × 10−1) was not within the corresponding window
(9.81 × 10−3 to 8.83 × 10−2), and CapDetA/AiPD (1.05 × 10−2) was also not within the
corresponding window (7.60 × 10−3 to 6.84 × 10−2). Therefore, SBA was assigned 1,
whereas SBD and SAD were assigned 0, producing a STotal of only 0.33. This false negative
recognition resulted from the coelution of MIBK, which altered the DRP. In the future, this
problem can be addressed by incorporating MIBK into the library and implementing the
algorithm to handle coeluting chemicals.

For Peak 2.9, while butyl acetate was correctly reported with STotal = 0.67, 2,3-butanediol
was reported with STotal = 1. This was because both 2,3-butanediol and butyl acetate had
relatively similar nominal retention times (123.6 s vs. 129.3 s), so their high-confidence
retention time windows both covered the retention time of Peak 2.9 (at 129.6 s); additionally,
they had relatively similar DRPs. Evidently, the retention time of Peak 2.9 was much closer
to that of butyl acetate than 2,3-butanediol. If the retention time windows can be narrowed
to, for example, within ±3% of the nominal retention time, the high-confidence window of
2,3-butanediol becomes 119.9–127.3 s, whereas that of butyl acetate becomes 125.5–133.3 s.
In this scenario, the retention time of Peak 2.9 only falls within the high-confidence window
of butyl acetate.

For the same reason as Peak 2,9, both 1-octanol and 2-nonanone were reported for
Peak 3.9, although only the former was truly in the sample. However, the nominal retention
times of 2-nonanone (51.7 s) and 1-octanol (51.8 s) are almost identical. Therefore, for these
two chemicals, simply narrowing the retention time window cannot improve recognition.
Differentiation of these two chemicals may require narrower DRP windows.

The third example is a chromatogram with phosphonate esters (DMMP, DEMP, and
DIMP), which are surface adsorptive chemicals. The chromatogram contains 21 peaks. The
chromatogram in Figure 8 shows all the peaks with known identities and whether they are
in the chemical library. All the known chemicals were in the library. After the algorithm
performed chemical recognition, the output (Table 4) showed that all the chemicals that
were within the library were correctly recognized, with a total score of 0.67 or higher. Peak
2.2 resulted from system outgassing, but the algorithm recognized it as toluene; a possible
solution to addressing this problem is presented later.
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When the user specified the use of o-xylene as the reference chemical, the phosphonate
esters were also correctly recognized and quantified in relative quantities (Table 5). In this
process, the algorithm first searched for o-xylene in both cells and correctly recognized
Peaks 2.4 and 3.1 as o-xylene. Next, retention times of o-xylene in these two cells were set
as reference retention times, with 199.7 s for Cell2 and 15.9 s for Cell3. Take Peak 2.5 as an
example. It had a retention time of 248.1 s in Cell2 and, therefore, a relative retention time
of 1.2 (i.e., 248.1 s/199.7 s). In the first step, based on the peak asymmetry (24.5) and the
CapDetA and CapDetB peak heights (both being positive), the peak underwent special
treatment. In Cell2, the only surface adsorptive chemical in the library was DMMP. Using
Equation (1) and the detected CapDetA peak height, the projected retention time for DMMP
was 245.3 s. With a nominal retention time of 196.5 s in the library for o-xylene in Cell2, the
projected nominal relative retention time of DMMP was, therefore, 1.2, which well matched
the relative retention time of Peak 2.5. Therefore, StR was assigned 1. Subsequently, the
recognition based on the DRP was performed as previously discussed.
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Table 5. Recognition results of the third example. The labels on the left indicate comparison to the
ground truth. The columns in light blue background are results with the use of o-xylene as the
reference chemical. For this example, other columns resulting from the use of the reference chemical
are identical as those without using a reference chemical and therefore not repeated here.

Ground Truth
Output from Chemical Recognition Algorithm

Chemical

Number

Chemical

Name
tR (s) Asym

CapDetA

(fF)

CapDetB

(fF)

AiPD

(mV)
StR SBA SAD SBD Stotal C (ppb) tR.r Cr

Unknown 3 2.1.(1) Unknown#1 17.6 0.81 0 −0.51 1.3 0 0 0 0 0 0.1

Unknown 7 2.2.(1) Toluene 94.1 1.44 0 0.03 1.90 1 0 1 1 0.67 2.07 0.5 0.004

Unknown 3 2.3.(1) 2,3-Butanediol 128.4 1.55 0 0.05 0.36 1 0 0 0 0 0.6

Unknown 3 2.3.(2) Butyl Acetate 128.4 1.55 0 0.05 0.36 1 0 0 0 0 0.6

Unknown 3 2.3.(3) Octane 128.4 1.55 0 0.05 0.36 1 0 0 0 0 0.6

o-Xylene 3 2.4.(1) o-Xylene 199.7 0.93 4.58 1.23 159.35 1 1 1 1 1 470.06 1.0 1

DMMP 3 2.5.(1) DMMP 248.1 24.50 4.17 8.65 2.44 1 1 1 1 1 26.61 1.2 0.057

Unknown 3 2.6.(1) Unknown#2 268.1 35.00 0 2.33 0.99 0 0 0 0 0 1.3

Unknown 3 2.7.(1) Unknown#3 277.2 2.52 0 1.22 1.18 0 0 0 0 0 1.4

Unknown 3 2.8.(1) Unknown#4 413.0 0.74 0.21 0.09 0 0 0 0 0 0 2.1

Unknown 3 2.9.(1) Unknown#5 427.1 0.96 0 −0.01 0.35 0 0 0 0 0 2.1

o-Xylene 3 3.1.(1) o-Xylene 15.9 3.38 0 −0.15 11.99 1 0 1 1 0.67 1.0

Unknown 3 3.2.(1) Decane 35.1 0.04 −0.18 −0.63 10.59 1 0 0 1 0.33 2.2

Unknown 3 3.2.(2) Limonene 35.1 0.04 −0.18 −0.63 10.59 1 0 0 0 0 2.2

Unknown 3 3.3.(1) Unknown#6 42.6 4.00 0.37 0.50 0 0 0 0 0 0 2.7

Unknown 3 3.4.(1) Unknown#7 44.5 1.38 0 0.54 0.78 0 0 0 0 0 2.8

DEMP 3 3.5.(1) DEMP 55.2 4.57 8.32 11.68 3.64 1 1 1 1 1 20.79 3.5 0.044

Unknown 3 3.5.(2) 2-Nonanone 55.2 4.57 8.32 11.68 3.64 0.5 1 0 0 0.17 3.5

Unknown 3 3.5.(3) 1-Octanol 55.2 4.57 8.32 11.68 3.64 0.5 0 0 0 0 3.5

DIMP 3 3.6.(1) DIMP 70.2 10.59 14.46 19.70 6.60 1 1 1 1 1 30.54 4.4 0.065

Unknown 3 3.7.(1) DIMP 96.1 96.00 2.48 1.42 5.40 0.5 0 1 0 0.17 6.0

Dodecane 3 3.8.(1) Unknown#8 135.7 3.16 62.76 69.25 1.18 0 0 0 0 0 8.5

Unknown 3 3.9.(1) Unknown#9 160.6 1.05 0.32 0.20 0 0 0 0 0 0 10.0

Unknown 3 3.10.(1)
Unknown

#10
168.3 1.13 1.45 0.77 0 0 0 0 0 0 11.0

Unknown 3 3.11.(1)
Unknown

#11
180.4 2.73 6.59 6.52 0 0 0 0 0 0 11.0

Unknown 3 3.12.(1)
Unknown

#12
198.1 0.04 0 −0.04 0.94 0 0 0 0 0 13.0

Legend: 3 Correct recognition of a peak as a chemical in the library. 3 Correct recognition for true unknowns and

chemicals not in the library. 7 False positive.

Although most peaks that resulted from system outgassing were correctly treated
as unknowns, some may have affected the recognition results. For instance, Peak 2.2
in the third example was incorrectly reported as toluene, whereas Peak 2.4 in the first
example (which constituted both system outgassing and toluene from the sample) was
possibly overestimated in concentration. One solution to address these problems is to
incorporate the features of the outgassing peak into the chemical library, including not only
the retention times and the DRPs but also the expected peak heights. As a result, these peaks
can be correctly recognized as outgassing chemicals and separated from true unknown
chemicals in the sample. Furthermore, if the outgassing peaks are well characterized, their
contributions to the peak heights of the actual analyte chemicals can be subtracted before
quantifying the analyte chemicals.

Other false positive cases resulted from chemicals with similar parameters, such
as Peak 2.9 (butyl acetate and 2,3-butanediol) and Peak 3.9 (2-nonanone and 1-octanol)
in the second example. Although further narrowing the retention time and DRP win-
dows may enhance differentiation between these chemicals, it requires more experimental
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characterization of the system hardware to provide more statistics on the variations in
these parameters. Additionally, as the AiPD exhibits a non-linear response to chemical
concentrations [9], it requires additional considerations. Regardless, for an expert user who
recognizes the MPCA system as a chemical screening and early warning system rather than
a fingerprint-type identification system, the current style of reporting multiple possibilities
for each peak may be considered a useful feature.

To quantitatively summarize the recognition accuracy, the recognition results were
categorized to form a confusion matrix (Table 6). For each peak, if its recognition result
included the correct chemical identity, it was considered a true positive; if a peak from
any chemical outside the library was falsely recognized as a chemical in the library, it was
considered a false positive; if its recognition result included both a correct chemical identity
and an incorrect chemical identity, it was considered both a true positive and a false positive
(e.g., Peak 2.9 in the second example). Additionally, if a peak from any chemical outside the
library was reported as unknown, it was considered a true negative; if a peak was from any
chemical in the library but was reported as unknown, it was considered a false negative.
Overall, the chemical recognition algorithm in this work provided a true positive rate of
96.3%, a true negative rate of 94.1%, a false positive rate of 5.9%, and a false negative rate
of 3.7%.

Table 6. Confusion matrix based on the recognition results.

True positive False negative
96.30% 3.70%

False positive True negative
5.90% 94.10%

Compared to the statistical methods, the advantages of this work are summarized
as follows:

• A viable library can be constructed using small data sets (7 total for non-special case
chemicals) and expert knowledge.

• The causal relationship between the recognition score, the DRP, and expert knowledge
increases the traceability of the algorithm.

• Special rules for small signals and for surface absorptive chemicals enhance the recog-
nition of complex samples.

4. Conclusions

Overall, the algorithm reported in this work provided chemical recognition for a µGC
system with three complementary types of detectors and achieved its intended performance.
Recognition rules for the retention time and the detector response pattern were developed
based on both the physical attributes and expert understanding of the hardware. Despite
the use of relatively coarse windows for individual parameters, the combined use of these
recognition rules enabled chemical recognition in complex chromatograms, overcoming
the uncertainty of peak information resulting from low signal-to-noise ratios, asymmetry,
and overlapping peaks. Additionally, customized special treatments were implemented
to further address these problems. The recognition capabilities of the algorithm were
illustrated in three examples, with all the results well expected and explainable. Such a
chemical recognition algorithm requires only a small amount of experimental data because,
typically, one experimental run is enough to establish the nominal responses for multiple
chemicals. Therefore, this algorithm shows the prospects of reducing the burden on system
calibration while providing satisfactory results to expert users.

Although this work adopts fuzzy logic, the membership functions applied to the
individual parameters are relatively simple, i.e., with step functions providing binary
results to a small number of discrete windows. With more experimental characterization
and a better understanding of the parameter variations, probability density functions can
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be established and used as the membership functions, thus providing more granularity to
the individual recognition scores.

To further improve the algorithm, future work may include the following. (1) Charac-
terize the outgassing peaks and add them to the library. (2) Conduct more experimental
characterization of the chemical response variations, which can provide a better quantita-
tive basis for setting the membership functions and likelihood windows. (3) Implement an
algorithm to handle coeluting chemicals within a peak. (4) Expand the library to include
more chemicals.
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