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Abstract: Electronic nose (E-nose) combined with gas chromatography–mass spectrometry (GC-MS)
was used to analyze the volatile components of silver wormwood from different habitats, and the
antibacterial activity of essential oils was also studied, to provide a scientific basis for quality control
of silver wormwood and rational utilization of their essential oils. In this study, the total content of
essential oils in silver wormwood was determined by steam distillation; the volatile components were
conducted in an overall analysis by E-nose combined with chemometrics; the volatile components
were analyzed and identified by GC-MS; and two G-negative bacteria and one Gram-positive bacteria
were used as test bacteria to determine the antibacterial activity of the essential oils from silver
wormwood. The results showed that principal component analysis (PCA) and linear discriminant
analysis (LDA) of E-nose could distinguish the essential oils of silver wormwood from different
habitats, and the odor difference of essential oils was obvious. A total of 87 volatile components were
identified by GC-MS, and there were significant differences in components and contents in silver
wormwood from different habitats; PCA and hierarchical cluster analysis (HCA) could effectively
distinguish silver wormwood from different habitats. The essential oils from silver wormwood from
different habitats all had a certain inhibitory effect on Bacillus subtilis, Staphylococcus aureus, and
Escherichia coli. Therefore, the combination of E-nose and GC-MS could quickly distinguish silver
wormwood from different habitats and provide a reference for quality control, drug selection, and
comprehensive utilization of silver wormwood.

Keywords: silver wormwood; essential oil; E-nose; GC-MS; antibacterial activity; habitat identification

1. Introduction

Silver wormwood is the dry leaf of Artemisia argyi Lévl. et Vant and contains flavonoids,
essential oils, polysaccharides, and other active ingredients [1,2]. Essential oil is the main
active component of silver wormwood and mainly contains monoterpene and its deriva-
tives, sesquiterpene and its derivatives, ketones (aldehydes), alcohols (phenols), acids
(esters), alkanes (alkenes), and other chemical components [3]. Silver wormwood is bitter
and pungent in flavor and warm in nature and has the functions of warming meridians,
stopping bleeding, dispelling cold, and relieving pain [4]. Silver wormwood has phar-
macological effects such as antioxidant, antibacterial, antivirus, antitumor, and immune
regulation [5–7]. Silver wormwood has a high medicinal value and abundant resources
and is mainly produced in Henan province and Hubei province. Silver wormwood is
widely used. In addition to being used as medicinal materials, it can also be made into
practical articles such as moxa wool, moxa-wool moxibustion, and inkpad. In addition,
it is also closely related to food and can be used to make wormwood leaves bread, fresh
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wormwood leaves, wormwood oxalic acid, wheat fermented by wormwood leaves, and
other foods [8]. Therefore, the development and utilization of silver wormwood have
attracted the attention of researchers, and considering how to control the quality of silver
wormwood has become an important prerequisite for medicinal safety and food safety.

As the main active component of silver wormwood, the essential oil has a strong
special odor and is regarded as the standard to evaluate the medicinal quality of silver
wormwood, and its content can directly reflect the quality of silver wormwood [9,10]. Due
to different planting conditions and methods and harvesting methods in different habitats,
the volatile components of silver wormwood from different habitats are quite different.
Most researchers only focus on the analysis of the content differences of the essential oils
in silver wormwood from different habitats, leading to the inability to scientifically and
comprehensively reflect the quality differences of silver wormwood from different habitats.

In this study, electronic nose (E-nose) combined with gas chromatography–mass
spectrometry (GC-MS) was used to analyze the essential oils in silver wormwood from
different habitats. Odor, an important sensory indicator of essential oil in traditional
Chinese medicine, is directly related to the quality and efficacy of traditional Chinese
medicine [11,12]. For traditional Chinese medicine that contains essential oils, the differ-
ences in the types and contents of volatile components lead to differences in the odors of
different traditional Chinese medicine. At present, the evaluation of the quality of tradi-
tional Chinese medicine based on odor and other traits mainly uses sensory evaluation,
which has various limitations, such as strong subjectivity [13]. E-nose is a simulated bio-
logical olfactory system that can digitize, model, and visualize subjective feelings, quickly
analyze and distinguish the odor of complex samples, and has the advantages of simple
operation, quick detection, and high sensitivity [14,15]. It can detect the overall informa-
tion of samples and form odor fingerprints and has been widely applied in many fields
such as food, medicine, environment, and agriculture [16–18]. In terms of antibacterial
activity, essential oil of silver wormwood has certain inhibition activity on Escherichia coli
and Staphylococcus aureus and the antibacterial activity of silver wormwood essential oil
is also different in different places [19]. In this paper, two G-negative bacteria and one
Gram-positive bacteria were used as test bacteria to determine the antibacterial activity of
the essential oils from silver wormwood.

This study used E-nose to detect the odor of essential oil samples of silver wormwood
from different habitats, analyzed the volatile components in silver wormwood from dif-
ferent habitats by GC-MS combined with chemometrics, and researched the antibacterial
activity of essential oils in silver wormwood from different habitats, thus providing a
reference for quality control, variety breeding, and comprehensive development of silver
wormwood from different habitats.

2. Materials and Methods
2.1. Instruments and Reagents

A 7890A/5975C gas chromatography–mass spectrometer (Agilent Technology Co.,
Ltd., Beijing, China); SuperNose Electronic Nose (Shanghai Ruixuan International Trade Co.,
Ltd., Shanghai, China); BT25S Electronic Analytical Balance (Beijing Sai Dolis Instrument
Co., Ltd., Beijing, China); essential oil extractor (Sichuan Shuniu Glass Instrument Co.,
Ltd., Chongzhou, China); 80KCS vertical steam sterilization pot (Shanghai Shen’an Medical
Device Factory, Shanghai, China); and Model SPX-150F Biochemical Incubator (Shanghai
Yue Long Instrument and Equipment Co., Ltd., Shanghai, China) were used.

Reagents such as n-hexane and anhydrous sodium sulphate were analytical reagents;
C7–C32 n-alkanes (Chengdu Croma Co., Ltd., Chengdu, China); Staphylococcus aureus
(ATCC 25923), Escherichia coli (ATCC 25922), and Bacillus subtilis (ATCC 6633) were all
ordered from American TypeCulture Collection (ATCC).
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2.2. Materials

The seven habitats of silver wormwood are shown in Table 1. The materials were all
identified as Artemisia argyi Levl. et Vant by Professor Yang Ming of the Jiangxi University
of Chinese Medicine.

Table 1. Silver wormwood habitat information.

No. Sample Name Habitat

1 HA Jingxi Village, Quzhou, Zhejiang Province, China
2 PA Tuanzhang Village, Poyang, Jiangxi Province, China
3 QA Qizhou Town, Qichun, Hubei Province, China
4 CZA Guichi District, Chizhou, Anhui Province, China
5 SYA Longhui Village, Shaoyang, Hunan Province, China
6 BGA Dacheng Village, Poyang, Jiangxi Province, China
7 LJA Linjiang Town, Kaixian, Chongqing Municipality, China

2.3. Isolation of Essential Oil

Steam distillation is usually used to extract essential oil [20]. A total of 200 g of fresh
silver wormwood leaves were weighed, cut into pieces, placed in a round-bottomed flask,
added with 2000 mL double-distilled water, shaken and mixed, and soaked for 1 h. Then,
essential oils were isolated for 3.5 h according to the A determination method of essential
oils in the four general rules of Chinese Pharmacopoeia (2020 edition), stood, and layered.
After that, their volumes were read and their yields were calculated; then, they were added
to anhydrous sodium sulphate, dried, put in a brown glass bottle, and sealed at 4 ◦C for
later use. The parallel experiment was repeated three times, and the average was taken.

2.4. Odor Analysis by E-Nose

The analysis method of E-nose comes from the research of other students in our
research group [9]. A 50 µL sample was sucked into a 40 mL autosampler, sealed, and left
for 1 h before the headspace vial was filled with sample gas for autosampler analysis. The
sampling parameters of the electronic nose are set as follows: pure air was used as a carrier;
carrier air flow rate was 0.6 L/min; cleaning time was 180 s; and detection time was 120 s.
The sample amount was 10 µL, and each sample was measured three times in parallel.

2.5. GC-MS Analysis

The essential oils in silver wormwood were qualitatively and quantitatively analyzed
by GC-MS. A total of 50 µL volatile oil was precisely sucked from silver wormwood,
dissolved in n-hexane and constant-volumed into a 10 mL volumetric flask, filtrated with a
0.22 µm microporous filter membrane to obtain a volatile oil sample solution.

Gas chromatographic conditions: HP-5 MS quartz capillary column (30 m × 0.25 mm
× 0.25 µm). The programmed temperature was adopted: the initial temperature was 40 ◦C,
kept for 1 min, then running at 70 ◦C, then heating at 10 ◦C/min to 220 ◦C, kept for 0 min,
and then heating at 25 ◦C/min to 280 ◦C, and kept at 280 ◦C for 9 min. The carrier gas was
high-purity helium with a flow rate of 1.0 mL/min. The inlet temperature was 280 ◦C. The
split ratio was 40:1. Solvent was delayed for 3 min. The sample amount was 1.0 µL.

Mass spectrometry conditions: quadrupole temperature 150 ◦C. The ionization source
was standard EI source, and the ion source temperature was 230 ◦C. Electron multiplier
tube voltage was 2447.06 V. The mass scanning range m/z was 50~650.

2.6. Antibacterial Activity Determination

The antibacterial effects on Bacillus subtilis, Staphylococcus aureus, and Escherichia coli of
the essential oils from silver wormwood were determined by the measurement of inhibition
zones [21]. A total of 200 µL of various bacteria suspensions were sucked by a pipette
on a clean worktable and uniformly coated on the surface of the plate culture medium
to make a plate containing bacteria. A 6 mm round filter paper was clamped with sterile
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tweezers, and 10 µL essential oil was sucked by a pipette gun and added to the filter paper.
The dripping side faced down and was attached to a flat plate with three filter papers and
stood upright for 20 min. Sterile water was used as a negative control and gentamicin
drug-sensitive paper (10 µg/plate) was used as positive control. All the plates were put
upside down in a constant temperature incubator at 37 ◦C for 24 h. The diameters of the
inhibition zones were measured by the cross method, and the average was taken after three
parallel experiments.

2.7. Data Analysis

The electronic nose used its software to perform principal component analysis (PCA)
and linear discriminant analysis (LAD) on the data. The relative content of components
was determined by the peak area normalization method. By searching the standard mass
spectrometry library of the NIST20 chemical workstation and the comparison of their GC
Kováts retention indices (RI) and referring to relevant literature, the chemical structure of
components was identified.

3. Results and Discussion
3.1. Color and Content of Essential Oil

The silver wormwood essential oils from different habitats were isolated by steam
distillation. The color and content of the essential oils are shown in Table 2. The results
showed that the color and content of silver wormwood essential oils from different habitats
were quite different. The content of essential oils from seven different habitats ranged from
0.30% to 1.09%. The content of essential oil in QA samples was the highest (1.09%), which
was significantly higher than that in other samples, and the content of essential oil in BGA
samples was the lowest (0.30%). Among the essential oil samples, the essential oil color of
HA samples was dark blue, which was easy to distinguish; LJA samples were grass green,
BGA samples were yellow, essential oils from other habitats showed different degrees of
blue–green, and SYA samples were the lightest. The blue color of essential oil in silver
wormwood was mainly related to the chemical components of azulene and davanone with
unique color in the samples [22].

Table 2. Content and color of silver wormwood essential oils from different habitats.

Sample Name Color Yields (%)

HA Dark blue 0.60 ± 0.03
PA Blue–green 0.57 ± 0.04
QA Blue–green 1.09 ± 0.02

CZA Blue–green 0.69 ± 0.07
SYA Light blue–green 0.74 ± 0.06
BGA Yellow 0.30 ± 0.00
LJA Grass green 0.33 ± 0.03

3.2. Odor Analysis by E-Nose
3.2.1. Radar Chart of Odor Information

E-noses are very sensitive to odor information from a sample, and slight changes
in volatile compounds may cause differences in sensor response. Therefore, E-noses are
widely used in analysis fields such as food, beverages, cosmetics, medicine, and agriculture.
In this study, an E-nose equipped with 14 sensors was used to detect and analyze the
comprehensive odor components of silver wormwood essential oil samples from different
origins. The sensors of the E-noses are equivalent to the olfactory cells of the human nose.
The sensors respond to the odor components by the sample, and each sensor has a different
response focus. The difference in sensor response not only depends on the different odor
components but also depends on the concentration of the odor components [23].

The average response value of each sensor of the E-noses was selected to draw the
radar map of the odor information of the E-noses of silver wormwood samples, as shown
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in Figure 1. The response values of 14 sensors to volatile components of different samples
were different, and the response values of S1 and S8 sensors to the odor of samples were
larger. According to the performance of the sensor, it is sensitive to terpenes, alcohols, and
ketones. So, it is speculated that the differences in odor components in silver wormwood
from different habitats are mainly affected by terpenes, alcohols, and ketones.
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3.2.2. Principal Component Analysis (PCA)

PCA is an unsupervised statistical method that generates a new set of variables,
called principal components, each of which is a linear combination of defined original
variables [24]. Siger studied 418 vegetable oil samples through PCA and HCA, showing
the usefulness of statistical tools [25]. Wei used electronic nose combined with PCA and
linear discriminant analysis to measure peony seed oil doping [26].

PCA analysis of E-nose detection data of silver wormwood samples from different
habitats is shown in Figure 2. The contribution rates of PC1 and PC2 were 99.10% and
0.59%, respectively, and the cumulative variance contribution rate was 99.69%, which could
represent all the information of samples. The recognition index (DI value) was 96.83%,
and the discrimination between different data was obvious, which indicates that there
are apparent differences in the odor of silver wormwood samples from different habitats
and that the electronic nose can distinguish silver wormwood samples from different
habitats well.

3.2.3. Linear Discriminant Analysis (LDA)

Different from the PCA variance maximization theory, the idea of the LDA algorithm
is to project the data into a low-dimensional space to make the same type of data as compact
as possible and different types of data as dispersed as possible. Therefore, the LDA is a
supervised pattern-recognition learning algorithm [27].

It can be seen from Figure 3 that the DI value was 99.91% and each sample was
distributed in different areas without overlapping each other, indicating that the E-noses
can effectively distinguish silver wormwood from different habitats. The model had a good
distinguishing effect, and the trend and results obtained were the same as those obtained
by PCA, which further verified the results of PCA.
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3.3. GC-MS Analysis
3.3.1. GC-MS Analysis of Volatile Components

According to the above GC-MS conditions, the volatile components in silver worm-
wood samples from different habitats were analyzed, and the total ion flow diagram of
essential oils in silver wormwood from different habitats was obtained, as shown in Figure 4.
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According to the obtained mass spectrometry data, the chromatographic peaks in the
total ion flow diagram were analyzed, and the relative contents of each component were
calculated by peak area normalization method after NIST20 mass spectrometry library
retrieval and artificial auxiliary analysis, as shown in Table 3.

Table 3. Volatile components of silver wormwood essential oils from different habitats.

No. Compounds RI from
Experiment

RI from
Literature

Relative Content (%)

HA PA CZA QA SYA BGA LJA

1 1-Hexanol 892 - - * - - - - 0.48 0.53
2 Santolina triene 936 - - - 0.23 - - - -
3 α-Tricyclene 953 - - - - 0.14 - - -
4 α-Pinene 965 977 0.30 0.38 0.40 0.81 0.56 1.16 0.95
5 Camphene 980 988 - - - 3.13 - - -
6 α-Sabinene 1002 1013 1.17 - - - 0.94 - 0.23
7 3-Octenol 1006 1019 0.79 0.89 0.32 0.93 0.67 - -
8 β-Pinene 1007 1018 - - - - - 1.22 1.23
9 Dehydrocineole 1022 1041 0.39 - - 0.34 - - 0.67

10 Yamogi alcohol 1028 - 2.94 4.23 3.54 - - - 4.36
11 α-Terpinene- 1049 1067 1.17 0.45 0.28 0.87 1.00 0.47 0.36
12 Cymene 1057 1071 1.40 0.78 0.71 0.78 1.56 0.99 0.39
13 Limonene 1062 1074 0.42 0.92 0.31 0.93 0.64 - 0.55
14 Eucalyptol 1065 1076 13.81 13.02 7.31 14.46 4.81 5.37 11.57
15 g-Terpinene 1090 1097 - - - 1.41 1.76 0.35 -
16 Atemisia ketone 1091 1098 7.96 18.09 22.45 - - - 10.89
17 4-Thujanol 1099 1171 1.10 0.44 1.42 1.23 - 0.31 1.00
18 Artemesia alcohol 1114 - 5.65 6.30 14.97 - - - 5.43
19 Thujone 1142 - 25.88 18.05 8.22 3.84 58.44 - -
20 2-Cyclohexenol 1158 1109 0.57 - - - 0.90 - 2.37
21 trans-Verbenol 1181 1192 0.40 - - - 0.69 - -
22 Methyl methacrylate 1182 - - - 0.22 - - - -
23 2-Bornanone 1183 - 0.93 3.17 - 28.65 - 2.92 5.41
24 Photocitral B 1196 - - - - - 0.60 0.42 -
25 cis-Chrysanthenol 1197 - - - - 2.17 - - -
26 Lavandulol 1199 - - - - - - 0.42 0.56
27 3-Methyl-3-nitro-1-butene 1199 - - - 0.18 - - - -
28 4-Methyl-1, 4-heptadiene 1199 - - 0.75 - - - - -
29 Artemisia triene 1269 - 0.51 - - - - - -

30 1,5-Dimethyl-6-methylenespiro
[2.4]heptane 1200 - - - - - 1.34 - -

31 p-Menthaol 1202 - - - - - 1.00 - -
32 Borneol 1203 1218 3.56 1.82 - 14.79 - 4.32 2.97
33 4-Terpineol 1215 1236 5.47 2.96 1.32 3.98 5.31 1.07 1.99
34 α-Terpineol 1229 1265 1.57 1.54 0.88 1.82 - 0.36 1.56
35 cis-Piperitol 1246 - - - - - - - 0.61

36 1,4-Dimethyl-cyclohex-3-enyl methyl
ketone 1249 - - - - 0.55 - - -

37 Verbenone 1251 - - 0.41 - - 0.51 - -
38 Carveol 1257 1274 0.94 1.77 0.86 1.19 1.01 0.33 0.74
39 cis-p-mentha-1 (7), 8-dien-2-ol 1267 - 0.60 - - - - -
40 1-Imidazole-1-yl-3-methylbut-2-en-

1-one 1275 - - 0.36 0.52 - - - -
41 3-Carvomenthenone 1295 - - - - - - - 0.69
42 2-Butylphenol 1327 - 0.33 - -- - - - -
43 Bornyl acetate 1328 1364 - - - 0.75 - - -
44 α-EIemene 1382 - - - - - - 2.22 0.41
45 3-Allylguaiacol 1398 - 0.38 - - 0.50 0.51 - -
46 Eugenol 1398 1418 - 0.45 0.43 - - - -
47 Copaene 1425 - - - - - - - 0.33
48 Crysanthenone 1436 - - - - - 0.70 - -
49 β-Elemene 1440 - - - - - - 1.41 -
50 Caryophyllene 1473 1487 6.27 4.35 4.42 5.67 4.52 10.62 15.12
51 Humulene 1508 - 0.75 - - 0.46 - - -

52 1, 4, 7,-Cycloundecatriene, 1, 5, 9,
9-tetramethyl- 1508 - - 0.48 0.55 - 0.44 4.50 2.15

53 Alloaromadendrene 1516 1516 - - - - - - 0.33
54 g-Muurolene 1529 - - - - - - - 0.53
55 Germacrene 1537 1551 2.45 1.51 1.95 1.93 1.30 7.13 8.60

56 1,2,3,4,4a,5,6,8a-octahydro-4a,8-
dimethylnaphthalene 1544 - 1.10 1.05 1.33 - - - 1.30

57 Bicylogermacrene 1553 1573 0.92 - 0.53 0.42 - 2.86 3.32
58 g-Elemene 1553 - - - - - 0.43 - -
59 Davana ether 1556 - - - - - - 0.82 -
60 α-Amorphene 1569 - - - - - - 1.17 0.76
61 Nerolidol 1609 1630 - - - - - 0.55 -
62 Virdiflorol 1630 - - - - - - 3.11 2.96
63 Spatulenol 1638 1595 0.43 0.34 0.41 - - - 0.60
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Table 3. Cont.

No. Compounds RI from
Experiment

RI from
Literature

Relative Content (%)

HA PA CZA QA SYA BGA LJA

64 Isolongifolen-5-one 1643 1602 - - - - - 0.85 -
65 Caryophyllene oxide 1647 - 0.82 1.15 1.09 0.75 0.75 1.06 1.26
66 Umbelliferone 1660 - - - - - - 0.31 -
67 2-Norprezizene 1664 - - - - - - 1.52 -
68 γ-Gurjunene 1667 - - - - - - - 0.93
69 Ledol 1667 1666 - - - - - 0.76 -
70 Junenol 1684 - - - - - - - 0.94
71 Isospathulenol 1688 - - - - - - 1.77 -
72 3-Ethyl-2-methyl-1,3-hexadiene 1696 - - - - - - 0.82 -
73 Cariophylladienol 1698 - 1.00 1.21 0.59 0.48 0.61 - -
74 τ-Cadinol 1699 - - - - - - 1.80 1.83
75 α-Cadinol 1715 - - - - - - - 1.09
76 Longiverbenone 1717 - - - - - - 26.02 -
77 Neointermedeol 1719 - 1.12 6.12 10.06 5.35 - - 0.95
78 Isoaromadendrene epoxide 1750 - - - - - - 1.01 -

79 Silane, diphenylisobutoxy
(2-methodyethoxy)- 1835 - - - - 0.39 - - -

80 3, 4, 5-Trimethoxy-β-methyl-β-
nitrostyrene 1835 - - - 1.46 - - - -

81 2,3-Dphenyl-1H-1,2,4-triazole-5-
thion 1835 - 1.00 - - - - - -

82 1-Naphthylamine 1835 - - 0.99 - - - - -

83 1, 5-Diphenyl-2H-1, 2,
4-triazoline-3-thione 1867 - - - - - 0.28 0.39 -

84 Methyl oleate 2053 - 0.57 - 10.05 - - - 0.43

85 4-[(Dimethylamino)methyl]-2,5-
dimethylphenol 2170 - - - - 0.21 - - -

86 Octasiloxane, 1, 1, 3, 3, 5, 5, 7, 7, 9, 9,
11, 11, 13, 13, 15, 15-hexadecamethyl- 2190 - 1.29 - - - - - -

87 Cyclotrisiloxane, hexamethyl 2209 - - 0.85 - - - - -
Total 95.36 95.43 97.01 98.93 91.28 90.89 98.90

RI: retention indices. *—not detected.

A total of 87 compounds were identified in the silver wormwood essential oils from
seven different habitats, accounting for 90.89~99.83% of the total volatile components.
Huang detected more than 30 chemical components from silver wormwood essential oil by
GC-MS [28].

Significant differences existed in the types and relative contents of volatile components
in silver wormwood from different habitats. The components with high content were
α-terpinene, cymene, eucalyptus, p-terphenyl, carvinol, caryophyllene oxide, camphor,
borneol, etc. These compounds may constitute the main components of the basic flavor
characteristics of silver wormwood essential oil.

Eucalyptol and borneol are the index components for the content determination of
silver wormwood in Chinese Pharmacopoeia (2020 edition), which have many pharma-
cological effects, such as antibacterial, anti-inflammatory effects, etc. Their contents had
certain significance for the quality evaluation of silver wormwood [29]. The content of
eucalyptol in samples from different habitats all met the standard, among which the relative
content of QA samples was as high as 14.46%, followed by HA samples (13.81%) and PA
samples (13.02%), and the relative content of eucalyptus in SYA samples was the lowest,
with a content of 4.81%. Except for CZA samples and SYA samples, borneol was found
in silver wormwood from other habitats. The relative content of PA samples was as high
as 14.79%, and the content of PA samples was 1.82%. Limonene, terpinene, α-terpineol,
borneol, and other components have a strong aroma, and the differences in these compo-
nents’ content will lead to differences in aroma and curative effect of silver wormwood
from different habitats.

3.3.2. PCA of Volatile Components

To further compare the differences of volatile components in silver wormwood from
different habitats and determine the volatile components that play a key role in aroma
intensity, PCA was carried out with the relative content of common peaks as eigenvalue.
The eigenvalue and contribution rate of principal components are the basis for selecting
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principal components [30]. It can be seen from Table 4 that the eigenvalue of the first two
principal components were all greater than 1. The contribution rate of the first principal
component was 55.80%, the contribution rate of the second principal component was
23.30%, and the cumulative contribution rate of total variance was 79.10%, indicating that
the first two principal components can reflect the main characteristics of silver wormwood
samples from different provenances; so, the first two principal components were extracted
for analysis. Among them, α-terpinene, cymene, cucalyptus, p-terpineol, and carvingol
contributed more to PC1, while cucalyptus, carvingol, and caryophyllene contributed more
to PC2.

Table 4. Eigenvalue and contribution rates of principal components of silver wormwood from
different habitats.

Principal
Component Eigenvalue Variance

Contribution (%)
Cumulative Variance

Contribution (%)

1 3.91 55.80 55.80
2 1.63 23.30 79.10

The quality of silver wormwood samples was evaluated by adding the sum of factor
scores of principal components and their weights (weight = contribution rate of principal
components/cumulative contribution rate of two principal components) and calculating
the total score F of each factor of principal components. The higher the F, the better the
quality. It can be seen from Table 5 that, among silver wormwood from seven different
habitats, HA samples had the highest comprehensive score and the best quality, followed
by SYA samples, and LJA samples had the worst quality.

Table 5. Scores of principal component factors of silver wormwood from different habitats.

Sample Name F1 1 F2 2 F 3

HA 2.186 −0.506 1.392
PA 0.208 2.295 0.824

CZA −0.952 0.495 −0.525
QA 1.301 0.769 1.144
SYA 2.376 −1.366 1.272
BGA −2.001 −1.715 −1.917
LJA −3.119 0.028 −2.190

1 F1: principal component factor 1; 2 F2: principal component factor 2; 3 F: total score of principal component factors.

After PCA, the principal component analysis scores of silver wormwood samples from
different habitats were obtained, as shown in Figure 5. According to the score chart, all
samples of silver wormwood could be effectively distinguished, indicating that there are
apparent differences in volatile odor components and contents of silver wormwood from
different habitats, and there are great differences between PA samples and BGA samples.

3.3.3. Hierarchical Cluster Analysis (HCA)

The purpose of performing HCA is to classify data into specific groups by considering
similarity criteria, and distance measures such as Euclidean distance [31].

SPSS 21.0 software was used to conduct cluster analysis, taking the relative percentage
data of common peaks as variables and adopting the method of inter-group connection
and taking the square Euclidean distance as the measurement standard interval [32]. The
systematic cluster analysis was carried out on silver wormwood samples from seven
producing areas, as shown in Figure 6. It can be seen from the figure that the samples of
silver wormwood are divided into two categories by cluster analysis: the first category is
HA samples, QA samples, PA samples, CZA samples, and SYA samples and the second
category is BGA samples and LJA samples. This result was consistent with that of PCA.
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3.4. Antibacterial Activity Determination

The diameter of the inhibition zones of silver wormwood essential oils was determined
by the paper disc diffusion method [33]. The results are shown in Table 6. The silver
wormwood essential oil had a good inhibitory effect on Bacillus subtilis, Staphylococcus
aureus, and Escherichia coli. The diameter of the inhibition zone of CZA samples against
Bacillus subtilis was 21.22 ± 1.05 mm and the inhibitory effect of CZA samples on Bacillus
subtilis was the strongest. The diameter of the inhibition zone of the QA samples against
Staphylococcus aureus was 18.20 ± 0.17 mm and the inhibitory effect was the strongest. The
diameter of the inhibition zone of HA samples was 17.93 ± 1.04 mm and the inhibitory
effect of HA samples on Escherichia coli was the strongest.
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Table 6. The antimicrobial dimension of silver wormwood essential oils from different habitats.

Essential Oil

Gram-Positive Bacteria (mm) Gram-Negative
Bacteria (mm)

Bacillus Subtilis Staphylococcus
Aureus Escherichia coli

HA 13.89 ± 0.75 11.48 ± 0.12 17.93 ± 1.04
PA 20.32 ± 0.82 6.29 ± 0.41 16.09 ± 0.91

CZA 21.22 ± 1.05 4.47 ± 0. 08 15.67 ± 0.27
QA 13.80 ± 1.74 18.20 ± 0.17 13.78 ± 0.48
SYA 15.42 ± 0.66 15.28 ± 0.33 16.07 ± 0.45
BGA 17.27 ± 0.56 7.67 ± 0.71 8.21 ± 0.16
LJA 16.30 ± 1.01 7.76 ± 0.22 11.50 ± 0.45

Positive control 19.57 ± 0.63 16.55 ± 0.35 23.32 ± 0.45
Negative control - 1 - -

1—Not detected.

4. Conclusions

Silver wormwood essential oil has a strong aroma and complex components, and it
is an important index affecting its quality [34]. Due to the influence of climate, planting
methods, and harvesting, the quality of silver wormwood from different habitats is quite
different, so it is difficult to judge the best variety of silver wormwood. Wang combined
HS-SPME with GC-MS, studied the essential oils of silver wormwood that come from five
habitats, and explored the influence of climatic factors on the main components of the
essential oils [35]. The combination of E-nose technology and GC-MS technology can be
used to analyze the volatile components of silver wormwood from different habitats from
two aspects: the overall odor information and the specific types and contents of essential
oil components.

In this study, silver wormwood essential oils from seven different habitats were iso-
lated by steam distillation, the volatile components were analyzed by E-nose, GC-MS,
and chemometrics, and the antibacterial effects of essential oils from seven habitats were
studied. The results of E-nose showed that the samples of silver wormwood from seven
different habitats were distributed in different regions and did not overlap with each other,
which indicated that there were obvious differences in odor characteristics among samples
of silver wormwood from different habitats. GC-MS was used to detect the volatile compo-
nents of silver wormwood samples from different habitats qualitatively and quantitatively.
PCA and HCA analysis were consistent with the results of E-nose detection. Analysis
showed that the HA samples had the best quality and the LJA samples had the worst
quality. The results of antibacterial activity showed that the silver wormwood essential oils
from seven habitats had a good inhibitory effect on Bacillus subtilis, Staphylococcus aureus,
and Escherichia coli.

This study shows that the E-nose combined with GC-MS can effectively distinguish
silver wormwood from different habitats, which provides a new idea for studying the odor
substance basis and rapid identification of silver wormwood and provides a scientific basis
for breeding superior varieties, quality control, and comprehensive development of silver
wormwood resources.
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