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Abstract: The tubular dynamic hydrocyclone (TDH) holds great potential for the pre-deoiling of
offshore oil platforms. However, the shear and turbulence in the flow field can cause the oil droplets,
the dispersed phase in water, to break up when the swirling flow is produced by the swirler. A
design method is proposed for the low-shear rotary swirler (LSRS) of TDH, the aim of which is to
reduce the shear force and local turbulence during the fluid forming swirling flow. The blade setting
angle of the LSRS is calculated based on the relative velocity vector between the fluid and the swirler.
The distribution characteristics of the tangential velocity and turbulence in the TDH with LSRS
are simulated by Computational Fluid Dynamics (CFD). The maximum stable droplet diameter is
analyzed. The results show that the shear stress and turbulence energy dissipation rates are reduced
by 74.6% and 68.5%, respectively, and that the stable droplet diameter is increased by more than 60%,
compared to the conventional rotating swirler. In addition, a TDH prototype with LSRS was tested in
an offshore oil field by continuous operation for more than 36 h. The average separation efficiency
was 83%, and the average underflow oil concentration was 27 mg/L. The research also found that the
drastic changes in the tangential velocity along the axial direction were critical to shear. Moreover,
the results make up for the deficiency of the spatial variation of the tangential velocity in the dynamic
cyclone separator.

Keywords: tubular dynamic hydrocyclone; oil–water separation; low shear; design model; field
experiments

1. Introduction

Tubular hydrocyclones use centrifugal force to achieve rapid liquid–liquid separation,
and are low cost and space saving compared to conventional vessel type separators [1].
However, the high shear and turbulence caused by the drastic changes in tangential velocity
break up the large droplets of the disperse phase. According to Stokes’ law, a negative
relationship exists between the mean diameter of the dispersed phase and the separation
efficiency of the hydrocyclone [2,3].

The conventional static hydrocyclone induces a swirling flow by the tangential inlet,
and the oil droplets with a diameter larger than 60 µm are broken [4,5]. The smaller
droplet size (<40 µm) produced after broken is insensitive to centrifugal force, resulting
in lower separation efficiency [4,5]. The deformation and breakage of oil droplets during
the formation of the swirling flow induced by static guide vanes also has been observed in
axial inlet hydrocyclones by Liu et al. [6,7].

In order to reduce the oil droplet breakage induced by shear and turbulence during
the formation swirling flow, including the involute line feed body [8], the vane angle of
the swirler [9,10], the overflow structure [11], the type and size of the separator barrel [12],
and so on, have been studied. Among them, the swirler structure is the main factor
influencing the variation of tangential velocity [13]. The compressor blade design method
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has been used to obtain a low-shear guide vane of a static axial inlet hydrocyclone [14,15].
A hydrocyclone coalescer (HCC) has also been developed in which the swirler is designed
as a spiral cascade to promote the coalescence of dispersed oil droplets [16,17].

The dynamic hydrocyclone uses a motor to drive a rotating drum, and the fluid forms
a swirling flow directly driven by the drum. Unlike the static hydrocyclone, the dynamic
hydrocyclone does not require a booster pump; moreover, it also has a higher separation
efficiency and is more robust [17,18]. Several studies have proposed the novel Tubular
Dynamic Hydrocyclone (TDH) with a static barrel and straight impeller blades to induce
the swirling flow [19,20]. Rotating blade structures, which have been found to affect the
separation efficiency of TDH, were investigated in a recent study, and the backward curved
blade performed better in the separation process than the straight blade [21]. The Voraxial
Impeller Induced Cyclonics developed by Enviro Voraxial Technology uses a hollow spiral
impeller blade to reduce the shear stress as the fluid begins to rotate [22–24].

The Beijing Institute of Petrochemical Technology has conducted a series of studies
on dynamic hydrocyclone technology since 2007, and the high shear stress and turbulence
were generated when the fluid was induced by the rotational swirler, and the separation
efficiency at a high rotational speed does not achieve the expected results. The study
by Perissinotto et al. on droplet deformation and the fragmentation of dispersed phase
droplets in centrifugal pumps showed that a high turbulence intensity existed in the front
of the centrifugal pump inlet, so that the dispersed droplets are broken before entering the
pump chamber [25–28].

Therefore, reducing the peak value of the local shear stress and turbulence intensity
without changing the centrifugal field strength is crucial to improve the separation efficiency
of tubular hydrocyclones, especially when using polymer flooding on offshore oil fields,
where the dispersed oil phase is relatively easy to emulsify [29,30]. The concept of the low-
shear rotating swirler (LSRS) for dynamic hydrocyclone has been proposed, however, no
design method for LSRS was developed until now. In order to reveal the shear mechanism in
the swirl flow forming process of dynamic hydrocyclones, the cylindrical swirl is expanded
and simplified to two-dimensional flow while the radial velocity and fluid inertia effect
were ignored. In addition, the changes in the tangential velocity along the axial and radial
directions were analyzed by computational fluid dynamics (CFD). According to the shear
mechanism, the LSRS design methodology for TDH was proposed, which helps prevent the
oil droplets from breaking up before being isolated. The variation of shear stress and the
turbulence energy dissipation rate with the swirler blade setting angle was also analyzed
using CFD. The separation performance of the TDH with the LSRS was tested in an offshore
oil field.

2. Design Model for the LSRS
2.1. Structure of the TDH

The structure of the TDH, including the axial inlet, swirler, vortex enhancement cone,
static separation barrel, vortex controller, underflow, and overflow, is shown in Figure 1.
The separated oil is discharged in the reverse direction of the continuous flow, and a
vortex controller that is coaxial with the static separation barrel is installed upstream of
the underflow.
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Raw water enters the TDH via the axial inlet and is then swirled by the swirler. The
centrifugal force is then increased by the vortex enhance cone, before the fluid flow into the
static separation barrel. In the static separation barrel, the strong centrifugal force takes the
high-density water migrated towards the wall of the barrel and discharged through the
underflow. The low-density oil converges to the center of the static separation barrel and
forms oil core, which is discharged through the overflow.

2.2. Low-Shear Rotating Swirler (LSRS)

The rotating swirler is a key component of the TDH and its structure and direction
of rotation are shown in Figure 2a. Assume that the fluid flows on a cylindrical surface
centered on the axis of rotation. A cylindrical coordinate system is built in Figure 2b, the
coordinates (0, 0) of which are on the axial line of the swirler and 10 mm away from the
entrance side of the blade, and the z axial points to the export side. The swirler is set as the
reference system. Then, the relative tangential velocity between the fluid and the swirling
blade for any cylindrical surface is given by

−−−−→
V′in−θ = −→ωRi (1)

where Ri is the radius of the cylindrical flow surface, and its unit is the meter, and
→
ω is the

angular velocity of the swirler in rad/s.
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Assuming a constant velocity of the incoming axial
−−−−→
V′in−z , the relative axial velocity

of the
→
Vz with regard to the swirler at the inlet section of the swirler is

−−−−→
V′in−z =

→
Vz =

Qin

Ain
(2)
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where Ain is the cross-sectional area at the inlet of the swirler in m2, and Qin is the feed
flow rate in m3/s.

2.2.1. Inlet Setting Angle of Swirler Blade

The relative velocity vector of the fluid at the inlet section of the swirler can be regarded

as the sum of
→

V′in−z and
→

V′in−θ:

−−→
V′in =

−−−−→
V′in−θ +

−−−−→
V′in−z (3)

As shown in Figure 2b, the fluid incidence angle γ is the angle between the relative
velocity and the axis of rotation, and the setting angle ϕ is the angle between the tangent
line of the blade surface and the axis of rotation. In the case of straight impeller blades,
the inlet setting angle ϕin is zero and the fluid will directly impact on the side wall of the
swirler. As a result, the fluid is intensely sheared at the inlet of the swirler. When γ = ϕin,
the direction of the relative velocity is parallel to the swirler blade, the shear caused by
the change of tangential velocity in the axial direction can be eliminated, and a low-shear
swirling process can be achieved. Based on the velocity vector, the inlet setting angle of the
low-shear swirler blade can be expressed as follows

ϕin = γ = arctan

→
Vz

−−−−→
V′in−θ

(4)

2.2.2. Outlet Setting Angle of Swirler Blade

The relative velocity between the fluid and the blade at the swirler outlet cross-
section is

−−→
V′out =

−−−−→
V′out−θ +

−−−−→
V′out−z (5)

−−−−→
V′out−z =

−→
Vz

cos ϕout
(6)

Here,
→

V′out−θ is the relative tangential velocity in the outlet section of the swirler in

m/s,
→

V′out−z is the relative velocity at the outlet section of the swirler in m/s, and ϕout is
the outlet setting angle of the swirler blade.

Ignoring the blade’s thickness and assuming that the number of swirler blades is
infinite, then the fluid would be stationary relative to the swirler in the direction of the
rotation at the swirler outlet section when ϕout is 0◦. Thus,

−−−−→
V′out−θ = 0 (7)

2.2.3. Design Parameters

According to Equation (2), when the angular velocity and flow rate Qin are constant,
−−−−→
V′in−θ increases linearly with Ri, and

→
Vz remains the same. To ensure that γ = ϕin, the

inlet setting angle must be a variable in the dimension of the swirler blade height. The
design parameters of the proposed TDH with the LSRS are shown in Table 1. The outlet
setting angle ϕout was set to a constant value of 0◦.
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Table 1. Design parameters of the TDH with the LSRS.

Design Parameters Value

Design capacity (Qin) 5.0 m3/h
Blade height (H) 15.0 mm

Angular velocity (ω) 146.6 rad/s
Number of blades 6
Swirler radius (R) 35.0 mm
Blade length (Lb) 70.0 mm

3. Flow Field Characteristics Analyzed by Numerical Simulation
3.1. Numerical Simulation Model
3.1.1. Model Description

Among the various turbulence models, the Reynolds Stress Model (RSM) and the
Large Eddy Simulation (LES) model predict the anisotropic eddy fields accurately [31].
However, compared with LES, the RSM requires less computational effort; therefore, the
RSM model was chosen for the numerical simulation of the turbulence model in this study.
The continuity equation of the Reynolds Stress Model is as follows:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (8)

where ui = ui + ui
′.

The equation of momentum is

∂

∂t
(ρui) +

∂

∂xj

(
ρujui

)
= − ∂p

∂xi
− ∂

∂xj

(
ρui
′uj
′
)
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj

∂xi

)]
+ ρgj (9)

The RSM transport equation is

∂

∂t

(
ρui
′uj
′
)
+

∂

∂xk

(
ρukui

′uj
′
)
= Dij + Pij + Πij + εij + Sij (10)

The turbulence dissipation term is

Dij = −
∂

∂xk

[
ρui
′uj
′uk
′ + p′uj

′δik + p′ui
′δjk − µ

(
∂

∂xk
ui
′uj
′
)]

(11)

The stress diffusion term is

Pij = −ρ

(
ui
′uk
′ ∂uj

∂xk
+ uj

′uk
′ ∂ui
∂xk

)
(12)

The pressure strain term is

Πij = p

(
∂ui
∂xj

+
∂uj

∂xi

)
(13)

The dissipation term is

εij = −2µ
∂ui
′

∂xk

∂ui
′

∂xk
(14)

where i, j, and k are the vector directions, x, y, and z are Cartesian coordinates, t is time in
s, ui is velocity in m/s, ui is the average velocity component in each coordinate direction
in m/s, ui

′ is the fluctuating velocity component in the coordinate direction in m/s, g is
gravitational acceleration in m/s2, and p is the pressure in Pa.
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3.1.2. Physical Model and Boundary Conditions

Physical models (a) to (f) for six groups of swirlers with different inlet setting an-
gles were generated using the BladeGen 2020 software. The inlet setting angle ϕin of
swirler (e) is 83◦, which was obtained from Equation (4) at the median of blade when Ri
= 0.5H. The swirler (f)’ ϕin increases linearly from 80◦ to 84◦ along the blade height from
the bottom to top which is shown in Figure 2a, the values of which were calculated by
Equation (4). The swirler (a) has a straight blade which is commonly used in dynamic
hydrocyclones [17,18,32,33], of which ϕin is 0◦. The inlet setting angle was divided evenly
into four parts from 0◦ (swirler (a)) to 80◦ (swirler (f)), which is 20◦, 40◦, and 60◦, and then
assigned these values to ϕin of the swirlers (b) to (d), respectively. The parameters of the
six groups of swirlers are the same, except for the varied inlet setting angles.

A polyhedral mesh was used to mesh the models, and grid refinement was performed
for the end and rotating regions of the swirlers. The physical model and grid of the TDH
with swirler (f) are shown in Figure 3, where Z = 10 mm and Z = 80 mm correspond to the
inlet and outlet sections of the swirler, respectively, while Z = 35 mm and Z = 60 mm are
the internal cross-sections of the swirler.
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Ansys Fluent 2020 was used for the numerical solution. Specifically, the double-
precision implicit solution method, steady-state mode, and Eulerian multiphase flow
model were used. The pressure–velocity coupled equations were solved using the Semi-
Implicit Method for Pressure Linked Equations (SIMPLE) algorithm, in which the pressure
calculation equations employed the pressure staggered option (PRESTO!) scheme, and the
other equations used the higher-order quadratic upwind interpolation (QUICK) spatial
discretization scheme. The rotational swirler was modeled by frame motion (MRF). All
walls of the swirler were set as rotating walls, while the other walls were set as non-slip
stationary walls. The velocity inlet was used as the inlet boundary condition, and the
underflow and overflow were both set as the outflow. The hydraulic residence time of
the low-shear tubular dynamic hydrocyclone was 1.7 s, ignoring the effect of temperature,
which was set at 20 ◦C. The continuous phase was set as water, the density and viscosity
of which were 998 kg/m3 and 1.0 mPa·s, respectively. The dispersed phase was set as
lubricant 32, the density and viscosity of which were 821 kg/m3 and 38 mPa·s, respectively.

3.1.3. Grid Independence Verification

Gridding is the most important step in numerical simulation, and the number, quality,
and type of grid cells have a significant effect on the accuracy and speed of the simulation.
To ensure calculation accuracy and efficiency, four different numbers of grids were tested,
and the tangential velocities in the Z = 10 mm cross-section are shown in Figure 4. When
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more than 87 × 104 grid cells were used, the tangential velocity in the Z = 10 mm section
of the TDH was essentially constant, and the calculation results were independent of the
grid size.
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3.2. Analysis of Numerical Simulation Results
3.2.1. Velocity Analysis

In TDH, the shearing effect of the rotating swirler on the droplets is usually caused by
the rapid change in the tangential velocity near the inlet of the swirler, and the shear stress
is given as

−→
τθz = µ

∂
−−−→
Vθ−in

∂z
(15)

where µ is the viscosity of the continuous fluid in Pa·s and
−−−→
Vθ−in is the absolute tangential

velocity at the inlet section of the swirler in m/s.
The tangential velocity variation on the cross-section of the dynamic hydrocyclones has

been studied in all the existing literatures [17,18,32,33], however, little attention has been
paid to the variation of the tangential velocity along the axial direction of the hydrocyclone.
It can be seen from Equation (15) that a major factor in the oil droplets’ breakup is the
rapid change along the axial direction of the tangential velocity. A radial plane is created in
the zone of Z = 0–20 mm, where liquid flows into the blades, which is shown in Figure 3
as Pr. The flow field located 1 mm near the wall is ignored to avoid the boundary effect.
Therefore, the range of the radial plane Pr taking in a radial direction is R = 21–34 mm.

The distribution of the tangential velocity in the radial plane Pr for each swirler is
shown in Figure 5. As may be seen in Figure 5, the tangential velocity is smooth along the
radial in all the swirlers (a) to (f), and thus, the radial change rate of the tangential velocity
has little effect on the particle size of the dispersed phase. The tangential velocity has a
drastic fluctuation along the axial direction Z for swirlers (a) to (d), when the fluid flows into
the swirler (at the blade inlet of Z = 10 mm). By contrast, in the LSRSs (swirlers (e) and (f)),
the axial gradient of the tangential velocity has the smoothest variation in the region away
from the blade.
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The average value of the maximum shear stress under a cylindrical surface of radius
Ri in any swirler is

τmax−n−Ri =
1
6

6

∑
N=1

τmax−n−Ri−N (16)

where τmax is the maximum shear stress in Pa; N is the serial number of the flow channel;
and n is the serial number of the swirler; specifically, n can be a, b, c, d, e, and f. The
τmax-n-Ri-N, for any swirler at any radial position, is calculated by simulation.

The critical droplet size at which droplets may break up on a cylindrical surface of the
radius Ri at the mean maximum shear stress dcrit-n-Ri is

dcrit−n−Ri =
4σ

τmax−n−Ri

(17)

where σ is the oil–water interfacial tension in N/m. The σ value was set to 0.029 N/m,
which is the interfacial tension between lubricant 32 and water at 20 ◦C.
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The relative critical droplet size values of swirlers (b) to (f), on the same cylindrical
surface, are transformed to the dimensionless by being divided by the critical droplet size
value of swirlers (a),

dre−n−Ri =
dcrit−n−Ri − dcrit−a−Ri

dcrit−a−Ri

(18)

and the global average relative droplet size of swirler is expressed by the dimensionless
number dre−n,

dre−n =
34

∑
Ri=21

dre−n−Ri (19)

The relative critical droplet size value of the swirlers (b) to (f) are computed from
Equations (16) to (19) for different cylindrical surfaces, as shown in Figure 6. The Ri in the
legend of Figure 6 is the radius of the cylindrical surface. It can be seen that the average
relative droplet sizes of swirlers are (e), (d), (b), (f), and (c) in the order of high to low.
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3.2.2. Turbulence Analysis

The turbulence energy dissipation rate is an important parameter for evaluating the
strength of turbulence; it also reflects the amount of the turbulence kinetic energy acting
on the droplet surfaces through the flow field. Figure 7 shows the turbulence energy
dissipation rates of the swirler (a) to swirler (f) in the Z = 10 mm, 35 mm, 60 mm, and
80 mm sections, which are located near the entrance, middle, and exit positions of the
swirler and are shown in Figure 3. Overall, the peak turbulence energy dissipation rates
appeared at the swirler inlet (Z = 10 mm), where the tangential velocity also has a drastic
fluctuation along the axial direction Z.
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The peak turbulence energy dissipation rate of swirler (a), which has a straight blade,
is the maximum at 400 m2/s3. The distribution of the turbulence energy dissipation rate in
the LSRS (swirler (f)) is more uniform than that of the non-low-shear swirlers. In addition,
the peak turbulence energy dissipation rate in all sections of swirler (f) is 60 m2/s3, which
is less than 1/7 of the peak turbulence energy dissipation rate in swirler (a).

Based on the Kolmogorov–Hinze theory, the maximum stable droplet size d95 under
the action of turbulence during the swirling process is predicted as

d95

(ρc

σ

) 3
5
ε

2
5 = C (20)

where C is a constant, ε is the turbulence energy dissipation rate in m2/s3, and ρc is the
density of the continuous phase in kg/m3.

The maximum turbulence energy dissipation rate occurred in the Z = 10 mm section
and the corresponding d95 was calculated. The dimensionless numbers εre-max and dre-max
is defined as

εre−max =
εmax−n − εmax−a

εmax−a
(21)

dre−max =
d95−n − d95−a

d95−a
(22)

where εmax-a is the maximum turbulence energy dissipation rate of swirler (a), and the
subscripts n are the serial numbers of the swirlers.

The differences in the εre-max and dre-max between the LSRS and the non-low-shear rotating
swirlers are highlighted in Figure 8. Compared to the straight swirler (a), LSRS (f) exhibited a
68.5% reduction in εre-max, while its dre-max increased to 0.6 times that of the straight swirler.
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4. Field-Experiment-Based Verification

Based on the LSRS, a prototype of TDH with a capacity of 5 m3/h was designed and
tested on an offshore oil platform of CNOOC Ltd. (Beihai, China). The production process
of the oil field is shown in Figure 9a. The liquid produced from the oil well passes through
a gas-liquid trap for initial degassing and then through a two-stage tandem three-phase
separator for oil-gas-water separation. The separated gas phase is discharged into a natural
gas processing module; the oil phase is dewatered to the required standard by the electric
dehydrator and discharged into the crude oil buffer tank. The produced water is first
transferred to a buffer tank and then cleaned by a static hydrocyclone and a multimedia
filter. The cleaned water is then injected back into the ground. During the test, the inlet of
the TDH was connected to the rich water outlet of the first stage three-phase separator.
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The low-shear TDH used in the field experiment is shown in Figure 9b. The inlet
pressure and temperature during the experiment were 0.4 MPa and 64 ◦C, and the density
and viscosity of the dispersed oil phase is 880 kg/m3 and 30 mPa·s, respectively. The
oil concentration at the TDH inlet and underflow was measured by a Spectro Scientific
InfraCal 2 oil content meter. Further, n-hexane was employed as the extractant.

The TDH was operated continuously for more than 36 h on the offshore platform,
and according to the field experimental results, the equipment showed good separation
efficiency under the design conditions. Furthermore, the oil concentration in the underflow
was always less than 40 mg/L. To test the separation performance and adaptability of
the TDH, the splitting ratio was set as 10%, and the sampling interval was 2 h. The oil
concentration and separation efficiency are shown in Figure 10; the average separation
efficiency was 83%, which is 20% higher than the on-site static hydrocyclones, and the
average oil content in the underflow was 27 mg/L. Notably, the TDH had a good separation
efficiency when the fluctuation of the flow rate was within 50%, and the equipment was
stable and reliable in continuous operation.
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5. Conclusions

A design methodology was proposed for the low-shear rotating swirler (LSRS). The
variation of the tangential velocity along the axial and radial direction were studied,
and make up for the deficiency of the spatial variation of the tangential velocity in the
dynamic cyclone separator. The shear stress and turbulence energy dissipation rate in the
rotating swirler with different inlet setting angles were simulated using ANSYS Fluent
2020. The results demonstrated that, compared with the straight-blade rotating swirler,
the TDH with LSRS reduced the maximum shear stress by 74.6% and the peak turbulence
energy dissipation rate by 68.5%, and increased the maximum stable diameter by 0.6 times
compared to that of the straight-bladed rotating swirler. During continuous operation
for more than 36 h on an offshore oil platform, the average separation efficiency of the
LSRS-equipped TDH was 83%, which is 20% higher than the on-site static hydrocyclones,
and the average underflow oil concentration was 27 mg/L.

The LSRS design methodology for TDH can help prevent the oil droplets from breaking
up before being isolated and increase TDH’s separation efficiency. While the research
primarily focuses on the entrance angles of the swirler blades, other parameters such
as the lengths of the swirler blade, the number of blades, and so on have yet to receive
adequate attention.
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