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Abstract: With the passage of time, scale gradually forms inside the oil pipeline. The produced
scale, which has a high density, strongly attenuates photons, which lowers the measurement accu-
racy of three-phase flow meters based on gamma radiation. It is worth mentioning that the need
for multiphase flow metering arises when it is necessary or desirable to meter well stream(s) up-
stream of inlet separation and/or commingling. In this investigation, a novel technique based on
artificial intelligence is presented to overcome the issue mentioned earlier. Initially, a detection
system was comprised of two NaI detectors and a dual-energy gamma source (241 Am and 133 Ba
radioisotopes) using Monte Carlo N particle (MCNP) code. A stratified flow regime with varying
volume percentages of oil, water, and gas was modeled inside a pipe that included a scale layer
with varying thicknesses. Two detectors record the attenuated photons that could travel through the
pipe. Four characteristics with the names of the amplitude of the first and second dominant signal
frequencies were extracted from the received signals by both detectors. The aforementioned obtained
characteristics were used to train two Radial Basis Function (RBF) neural networks to forecast the
volumetric percentages of each component. The RMSE value of the gas and oil prediction neural
networks are equal to 0.27 and 0.29, respectively. By measuring two phases of fluids in the pipe, the
volume of the third phase can be calculated by subtracting the volume of two phases from the total
volume of the pipe. Extraction and introduction of suitable characteristics to determine the volume
percentages, reducing the computational burden of the detection system, considering the scale value
thickness the pipe, and increasing the accuracy in determining the volume percentages of oil pipes
are some of the advantages of the current research, which has increased the usability of the proposed
system as a reliable measuring system in the oil and petrochemical industry.

Keywords: stratified flow regime; scale thickness independent; three-phase flow; RBF neural network

1. Introduction

In various oil fields across the world, scale buildup in pipes carrying oil has resulted in
several issues. The flow of petroleum products is complicated by scale development, which
decreases the pipeline’s effective cross-sectional area. This component makes it impossible
for pumps and other machinery to function correctly. If scale builds up in the pipeline
and is not detected in time, it may lead to catastrophic breakdowns, broken oil equipment,
high maintenance expenses, and decreased efficiency. For this reason, employing a control
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system that has characteristics such as volume percentage detection is quite helpful in
advancing things when scale is present. Gamma-ray attenuation systems are frequently
referred to as the gold standard by researchers when calculating the different characteristics
of a polyphase flow [1–7]. A cesium source, two sodium iodide detectors, and a test pipe
were utilized in the experiment described in [1]. The RBF neural network was trained with
data from two detectors to provide predictions about two-phase flow parameters in the
bubbly, stratified, and annular regimes. These counts were used to determine the flow
regimes and make volume estimates. Roshani and his coworkers [2] used GMDH-type
networks trained on the unbalanced data to predict the volume percentages and flow
regime. The huge computational strain they placed on the system was justified by its
extraordinary precision. In 2020, researchers utilized the MLP neural network and a single
pencil beam gamma-ray attenuation technique to determine the volumetric fraction of a
three-phase flow [3]. By using a cesium source, a test pipe, and a sodium iodide detector,
Islami-Rad and his team were able to develop a method for precise volume percentage
calculation [4]. In a recent research paper [5], the authors looked into the viability of using
GMDH neural networks to determine the presence of various flow regimes and make
predictions for volume fractions. While the study’s volume percentage calculations were
mostly accurate, they did not account for the amount of scale present in the pipe, which
was a significant restriction. The flow rates were experimented with using a two-phase
automated test loop in [6], which may produce various flow patterns in a horizontal channel.
The measurement package setup comprised of a Cs-137 radiation source with 662 keV
photon energy and a NaI (Tl) scintillation detector to count transmissions. The preferred
processing component was a multi-layer perceptron (MLP). The scale layer in the oil
pipe was recently measured using a dual energy source of Am-241 and Ba-133. After the
simulation of three-phase flow in stratified regimes, it was established that the amplitude of
the first to fourth dominant frequency should feed into the MLP neural network. The RMSE
for their estimate of scale thickness was less than 0.13 [7]. Problems can arise with the use
of radioisotopes as a constant power source, including those related to transportation and
the requirement for personnel to wear protective gear. Therefore, X-ray tube research into
measuring multiphase flow properties has gained traction of late [8–12]. In the study [8],
the researchers used an X-ray tube and a NaI detector so that they could identify the
volumetric percentage and regime type of two-phase flows. The timing features of the
detected signals were used to train two MLP neural networks. In [9], two-phase flows were
studied by modeling them in various regimes at different volume fractions. In addition,
artificial neural networks were educated by feeding them the statistical features of the
incoming signals. The Monte Carlo N particle (MCNP) algorithm was used to simulate
four petroleum products that combined two-by-two with various quantities and were
centered on the X-ray tube [10]. The signals were sent into three multilayer perceptron
neural networks, which then predicted the volume ratio of the three products based on their
inputs. Once the volume ratios of the first three products were established, calculating the
volume ratio of the last product was a breeze. The presented method predicted the types
and quantities, but was unable to reach a high degree of accuracy due to a lack of feature
extraction techniques. Wavelet transformations were examined as a feature extraction
approach by Balubaid et al. [11] in order to further the research [10]. One outcome of
this activity was the optimization of the computational burden and the improvement of
accuracy. For the modeling of a volume percentage detection system using Monte Carlo N
particle (MCNP), a NaI detector and dual-energy gamma generator simulations (241 Am
and 133 Ba radioisotopes) were suggested. A stratified flow regime with varying volume
percentages was used to transport oil, water, and gas via a conduit with varying wall
thicknesses. A detector then collected the photons that travel down the pipe after gamma
rays have been released from one end. The detector measured four temporal characteristics:
kurtosis, mean square root (MSR), skewness, and waveform length (WL). Two GMDH
neural networks were trained using the aforementioned data to provide very accurate
predictions of future volumes [12]. A 149.5 keV X-ray beam and two planar germanium
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detectors were used to forecast volume fractions in a three-phase system using X-ray
transmission and scattering data, as described in [13]. The MCNP6 algorithm has been
used to estimate fluid volume fractions for an annular flow regime. The energy spectra
from both detectors were correlated with the volume percentages of the fluids using a
statistical approach based on an artificial neural network. The enhancement of the hysteretic
behavior with a decrease in the microchannel diameter is investigated in [14] using current
monitoring measurements and finite element numerical simulations. Microchannels with
internal diameters of 5 µm and 100 µm were used for the investigation, and three solution
pairings were chosen: KCl-NaCl (dissimilar ionic species with similar concentration), NaCl,
and KCl (identical ionic species but different concentrations), and water. The coupling
effect of the wider/tighter interfacial width and the minority pH-governing ion-driven
hysteresis, which was previously established to be the genesis of EOF hysteresis, causes the
EOF hysteresis to increase for the decreased channel diameter (i.e., the 5 µm microchannel).
With the aid of earlier research in the sector, an effort has been made in this study to offer a
volume percentages diagnosis method with excellent accuracy. A three-phase flow regime
with varying volume percentages of water, gas, and oil was simulated for this purpose.
Each simulation took a different scale thickness value into account. An attempt was made
to forecast volume percentages with good accuracy by extracting the frequency features of
amplitude of the first and second dominant signals frequency received by both detectors,
and putting them to two RBF neural networks. The results of this study contributed in the
following areas by:

1. Enhancing the accuracy of the detecting mechanism.
2. Conducting volumetric fraction measurements of a three-phase flow as it traveled

through a scale-lined oil pipe.
3. Analyzing the efficiency of the frequency characteristics in determining the vol-

ume percentages.
4. Aggregating helpful characteristics to significantly reduce the computational load.

2. Materials and Methods
2.1. Simulation Setup

Many research papers have demonstrated that academics are interested in utilizing the
MCNP algorithm to model X-ray or gamma radiation-using structures [15–18]. The MCNP
code simulation platform was used to mimic the framework suggested in this study [19].
Radioisotopes 241 Am and 133 Ba are at the center of the study’s suggested framework.
The abovementioned dual energy source shoots photons toward a steel flow channel and
gathers them at the other end using two detectors. Both of its photons have energy of 59 keV
and 356 keV. Two sodium iodide detectors, each 2.54 cm × 2.54 cm, are set at an angle of
0 and 7 degrees with respect to the fictitious horizon line. In the test pipe, a three-phase
flow is modeled in a stratified flow regime where it takes place. The aforementioned pipe
has an internal diameter of 10 cm and a thickness of 0.5 cm. There is a scale constructed
of BaSO4 with various thicknesses inside this pipe. Scales with density of 4.5 g per cubic
centimeter with thicknesses of 0, 0.5, 1, 1.5, 2, and 3 cm were installed in the pipe through
which water, oil, and gas flow. Water has a density of 1, gas has a density of 0.00125, and
oil has a density of 0.826 g per cubic cm in this model. This study used the MCNP code
to implement the structure. In our earlier work, we conducted multiple trials to verify
the simulated structure used in this research [1]. Comparative analysis was undertaken
between the detector responses obtained in the simulation and experiment. In order to
compare the experimental and simulation data both were converted to units, as the Tally
output in the MCNP algorithm is per source particle. The highest relative change for
detector response data between real and simulated data is 2.2%. The outcomes indicate
that the results of the experiment and the simulated outcomes correlate rather well. A total
of 252 simulations were produced by using the 36 alternative volume percentages that are
available for every 7 values of the scale thickness. In order to train the neural network, four
features from each simulation—the amplitude of the first and second dominant signals
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frequency received by both detectors—were retrieved. There are four inputs and one output
for each of the two neural networks. When combined, they provide the relative volumes of
the gas and oil phases. It should be obvious that, by subtracting these two quantities from
the initial total volume, the water volume percentage could be calculated. Figure 1 depicts
the whole specified structure. Figure 2 presents an illustration of the recorded signals for
both detectors in 1 cm scale thickness.
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2.2. Feature Extraction

Feature extraction is a technique for transforming the existing data into a dif-
ferent domain, where machine learning-based algorithms can work more effectively.
Additionally, the feature extraction method will decrease data dimensions, computa-
tion costs, and speed up machine learning methods. There are several ways to extract
features. Feature extraction in the time domain, frequency domain, and time-frequency
domain are several examples. The signals utilized in this study were transformed using fast
Fourier transform (FFT) to make them more easily accessible for analysis in the frequency
domain. Equation (1) is related to the FFT [20]. Let x0, . . . , xN−1 be complex numbers.
The DFT is defined by the formula

Yk =
N−1

∑
n=0

xne−i2πkn/N k = 0, . . . , N − 1 (1)

where ei2π/N is one of the n roots of unity. Each output, Xk, has to add up to N terms since
there are N outputs.

Amplitude of First Dominant Frequency (AFDF) and Amplitude of Second Domi-
nant Frequency (ASDF) were identified after analyzing the signal characteristics that
were converted to the frequency domain. The diagram of a frequency domain signal is
shown in Figure 3. In this graph, the x-axis indicates the frequency in Hz, the y-axis the
indicates the scale’s thickness in cm, and the z-axis indicates the amplitude. The character-
istics that were retrieved in this stage are used as inputs into neural networks to calculate
the volumetric percentages independent of scale thickness.
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2.3. Radial Basis Function Neural Network

Radial Basis Function Neural Networks (RBF NNs) are a special kind of artificial
neural network that uses distance to provide estimates of data similarity. An RBF network
is a kind of artificial neural network that uses the feed-forward architecture and consists
of an input layer, a hidden layer, and an output layer. Radial basis functions trigger the
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activation of hidden layer neurons. The radial base function’s most typical form is as
follows [21]:

ϕ(r) = exp[− r2

2σ2 ] (2)

The distance from the cluster’s center is measured in terms of a number called r.
A typical bell-shaped curve is seen in Equation (2). An assortment of computational
elements known as hidden nodes make up a hidden layer. A central vector c, a parametric
vector with length comparable to the input vector x, is present in each concealed node.
The following formula is used to determine the Euclidean distance between the network’s
input vector x and center vector [22]:

rj =
√

∑n
i=1

(
xi − wij

)2 (3)

As a result, the following is the hidden layer’s jth neuron output:

∅j = exp[−
∑n

i=1
(
xi − wij

)2

2σ2 ] (4)

σ is a description of the bell curve’s breadth or radius. The weighted units in the
hidden layer of an RBF network correspond to the vector that represents the cluster center.
Traditional approaches such as the K-Mean algorithm or Kohonen algorithm-based methods
can be used to determine weights. In either instance, the algorithms find the best match
for the number of predicted clusters (k) when the training is performed unsupervised.
The provided data are often split into training and testing data types for neural network
creation. More data is present in training data—typically 70% more. The properties
indicated in the preceding part were extracted using MATLAB Version: 9.13.0 (R2022b)
Update 2, which was also utilized to create RBF neural networks. In this study, neural
networks were not made with pre-made toolboxes. Instead, the training and testing
processes were carefully coded manually to give the researchers as much freedom as
possible. This MATLAB package includes a number of toolboxes for creating neural
networks. It should be mentioned that the neural network was trained using the “newrb”
function. The neural network design procedure started after providing the necessary
inputs. In this study there are 176 training data and 76 test data. Many scholars [23–25]
have been interested in the use of sophisticated mathematical techniques and artificial
neural networks in a variety of scientific domains.

3. Results and Discussion

Two RBF neural networks, each taking in a 4 × 252 matrix, were trained using four fea-
tures acquired from the preceding sections. Each neural network produced a 1 × 252 matrix
representing the volume percentage of gas or oil. The best architectures for calculating gas
and oil volumes are shown in Figures 4 and 5, respectively. Different neural networks were
constructed with varying numbers of hidden layer neurons. Two RBF neural networks
have been trained to determine gas and oil volume percentages. Both have four neurons
in the input layer, one in the output layer, and 38 neurons and 27 in their hidden layer,
respectively. Technical characteristics for these networks are shown in Table 1. Two criteria,
MRE and RMSE, are proposed for determining the error value of the current networks.
For these requirements the following equations are used:

MRE% = 100 × 1
N ∑N

j=1

∣∣∣∣∣Xj(Exp)− Xj(Pred)
Xj(Pred)

∣∣∣∣∣ (5)

RMSE =

∑N
j=1
(
Xj(Exp)− Xj(Pred)

)2

N

0.5

(6)
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Table 1. The RBF neural network specifications.

ANN Gas Predictor Oil Predictor

Neurons in the input layer 4 4

Neurons in the hidden layer 38 27

Neurons in the output layer 1 1

RBF spread 4 5

RMSE
Train set Test set Train set Test set

0.27 0.18 0.27 0.29

MRE% 0.9 1.1 1.0 1.2

The experimental and predicted values of the ANN are denoted by “X(Exp)” and
“X(Pred)”, respectively, where N is the total number of observations. The obtained error is
significantly lower than the previous presented method in [26], which was not equipped
with the feature extraction method. In fact, in this paper a better answer than previous
papers was achieved with the usage of the feature extraction method in the frequency
domain, powerful artificial neural networks, and novel mathematical techniques—which is
the main novelty of this work.
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Training data and test data are the two categories into which the accessible data are
separated. The fit diagram and error diagram in Figures 6 and 7 demonstrate how neural
networks respond to these two groups. In one graph, the fitting diagram displays both
the network output and desired output. To show how accurate the network is, the error
diagram illustrates the discrepancy between the two target outputs and the network output.
The comparison table of the output values of the neural networks and the target for two
categories of training and testing data can be seen in Table 2. The comparison of the
accuracy of the current research with previous research can be seen in Table 3.
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Table 2. The comparison table of the output values of the neural networks and the target.

Oil Percentage Predictor Network Gas Percentage Predictor Network

Train Test Train Test

Output Target Output Target Output Target Output Target

1 40.0054 40 10.4679 10 29.7982 30 9.7902 10

2 60.2055 60 29.3219 30 49.5464 50 9.8175 10

3 29.7308 30 50.5092 50 20.0054 20 10.1537 10

4 29.4942 30 19.4093 20 10.2614 10 20.4569 20

5 79.9658 80 10.2367 10 70.1311 70 60.4357 60

6 59.8074 60 50.0003 50 79.5899 80 29.9579 30

7 10.4034 10 29.6052 30 9.5809 10 19.7405 20

8 20.3924 20 20.1003 20 50.2772 50 20.2639 20

9 30.2359 30 49.4711 50 50.4051 50 10.2593 10

10 39.4869 40 30.2396 30 10.0338 10 60.2406 60

11 39.3302 40 40.1394 40 39.6092 40 30.2437 30

12 40.0838 40 9.3784 10 30.3258 30 29.6059 30

13 39.7211 40 9.3789 10 59.8381 60 10.1816 10

14 70.6152 70 59.5135 60 29.7940 30 19.9633 20

15 10.6733 10 49.3275 50 30.2463 30 49.7122 50

16 29.7013 30 9.9092 10 9.5103 10 29.5985 30

17 60.4211 60 60.4651 60 9.5484 10 60.3236 60

18 10.5546 10 10.1643 10 10.1679 10 19.6750 20

19 30.1365 30 20.0282 20 10.1035 10 49.6636 50

20 10.5376 10 10.5094 10 30.0261 30 10.1660 10

21 20.6212 20 39.4368 40 50.2297 50 10.3944 10

22 40.0688 40 40.5713 40 10.2073 10 40.0166 40

23 10.3197 10 9.4512 10 30.2814 30 40.2027 40

24 30.1075 30 10.0238 10 19.7880 20 9.6536 10

25 49.3362 50 29.5004 30 10.1925 10 30.4535 30

26 19.9251 20 80.0831 80 20.0567 20 50.0409 50

27 50.2048 50 39.3064 40 39.8965 40 10.1797 10

28 10.0297 10 40.3734 40 39.5616 40 29.5366 30

29 39.8212 40 30.4882 30 60.2802 60 10.3092 10

30 50.6120 50 30.5835 30 69.8376 70 40.2486 40

31 20.4613 20 70.6818 70 20.1079 20 19.6202 20

32 60.4887 60 30.0072 30 50.2413 50 60.0250 60

33 39.8215 40 69.6800 70 19.6048 20 39.8258 40

34 30.1305 30 9.4411 10 29.6279 30 10.0464 10

35 20.5216 20 40.0110 40 10.0495 10 9.8989 10

36 50.6069 50 30.1199 30 49.9852 50 9.9151 10

37 70.2358 70 30.3680 30 70.3905 70 79.6807 80

38 69.5895 70 29.4161 30 40.2990 40 39.7554 40
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Table 2. Cont.

Oil Percentage Predictor Network Gas Percentage Predictor Network

Train Test Train Test

Output Target Output Target Output Target Output Target

39 70.2154 70 50.2262 50 30.2343 30 69.5205 70

40 79.4009 80 10.0238 10 49.5513 50 30.4237 30

41 59.8694 60 49.5395 50 49.5729 50 20.1537 20

42 50.2337 50 40.6140 40 29.5885 30 20.4326 20

43 30.6072 30 20.1267 20 20.2984 20 9.6635 10

44 30.4353 30 19.9169 20 20.4430 20 30.4211 30

45 59.9784 60 10.6187 10 80.1837 80 40.2947 40

46 10.3594 10 10.2183 10 9.6321 10 10.0774 10

47 69.8839 70 59.9327 60 20.2227 20 9.9400 10

48 30.6605 30 10.4756 10 59.6104 60 9.7576 10

49 40.6832 40 20.0457 20 9.6175 10 60.2519 60

50 50.5098 50 20.0754 20 50.1407 50 19.7287 20

51 39.8444 40 20.2521 20 9.8288 10 19.5642 20

52 29.9366 30 19.8141 20 10.1538 10 60.2673 60

53 29.6454 30 19.6350 20 40.2491 40 10.1712 10

54 10.3982 10 40.1105 40 60.0832 60 40.2152 40

55 10.5360 10 10.5136 10 40.2400 40 60.1421 60

56 20.5792 20 19.8695 20 9.7348 10 79.9190 80

57 10.0816 10 49.4577 50 20.2350 20 29.8908 30

58 70.1384 70 69.9214 70 50.4706 50 60.3161 60

59 9.5084 10 69.7203 70 10.3669 10 9.8174 10

60 20.5596 20 39.8619 40 19.5862 20 10.3145 10

61 9.9306 10 40.4667 40 9.8664 10 20.2891 20

62 49.5879 50 19.8651 20 29.8692 30 10.3523 10

63 10.5595 10 59.8462 60 70.1850 70 10.0056 10

64 20.3676 20 39.8046 40 20.0979 20 30.1357 30

65 10.5355 10 39.4964 40 50.2894 50 20.4509 20

66 9.6989 10 9.6642 10 39.8677 40 19.9440 20

67 20.2425 20 19.4215 20 49.7060 50 29.5600 30

68 40.2300 40 9.9012 10 39.5867 40 30.3667 30

69 39.4719 40 39.6602 40 20.2719 20 10.1312 10

70 19.8702 20 9.7166 10 69.7057 70 9.8551 10

71 49.6854 50 19.8948 20 29.8883 30 20.4970 20

72 30.3033 30 69.4669 70 40.0518 40 39.7242 40

73 9.6967 10 19.9931 20 39.7290 40 10.1525 10

74 60.5547 60 20.2890 20 20.1419 20 40.1050 40

75 50.4572 50 59.6410 60 69.9845 70 29.8872 30

76 19.8460 20 40.3991 40 9.6518 10 39.6422 40
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Table 2. Cont.

Oil Percentage Predictor Network Gas Percentage Predictor Network

Train Test Train Test

Output Target Output Target Output Target Output Target

77 79.9971 80 - - 30.2819 30 - -

78 30.2727 30 - - 19.6006 20 - -

79 50.4681 50 - - 29.7941 30 - -

80 60.1535 60 - - 19.7374 20 - -

81 80.1046 80 - - 40.0309 40 - -

82 29.7565 30 - - 9.5915 10 - -

83 19.9390 20 - - 59.9053 60 - -

84 60.2993 60 - - 29.6048 30 - -

85 10.5382 10 - - 29.6123 30 - -

86 60.3092 60 - - 20.2844 20 - -

87 29.3261 30 - - 9.7916 10 - -

88 50.2447 50 - - 40.1035 40 - -

89 39.9139 40 - - 50.4644 50 - -

90 59.9129 60 - - 9.9325 10 - -

91 19.4639 20 - - 40.1948 40 - -

92 50.4406 50 - - 20.2581 20 - -

93 39.7548 40 - - 19.9326 20 - -

94 19.6447 20 - - 30.1555 30 - -

95 29.7798 30 - - 39.6098 40 - -

96 19.8260 20 - - 30.4338 30 - -

97 50.0652 50 - - 29.6875 30 - -

98 20.0867 20 - - 29.7662 30 - -

99 39.8542 40 - - 40.2978 40 - -

100 19.8574 20 - - 49.9876 50 - -

101 10.0215 10 - - 60.2690 60 - -

102 10.2205 10 - - 19.8960 20 - -

103 20.6313 20 - - 19.7729 20 - -

104 80.3113 80 - - 19.5372 20 - -

105 59.8601 60 - - 60.1733 60 - -

106 40.4646 40 - - 29.9296 30 - -

107 69.4881 70 - - 9.9517 10 - -

108 9.3847 10 - - 20.1099 20 - -

109 19.4179 20 - - 39.5594 40 - -

110 49.5295 50 - - 69.8158 70 - -

111 79.7539 80 - - 80.2727 80 - -

112 9.7224 10 - - 40.1964 40 - -

113 9.3164 10 - - 49.6253 50 - -

114 10.0559 10 - - 29.6302 30 - -
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Table 2. Cont.

Oil Percentage Predictor Network Gas Percentage Predictor Network

Train Test Train Test

Output Target Output Target Output Target Output Target

115 19.4335 20 - - 9.5924 10 - -

116 19.5051 20 - - 29.5078 30 - -

117 20.1836 20 - - 49.9231 50 - -

118 10.5030 10 - - 20.1556 20 - -

119 30.6639 30 - - 50.2229 50 - -

120 20.0992 20 - - 20.0312 20 - -

121 30.6956 30 - - 49.6088 50 - -

122 30.0750 30 - - 20.1318 20 - -

123 20.0216 20 - - 19.6265 20 - -

124 9.7630 10 - - 59.6343 60 - -

125 19.9020 20 - - 9.5986 10 - -

126 29.9885 30 - - 49.6420 50 - -

127 49.3995 50 - - 49.6683 50 - -

128 30.5428 30 - - 19.6962 20 - -

129 29.3905 30 - - 39.8175 40 - -

130 29.9107 30 - - 49.8164 50 - -

131 40.4573 40 - - 9.7176 10 - -

132 49.8523 50 - - 39.7510 40 - -

133 30.1589 30 - - 30.3929 30 - -

134 20.4461 20 - - 30.2032 30 - -

135 10.5407 10 - - 10.0557 10 - -

136 30.6036 30 - - 39.6844 40 - -

137 39.5671 40 - - 69.7120 70 - -

138 49.6620 50 - - 29.5773 30 - -

139 30.5570 30 - - 80.4138 80 - -

140 40.1307 40 - - 20.2067 20 - -

141 60.0054 60 - - 10.0578 10 - -

142 10.1579 10 - - 69.8134 70 - -

143 70.4472 70 - - 29.6662 30 - -

144 50.0446 50 - - 20.1225 20 - -

145 9.5829 10 - - 50.4879 50 - -

146 9.9355 10 - - 69.6704 70 - -

147 9.8991 10 - - 39.7578 40 - -

148 10.6525 10 - - 29.8968 30 - -

149 10.1681 10 - - 69.5740 70 - -

150 20.2735 20 - - 10.1841 10 - -

151 60.3082 60 - - 49.9024 50 - -

152 39.7857 40 - - 30.4828 30 - -
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Table 2. Cont.

Oil Percentage Predictor Network Gas Percentage Predictor Network

Train Test Train Test

Output Target Output Target Output Target Output Target

153 10.0238 10 - - 19.9022 20 - -

154 60.0794 60 - - 30.1207 30 - -

155 39.5191 40 - - 69.6544 70 - -

156 30.0869 30 - - 19.8813 20 - -

157 20.2727 20 - - 19.6611 20 - -

158 9.8970 10 - - 20.2581 20 - -

159 20.4708 20 - - 20.3711 20 - -

160 30.3239 30 - - 59.8508 60 - -

161 49.8040 50 - - 60.1855 60 - -

162 9.9359 10 - - 39.7941 40 - -

163 29.8409 30 - - 60.0306 60 - -

164 30.3858 30 - - 60.3324 60 - -

165 10.3280 10 - - 50.0975 50 - -

166 49.9024 50 - - 39.8353 40 - -

167 20.2713 20 - - 79.7992 80 - -

168 50.6233 50 - - 59.9526 60 - -

169 20.3979 20 - - 69.9226 70 - -

170 20.2878 20 - - 19.8596 20 - -

171 29.4531 30 - - 40.0583 40 - -

172 9.8459 10 - - 10.2425 10 - -

173 60.1273 60 - - 9.9243 10 - -

174 9.9431 10 - - 9.9294 10 - -

175 69.3705 70 - - 39.6249 40 - -

176 19.6202 20 - - 49.5244 50 - -

Table 3. Evaluation of the suggested detection method’s accuracy in light of existing research.

Ref. Maximum MSE Maximum RMSE Extracted Features Type of Neural Network

[5] 0.21 0.46 Time features MLP
[27] 7.34 2.71 No feature extraction GMDH
[28] 1.24 1.11 Time features GMDH
[29] 0.67 0.82 Frequency features MLP
[30] 2.56 1.6 No feature extraction MLP
[31] 1.08 1.04 No feature extraction MLP
[32] 0.19 0.44 Wavelet features GMDH

[current study] 0.07 0.27 Frequency features RBF

This study has the potential benefit of reducing the number of computations used
by the system. By constructing neural networks that capitalize on the best features of
the input data, we could decrease the amount of computations required. In less than
5 min, the computer system (Processor Intel(R) Core i7-10750H, RAM16GB, Graphics Card
GeForce GTX 1650 Ti) completed the computations necessary for feature extraction and
neural network building. In the current investigation, the fundamental limitation is the
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incorporation of radiation sources into the structural layout of the detecting equipment.
Because of the dangers posed by radiation, special protective gear is required whenever
this machinery is used. Since the source cannot be switched off, however, transporting
such devices presents significant logistical challenges and necessitates the use of specialist
radiation-limiting gear. In order to solve this problem, in future researchers can work on the
use of X-ray-based flowmeters, capacitance-based and even resistance-based flowmeters so
that they can avoid the harmful effects of using radioisotopes. The low error rate attained in
this study is a consequence of correctly processing the signals that were acquired and train-
ing the neural network using the signal’s useful properties that can mask flaws. This tiny
inaccuracy allowed for highly accurate volume percentage predictions when scale was
present. Researchers in the oil field should pay close attention to investigating additional
features of the received signals and studying the extracted features with optimization-based
feature selection techniques, in light of the importance of feature extraction in identifying
the parameters of the oil field.

4. Conclusions

The system will be optimized, and the oil industry’s performance will increase, by
knowing the volume percentage of each condensate phase that passes within the oil pipe.
Consequently, developing and putting in place a system to identify volume percentage
can be a useful aid in resolving problems in the oil industry. In this work, the most precise
approach in order to determine the volume percentage of three-phase condensates flowing
in a stratified flow pattern was developed using the gamma-ray attenuation method. A dual
energy gamma source and two NaI detectors positioned on either side of the pipe make up
the detection system, which measures the volume percentage of each phase. MCNP code
is used to mimic every step of this process. While examining various scale values, a
three-phase flow was simulated at various volume percentages. Four characteristics were
retrieved from the signals from all simulations and employed in the building of neural
networks. These features were the amplitude of the first and second dominant frequency
of signals received by both detectors. The above-mentioned characteristics were taken
into account as inputs for two RBF neural networks, and each network’s output was the
volume percentage of gas and oil. By deducting the amount of oil and gas from the overall
volume of the pipe, the volume percentage of the water phase may be easily calculated.
In comparison to other studies, this neural network’s prediction of the volume percentage
has an RMSE of less than 0.29, which is a small error. Oil, gas, and petrochemical industries
that deal with multi-phase flows and the need to accurately and in real-time determine the
volume of each phase can use the methodology presented in this research to determine the
desired parameters.
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