
Citation: Chang, Y.; Dong, X.; Yang,

X.; Chen, H.; Yang, H.; Huang, W.

Temporal and Spatial

Characterization of Sediment

Bacterial Communities from Lake

Wetlands in a Plain River Network

Region. Separations 2023, 10, 535.

https://doi.org/10.3390/

separations10100535

Academic Editor: Mohammed

J.K. Bashir

Received: 27 August 2023

Revised: 17 September 2023

Accepted: 19 September 2023

Published: 10 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

separations

Article

Temporal and Spatial Characterization of Sediment Bacterial
Communities from Lake Wetlands in a Plain River
Network Region
Yongsheng Chang, Xiaoshuang Dong, Xixi Yang, Haojie Chen, Haoran Yang and Wei Huang *

College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China;
2222210@mail.dhu.edu.cn (Y.C.); dxshuang99@163.com (X.D.); 2232363@mail.dhu.edu.cn (X.Y.);
2232435@mail.dhu.edu.cn (H.C.); 2212062@mail.dhu.edu.cn (H.Y.)
* Correspondence: huangwei@dhu.edu.cn or yixinghd6@163.com

Abstract: Sediment bacterial communities are a vital component of microbial communities in aquatic
and terrestrial ecosystems and they play a critical role in lake wetlands. We aimed to investigate
the effect of season, depth and regional environmental factors on the composition and diversity of
bacterial communities in a plain river network area from Taihu Basin. The millions of Illumina reads
(16S rRNA gene amplicons) at the surface 25 cm inside samples of the study area were examined using
a technically consistent approach. Results from the diversity index, relative abundance, principal
component analysis (PCA), redundancy analysis (RDA) and linear discriminant analysis effect size
(LEfSe) analysis indicated that the diversity of the bacterial community in summer was generally
higher than in other seasons. Proteobacteria were the most abundant phylum in the sediment samples
in different seasons (43.15–57.41%) and different layers (39.66–77.97%); the autumn sediments were
enriched with Firmicutes (5.67%) and Chloroflexi (12.5%); in all four seasons the sediments were
enriched with Betaproteobacteria (14.98–23.45%), Gammaproteobacteria (11.98–14.36%) and Deltapro-
teobacteria (8.68–14.45%). In the bottom sediments (10–25 cm), Chloroflexi were abundant (average
value 10.42%), while Bacteroidetes was the dominant phylum in the surface sediments; redundancy
analysis found that total phosphorus (TP) (p = 0.036) was the main environmental factor influencing
the sediment bacterial community in different layers. This study provides a reference for further
understanding the effects of seasonal changes on sediment microorganisms in lake wetlands.

Keywords: bacterial community; lake wetland; sediment; seasonal variation

1. Introduction

In plain river network regions, the lake wetland is a special wetland type that includes
wetland plants, microbes and animals, and these play an important ecological role in flood
storage, water purification, habitat maintenance and maintaining species diversity [1–3].
Bacterial communities are prevalent in lake wetlands [4]. Sediments are a unique element
in aquatic ecosystems and have significantly higher microbial species and diversity than the
overlying water [5,6]. Sediment bacterial communities are the drivers of nutrient cycling
and energy conversion in aquatic ecosystems, and changes in microbial physiological
functions affect nutrient formation and cycling in sediments, which can lead to secondary
pollution of water and lake eutrophication [7,8]. Bacterial diversity is an important in-
dex for water quality evaluation, which can reflect water quality and the migration and
transformation of pollutants in sediments [9,10].

The functional diversity of microbes is influenced by environmental factors. Numerous
studies of the bacterial communities in lake wetland ecosystems have shown that they
are closely related to a variety of environmental factors, such as C and N availability,
temperature and sediment structure characteristics [11–17]. Furthermore, the organic
matter (OM) content affects the structure and function of sediment communities [18]. There
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are differences in the physical and chemical indexes of the biogeochemical properties of the
sediments, owing to the influence of spatial and seasonal factors [8,19]. Some studies have
shown that sediment bacterial community structure and composition are characterized
by significant seasonal and temporal variations [5,19,20]. Because of the sensitivity of
sediment bacteria to small chemical and physical changes, their structure may change
spatially and temporally in response to environmental variations. Season is one of the key
factors affecting sediment bacterial communities [21]. The spatial heterogeneity of bacterial
community richness and diversity in sediments has an impact on water quality [22,23].
There has, however, been limited exploration of the changes in the bacterial community
with respect to environmental variability (season) and vertical distribution (depth) in lake
wetlands.

Taihu Basin, located in China, has a subtropical monsoon climate. It also has numerous
lake wetlands, which are located in the southeast parts of Taihu Basin. Numerous lake
wetlands exist around several large rivers and influence the water quality in the plain river
network region. The northwestern part of the study area is heavily polluted from exogenous
sources due to chemical industries, aquaculture and other factors. We investigated the
bacterial communities in the sediments of a plain river network area from Taihu Basin in
all four seasons, focusing particularly on the vertical bacterial community characteristic
of sediment samples from six typical sites in summer. Our main aim was to understand
the spatiotemporal variation in the bacterial communities and to identify the driving factors
at different locations in the lake wetland. Seasonal changes in the composition and diversity
of microbes were analyzed by constructing clone libraries of 16S rRNA, from which potential
reasons for differences in community structure were inferred. Our results provide a new
perspective on and valuable reference to the bacterial community in shallow, eutrophic lake
wetlands, which we hope can be applied to other shallow and eutrophic aquatic ecosystems.

2. Material and Methods
2.1. Sediment Sampling

Thirty sampling sites were chosen in a plain river network (Figure 1), and the surface
sediment samples were collected from these sites in spring (March), summer (June), autumn
(September) and winter (December) using sediment sampler. A total of 120 sediment
samples were obtained over the four seasons: spring (A), summer (B), autumn (C) and
winter (D). We divided the sediment samples from six typical sites (3, 10, 14, 18, 19, 20)
in summer into five layers (0–5, 5–10, 10–15, 15–20, 20–25 cm), and 30 sediment samples
were collected. The sediment samples were homogenized, stored in sealed plastic bags and
placed immediately onto dry ice. All samples were transferred to the laboratory within
24 h and kept at −80 ◦C until processing. Water samples from the 30 sites were also
collected for analysis of the influence of environmental factors on bacterial communities in
the sediments.
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Figure 1. Sampling sites and the six typical sites.

2.2. Geochemical Analysis

The total nitrogen (TN) and total phosphorus (TP) of each sediment were measured by
using standardized methods and tests [24]. The organic matter (OM) content of each sedi-
ment was calculated according to the loss on ignition to constant mass (4 h) at 550 ◦C [25].
The main properties of the sediment samples are shown in Figure 2.



Separations 2023, 10, 535 4 of 14Separations 2023, 10, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 2. Spatial distribution of pollutants (total nitrogen, TN; total phosphorus, TP; and organic 
matter, OM) in the lake wetlands. 

2.3. DNA Extraction, PCR Amplification and Sequencing 
DNA was extracted from the sediment samples using a PowerSoil DNA Isolation Kit 

(Mobio Laboratories Inc., San Diego, CA, USA), following the manufacturer’s manual. 
DNA concentration and purity were checked using a NanoDrop Spectrophotometer 
(Thermo Scientific NanoDrop Lite, Waltham, MA, USA). DNA was diluted to 10 ng μL−1 
using sterile ultrapure water and stored at −80 °C before further analysis. 

The specific primers 515F (GTGCCAGCMGCCGCGGTAA) and 926R 
(CCGTCAATTCMTTTRAGTTT) were used in PCR amplification of bacterial 16S rRNA 
V4–V5 regions. We chose these primers because of their high coverage of almost all 
common phyla [26,27]. The conditions for PCR amplification were: initial denaturation at 
94 °C for 1 min, 30 cycles (denaturation at 94 °C for 20 s, annealing at 56 °C for 30 s and 
elongation at 72 °C for 45 s) and a final extension at 72 °C for 5 min. Library quality was 
evaluated on a Qubit®2.0 Fluorometer (Thermo Scientific, Waltham, MA, USA) and Ag-
ilent Bioanalyzer 2100 system. Eventually, the library was subjected to paired-end se-
quencing (2 × 250 bp) on an Illumina MiSeq platform from Tiny Gene Bio-Tech Co., Ltd. 
(Shanghai, China). 

2.4. Data and Statistical Analysis 
The richness estimators (Chao and Abundance-based Coverage Estimator (ACE)) 

and the diversity indices (Shannon and Simpson) were calculated. Principal component 
analysis (PCA) was employed to explore and visualize the similarities between sediment 
samples obtained from four seasons based on Bray–Curtis dissimilarity using the pack-
age Ape [28]. Canoco 5 software was used to carry out redundancy analysis (RDA) based 
on population abundance and environmental factors. The sediment samples with specific 
indicator groups of bacteria were found using LEfSe (Linear discriminant analysis Effect 
Size) [29]. Independent T-test and permutational multivariate analysis of variance were 
used to determine the differences that exist among different groups. 

2.5. Accession Numbers 

Figure 2. Spatial distribution of pollutants (total nitrogen, TN; total phosphorus, TP; and organic
matter, OM) in the lake wetlands.

2.3. DNA Extraction, PCR Amplification and Sequencing

DNA was extracted from the sediment samples using a PowerSoil DNA Isolation Kit
(Mobio Laboratories Inc., San Diego, CA, USA), following the manufacturer’s manual. DNA
concentration and purity were checked using a NanoDrop Spectrophotometer (Thermo
Scientific NanoDrop Lite, Waltham, MA, USA). DNA was diluted to 10 ng µL−1 using
sterile ultrapure water and stored at −80 ◦C before further analysis.

The specific primers 515F (GTGCCAGCMGCCGCGGTAA) and 926R (CCGTCAATTC
MTTTRAGTTT) were used in PCR amplification of bacterial 16S rRNA V4–V5 regions. We
chose these primers because of their high coverage of almost all common phyla [26,27].
The conditions for PCR amplification were: initial denaturation at 94 ◦C for 1 min, 30 cycles
(denaturation at 94 ◦C for 20 s, annealing at 56 ◦C for 30 s and elongation at 72 ◦C for 45 s)
and a final extension at 72 ◦C for 5 min. Library quality was evaluated on a Qubit®2.0
Fluorometer (Thermo Scientific, Waltham, MA, USA) and Agilent Bioanalyzer 2100 system.
Eventually, the library was subjected to paired-end sequencing (2 × 250 bp) on an Illumina
MiSeq platform from Tiny Gene Bio-Tech Co., Ltd. (Shanghai, China).

2.4. Data and Statistical Analysis

The richness estimators (Chao and Abundance-based Coverage Estimator (ACE))
and the diversity indices (Shannon and Simpson) were calculated. Principal component
analysis (PCA) was employed to explore and visualize the similarities between sediment
samples obtained from four seasons based on Bray–Curtis dissimilarity using the package
Ape [28]. Canoco 5 software was used to carry out redundancy analysis (RDA) based on
population abundance and environmental factors. The sediment samples with specific
indicator groups of bacteria were found using LEfSe (Linear discriminant analysis Effect
Size) [29]. Independent T-test and permutational multivariate analysis of variance were
used to determine the differences that exist among different groups.
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2.5. Accession Numbers

All of the sequencing data analyzed in this study can be downloaded from the NCBI’s
Sequence Read Archive using the accession numbers SRP314068 for samples from four
seasons (120 samples) and five layers (30 samples) in lake wetlands.

3. Result
3.1. Spatial Distribution of Physicochemical Parameters in Sediments

The physicochemical parameters in sediments varied by region, ass shown in Figure 2.
In general, there was no significant change in the mean concentrations of TN, TP and OM
in sediment samples from the lake wetlands over the four seasons. Relatively high levels
of TN (4847 mg kg−1), TP (1697 mg kg−1) and OM (17.66%) in sediment samples from six
typical sampling sites (3, 10, 14, 18, 19, 20) were found in summer (Figure 2).

3.2. Diversity Indices

A total of 6,234,741 reads were obtained after tag merge and quality control. Table 1
shows the diversity indices of the sediment samples from the four seasons. The sediment
samples from summer and autumn had a greater diversity than those from the other
seasons. The sediment samples in summer had the highest Chao (4825) and ACE (5276)
indices, while the sediment samples in spring had the lowest Chao (4282) and ACE (5166)
indices. The Shannon values of the sediment samples over the four seasons showed a
similar trend in variation.

Table 1. Diversity indices of the sediment samples from the four seasons (A for spring, B for summer,
C for autumn and D for winter).

Sample Type
Diversity

Chao ACE Shannon Simpson

A 4282 ± 34 5166 ± 48 5.84 ± 0.62 0.016 ± 0.010
B 4825 ± 52 5276 ± 112 6.19 ± 0.74 0.014 ± 0.004
C 4581 ± 101 5172 ± 87 6.18 ± 0.41 0.012 ± 0.006
D 4308 ± 57 5271 ± 68 6.09 ± 0.58 0.010 ± 0.007

Sediment samples from six typical sampling sites (3, 10, 14, 18, 19, 20) were chosen, and
the samples from each site were divided into five layers (0–5, 5–10, 10–15, 15–20, 20–25 cm).
Figure 3 shows the diversity indices of the sediment samples from different layers. The
results indicated that most of the sediment samples from the surface layer (0–10 cm) had
greater diversity (Chao, ACE, Shannon) than the sediment samples from the bottom layer
(15–20 cm). The surface (0–5 cm) sediment samples from site 3 had the lowest Chao, ACE
and Shannon values compared to the sediment samples from other layers, and the bottom
sediment (20–25 cm) samples had the highest Simpson value (0.06). Sediment samples from
site 18 had a greater diversity than the other sediment samples, and sediment samples from
the 5–10 cm layer had the highest Chao (3765), ACE (3745) and Shannon (6.2).
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3.3. Temporal and Spatial Comparisons of Sediment Bacterial Community Based on Taxonomy

The taxonomic assignment results indicated that there were 22 phyla and 29 classes
(total percentage > 95%) at the 97% sequence identity level (Figure 4). Figure 4a shows the
main phyla with high relative abundance (>0.1%) in sediment samples from the four seasons.
Proteobacteria had the highest relative abundance (43.15–57.41%) in the sediment samples from
four seasons. At the phylum level, the bacterial community was also largely dominated by
Bacteroidetes (12.14–18.08%), Chloroflexi (6.19–12.50%), Acidobacteria (2.94–4.71%), Ignavibacteriae
(1.38–2.60%), Nitrospirae (1.82–3.68%) and Firmicutes (1.33–5.67%) and contained a small
amount of, for example, Chlorobi, Aminicenantes, Verrucomicrobia and Spirochaetae. Chloroflexi
was more abundant in the sediments from summer (9.3%) and autumn (12.5%), and the
sediment samples from summer had the most abundant Nitrospirae (3.68%). The sediment
samples from autumn also had more abundant Firmicutes (5.67%) and Actinobacteria (2.61%).

The changes in the bacterial community at the class level are shown in Figure 4b.
Betaproteobacteria (14.98–23.45%), Gammaproteobacteria (11.98–14.36%), Deltaproteobacteria
(8.68–14.45%), Alphaproteobacteria (1.18–4.04%) and Epsilonproteobacteria (0.70–1.64%) were
the most abundant classes of Proteobacteria. Such classes as Flavobacteriia, Bacteroidia, Holopha-
gae, Nitrospira and Anaerolineae were also the main classes in the sediment samples from the
four seasons. The sediment samples from winter and spring had more Betaproteobacteria
than in summer and autumn, while the sediments had the most abundant Deltaproteobacteria
(14.45%). Nitrospira in the sediment samples from summer was also more abundant (3.68%)
than in the three other seasons.
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Figure 4. Relative abundances of different phyla (a) and classes (b) in 120 sediment samples from
four seasons (A for spring, B for summer, C for autumn and D for winter).

The bacterial composition of the six typical sediments in different layers is shown
in Figure 5. Proteobacteria were still the most abundant (39.66–77.97%) phylum in the
different layers of the sediments. The surface sediments (0–15 cm) in sites 14, 18 and 20
had more Proteobacteria than the bottom sediments (15–25 cm), while the bottom sediments
(20–25 cm) had more Proteobacteria than the surface sediments (0–10 cm) in sites 3, 10 and
19. More Chloroflexi was found in the bottom sediments than in the surface sediments,
and it was most abundant in sediments from the 10–25 cm layer (average value 10.42%).
Sediments from the 0–5 cm layer had a greater abundance of Bacteroidetes than the other
layers. Firmicutes in surface sediments (0–10 cm) from site 3 were in greater abundance
than in the bottom sediments (10–25 cm), while the bottom sediments (15–25 cm) from site
10 had more Firmicutes than the other layers.
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site 3, (b) for site 10, (c)f or site 14, (d) for site 18, (e) for site 19, (f) for site 20) divided into five layers
(0–5, 5–10, 10–15, 15–20, 20–25 cm).
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3.4. Principal Component Analysis

PCA was used to study the grouping of the sediment samples from the four seasons
(Figure 6a) and six typical sediments from different layers (Figure 6b) according to their
bacterial community structure. The first two PCA axes explained 87.9% of total variation
in the microbial community structure. Bacterial communities in the sediment samples
displayed seasonal clustering. Summer and autumn bacterial communities were gathered
on the second and third quadrants, and communities from spring and winter appeared in
the first and fourth quadrants. The first two PCA axes explained 86.2% of the total variation
in the bacterial community structure of the six typical sediment samples from different
layers (Figure 6b). The bacterial communities in the sediments from layers (0–15 cm) were
gathered on the first, second and fourth quadrants, while the bacterial communities in the
bottom sediments (15–25 cm) were gathered only on the third quadrant.
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3.5. Redundancy Analysis

The RDA results for the relationship between bacterial community composition and
environmental factors (physicochemical parameters) at the phylum level are shown in
Figure 7. Samples were taken from different sediment layers in six typical areas: the
interpretation rates of the first two RDA axes were 67.05% and 20.3%, respectively, and
the cumulative explanation rate was 87.35%. OM, TP and TN were positively correlated
with each other, but pH and DO showed a negative correlation. Some physicochemical
parameters influence the bacterial community in lake wetland sediments. Monte Carlo
variable tests and permutation experiments indicated that the environmental variable (TP)
was statistically significant (p = 0.036, pseudo-F = 4.1) and an important determinant of
bacterial community structure. Aminicenantes showed the highest positive correlation with
TP concentration. In contrast, Bacteroidetes (p < 0.01) was negatively correlated with TP
concentration (Table 2).
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Figure 7. Redundancy analysis (RDA) of the bacterial communities as affected by environmental
conditions and based on the relative abundance of dominant bacterial phyla (dots of different colors
represent different depths).

Table 2. Pearson rank correlation analysis of sediment environmental factors with the abundance of
the sediment bacterial community.

TP TN pH OM DO Proteobacteria Firmicutes Bacteroidetes Chloroflexi Nitrospirae

TP 1 0.508 ** 0.642 ** 0.677 ** −0.051 −0.209 −0.033 −0.544 ** −0.194 −0.094
TN 1 0.1 0.046 −0.097 −0.095 0.262 −0.35 −0.171 0.066
pH 1 0.581 ** 0.208 −0.018 −0.461 * −0.286 0.007 0.099
OM 1 0.410 * −0.031 −0.027 −0.467 ** −0.167 −0.148
DO 1 0.242 0.037 −0.124 0.022 −0.172

Proteobacteria 1 0.205 −0.067 −0.233 −0.185
Firmicutes 1 −0.058 −0.119 −0.398 *
Bacteroidetes 1 −0.119 0.133
Chloroflexi 1 0.177
Nitrospirae 1

* Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level n = 30.

3.6. LEfSe Analysis Based on Community Abundance

Figure 8 shows that the bacterial communities dominant in spring were Gammapro-
teobacteria (the class and orders of Oceanospirillales and Pseudomonadales), Betaproteobacteria
(the class and orders of Hydrogenophilales and Nitrosomonadales) and Erysipelotrichia (the
class and order of Erysipelotrichales).

The bacterial lineages enriched in summer were Bacteroidia, Deltaproteobacteria, Ni-
trospirae (from phylum to family), Ignavibacteria (the class and order of Ignavibacteriales),
Elusimicrobia (from phylum to order) and Opitutales (the class and order of Opitutaceae).
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Eleven groups of bacteria were abundant in autumn: Clostridia, Bacilli (a class from
Firmicutes), Planctomycetacia (from class to family), Alphaproteobacteria (the class and orders
of Rhodobacterales and Rhizobiales), Caldilineae (the class and order of Caldilineales), Anaerolin-
eae (from class to genus), Flavobacteriia (from class to genus), Thermoleophilia, Coriobacterila,
Actinobacteria and Verrucomicrobiae (a class from Verrucomicrobia).

Nine groups of bacteria mainly belonged to five phyla (Latescibacteria, Cyanobac-
teria, Caldiserica, Aminicenantes and Spirochaetae) and four orders (Xanthomonadales,
Arenicellales, Myxococcales and Desulfobacterales) in winter.
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4. Discussion
4.1. Overview of the Study Area in the Yangtze River Delta Region, China

The study area was located in a typical plain river network in the Yangtze River Delta
region, China. Industry and the economy are developed, and the value of GDP in this area
is the highest in China. Exogenous pollution was one of the most significant sources of
pollution in this area. Most pollutants were discharged into the lake wetland, and large
amounts were deposited on the lake wetland sediments. The microbial communities in
the sediment have a great influence on the pollutant content and are important in the
transformation and immigration of the pollutants [30,31]. There was considerable variation
in the bacterial sediment communities, and they differed between seasons and layers.

4.2. The Pollution Sources and Characteristics of the Study Area

The main sources of pollution were printing and dyeing industries, agriculture and
livestock waste, especially around sites 14, 18, 19 and 20. There was frequent pollutant
entrance and deposition in these areas, and the relative abundance of the bacterial com-
munities in the sediment samples from these four sites was higher than in sediments
from sites 3 and 10 [32,33]. The average concentrations of TN, TP and OM did not vary
significantly in lake wetland sediments from different seasons. The TN, TP and OM in the
different regions were higher in winter than in other seasons. This may have been because
the low temperature in winter inhibited the activity of the bacterial communities. Reduced
rainfall in winter also reduced the concentrations of TN, TP and OM through dilution and
biological interception, which weakened the biological removal of TN, TP and OM [8,34].
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4.3. The Differences in Sediment Bacterial Communities and Their Seasonal Effects

Most surface sediments in the plain river network area were from the deposition of
the pollutants, and the sediments from some sites (such as 3 or 10) have been removed by
dredging in recent years. The vertical diversity distribution results indicated that there
was greater diversity in the bacterial community in surface sediment samples (Chao, ACE,
Shannon) than in the bottom sediments. In addition, pollutant contents in the bottom
sediments were low, and the bottom sediments were clearer than the surface sediments,
which is one of the main reasons for greater diversity in the surface sediments. On the
basis of the richness estimators (Chao and ACE) and the diversity indices (Shannon and
Simpson), there were differences in the richness and diversity of the sediment bacterial
communities in different seasons. The bacterial community diversity in summer was
generally higher than in other seasons owing to the warm environment that favors the
growth of microorganisms during this humid season [10].

4.4. The Influence of Bacterial Communities Was Due to Environmental Factors

Proteobacteria were commonly found to have the greatest relative abundance in sedi-
ments, and sedimentary degradation and metabolism mainly relied on this phylum [35].
Proteobacteria were also the most abundant phylum in all sediment layers and at greater
abundance in the surface sediments than in the bottom sediments. RDA analysis showed
that Proteobacteria were negatively correlated with the contents of other environmental
variables (TP, TN, OM, DO, PH). Firmicutes predominated in some sediment sites (19); this
can generate spores that endure dehydration and harsh environmental states [31].

LEfSe analysis showed that Firmicutes were enriched in autumn, and this may have
been related to DO and TN levels. The phylum Firmicutes has the ability to perform deni-
trification processes under anaerobic conditions [36]. In the bottom sediments, Chloroflexi
was abundant, while Bacteroidetes was the dominant phylum in the surface sediments.
Members of Chloroflexi are facultative anaerobes and have been identified from freshwater
sediments [37]. They can fit into the changing redox conditions of an aquifer and par-
ticipate in the degradation of organics, and this action may lead to the low OM content
in the sediment [24,38]. Bacteroidetes is widespread in a variety of environments, such
as surface sediments [39–41]. It is thought to play a vital role in ecosystems because its
members process complex molecules into simpler compounds in predominantly anaerobic
habitats [32,42]. They are in relatively high concentrations in surface sediment owing
to nearby sewage discharge into the lake wetlands, and some of the pollutants from the
towns and cities have been deposited into the surface sediments [32]. Nitrospira is also an
important phylum in the lake wetland sediments and was more abundant on the surface
sediments than on the bottom sediments because it is largely dependent on higher oxygen
availability [43]. The RDA result indicated that Nitrospira was negatively correlated with
depth, confirming that the phylum prefers aerobic environments.

The 120 surface sediment samples collected in all four seasons and the 30 sediment
samples from different layers were obtained in a plain river network in lake wetlands. Large
amounts of pollutants were mixed, and some were deposited into the surface sediments [32].
The highest levels of TN (4847 mg kg−1), TP (1697 mg kg−1) and OM (17.66%), and the
relative abundance of the bacterial communities in the sediment samples from sites 14, 18,
19 and 20, were higher than in sediments from sites 3 and 10. The results indicated that the
bacterial communities were influenced by environmental factors and that environmental
conditions in these areas were complex [44].

5. Conclusions

The mean pollutants in sediment samples from the lake wetlands did not change
significantly over the four seasons. We found a clear difference in microbial diversity, with
seasonal shifts, and this diversity was strongly related to sediment depth. We investigated
the bacterial communities of sediments from lake wetlands in the plain river network area
via a high-throughput sequencing method. Proteobacteria were the most abundant phylum
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in sediments throughout the four seasons. The phylum Chloroflexi was more abundant
in the bottom sediments, whereas in the surface sediments, the phylum Bacteroidetes was
dominant. The higher the levels of TN (4847 mg kg−1), TP (1697 mg kg−1) and OM
(17.66%), the higher the relative abundance of the bacterial communities in sediments. The
physicochemical properties of sediments have a strong influence on the components of a
bacterial community. The level of TP had a great influence on the structure of the bacterial
community in sediments from lake wetlands, because TP is an important nutrient for living
organisms.
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