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Abstract: The influence of adding boric acid (BA) on the adsorption behavior of lactose onto an
anion exchange resin (IRA402) was investigated. By adding BA, the amount of lactose adsorbed onto
IRA402 was increased ca. 20% compared to without adding BA. In the presence of BA, ca. 70% of
the adsorbed lactose could desorb from IRA402, while the absorbed lactose hardly desorbed in the
absence of BA. Lactose molecules were considered to bind to tertiary amine group on IRA402 by
Maillard reaction. The optimum conditions of the dosage of BA and pH were found at the molar ratio
of BA to lactose ranging from 1–2, and pH 7–9. The kinetics and equilibrium of lactose adsorption
could be explained by the Langmuir adsorption model (best model). In the case of a real whey
solution, phosphate strongly affected the adsorption behavior and could be removed as precipitation
from the whey over pH 10. Whey proteins had little effect on lactose adsorption, which was ca.
30% less than that in the model system. Moreover, the different kinds of whey proteins and amino
acids had little effect on the amount adsorbed. Minerals in the whey may also be considered to be
responsible for the decreased adsorption in the whey.
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1. Introduction

Whey is a byproduct of the manufacturing process of dairy products such as cheese
and yogurt. Approximately 90% of raw milk is produced as whey in the cheese man-
ufacturing process [1–3]. Domestic production of natural cheese in 2020 will be about
45,000 tons, and production volume in Japan has increased by about 30% over the past
10 years. The production of whey, a by-product of this increase, is estimated to be at
least 400,000 tons. The chemical oxygen demand (COD) of whey as an indicator of water
pollution is 60,000–80,000 mg/L, and lactose in particular has been reported to have the
greatest impact on COD levels. The COD standard for wastewater in Japan is 160 mg/L,
which indicates that whey has an extremely high environmental impact.

Whey is a byproduct that has a high environmental impact when disposed of in
rivers, but efforts are underway to make effective use of it. Efforts include concentrating
and drying whey, processing it into whey powder, adding it to confectionery, bread, and
ice cream, and adding it to feed for livestock such as pigs to improve meat quality. The
main constituents of whey are lactose (45–50 g/L), whey proteins such as β-lactoglobulin,
α-lactalbumin, and lactoferrin (6–8 g/L), and minerals (80–100 g/L) such as calcium,
phosphorus, sodium, potassium, magnesium, and so on [4]. Separation/recovery of these
components can result in the more effective use of whey. However, since whey tends to
spoil at room temperature and is produced in large quantities, the effective utilization
of whey requires large capital investment and management and maintenance costs for
storage facilities for quality control and various processing equipment. As a result, whey
processing is not profitable for small and medium-sized producers, and whey is often
disposed of as industrial waste, except for some producers who use it as animal feed. At
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present, whey is mainly treated in septic tanks in Japan, but manufacturers still have to bear
the cost of treating whey when it is disposed of. Therefore, it is important to separate and
recover lactose from whey to reduce the burden of whey treatment and make effective use
of these bio-resources. Although membrane separation using ultrafiltration membranes is
used as a large-scale industrial separation method for lactose, a simpler separation method
is desirable for relatively small dairy plants [5–7].

Adsorption is one of the most widely used separation methods in many fields because
it is easy to operate and often does not require expensive equipment [8–10], and several
adsorbents have been employed to remove heavy metals, i.e., ion-exchange resin [11–13],
activated carbon [14–16], zeolite [17–19], hydrogel [20,21], etc. Thus, the recovery of lactose
from whey by adsorption is recommended because it is considered to be an easy separation
method for small- and medium-scale producers. This relatively inexpensive adsorption
technique could reduce the BOD load of wastewater even in small-scale plants or producers.
The authors think that this manner is the practical value of this study.

In this study, for the separation of lactose in whey, we attempted the adsorptive
separation of the complex on an anion exchange resin using the reaction in which a
polyhydric alcohol compound with a diol structure, such as sugar, forms a negative complex
structure with boric acid [22]. This complexation reaction has been used for the analysis of
sugars by HPLC and boron-selective anion exchange resins [23,24], but there are few reports
on its application to the separation of sugars in liquids. Separation of lactose from milk
whey by utilization of boric acid and commercial anion exchange resin and by formation of
complexation with lactose boric acid has not been reported yet.

Firstly, batch adsorption experiments using lactose solution (model system) were
conducted to investigate the influence of the kind of the counterion of the anion exchange
resin on the amount of lactose adsorbed, as well as the influence of the addition of boric acid
on adsorption and desorption abilities on the anion exchange resin. Then, the influences
of the molar ratio of boric acid to lactose and the pH of the solution on the adsorption
kinetics and equilibrium were also investigated, and the optimum conditions (molar ratio
and initial pH) were determined. The adsorption kinetics under the optimum conditions
were evaluated using rate constants obtained from the pseudo-second-order rate equation
and the Langmuir rate equation, and the saturated amount adsorbed and the adsorption
equilibrium constant were obtained from the Langmuir adsorption model. In addition,
adsorption experiments were carried out with actual whey solution under the optimum
conditions obtained from the lactose model solution experiments, and the adsorption
behavior was compared with that of the model solution.

2. Materials and Methods
2.1. Materials

Lactose one hydrate, phenol, potassium sodium tartrate, copper sulfate tetrahydrate,
Folin-Lowry (phenol) reagent, L(+)-ascorbic acid, and ammonium molybdate were pur-
chased from Kanto Chemical Ltd. (Tokyo, Japan). Boric acid, sulfuric acid, sodium hydrox-
ide, sodium carbonate, hydrochloric acid, sodium sulfate, sodium chloride, sodium nitrate,
carminic acid, and L-glutamic acid were purchased from Wako Pure Chemical Ltd. (Tokyo,
Japan). Bovine serum albumin and β-lactoglobulin were purchased from Sigma-Aldlich
Chemical (St. Louis, MO, USA). Anion exchange resin, IRA402BL CL was purchased from
Organo Corporation (Tokyo, Japan).

2.2. Preparation of Whey Solution

Cow milk was purchased from a general market and was supplied commercially from
Hakodate Dairy Corporation Co., Ltd. in Hokkaido prefecture, Hakodate, Japan. A desired
amount of the milk was taken in a 500 mL beaker, then, ca. 1 M hydrogen chloride solution
was added until the pH of the milk reached pH 4.6. At the pH, proteins were aggregated
and precipitated. After the precipitation, the aggregates of proteins were filtered by a
paper filter (5C). The filtered solution was used as a whey solution. The whey solution
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was diluted, and the pH of the diluted whey solution was adjusted at a desired value
if necessary.

In the case of the removal of a phosphate ion dissolved in the whey, the pH of the
whey solution was adjusted to pH 10 by adding NaOH solution, then a white precipitate
was produced. The whey solution was centrifuged (3250× g, 3000 rpm, 15 min) and filtered
using a paper filter (No. 5C). The treated whey solution was used for experiments.

2.3. Preparation of Anion Exchange Resin

IRA402 (anion exchange resin) was used as an adsorbent for lactose in this study.
According to the data of the supplier, water retention capacity is about 49–56%, total
exchange capacity is 4.2 × 10−3 mol/g-dry, particle size is 0.50–0.65 mm, and is part of the
tertiary amine functional group. In the following procedure, the counter ion of IRA402
anion exchange resin, meaning that the chloride ion could be exchanged with hydroxyl
ion for the adsorption of lactose. An amount of 30 mL of the anion exchange resin was
taken in a 100 mL beaker and 50 mL of distilled water was also poured into the beaker to
wash the resin with distilled water. After the washing, the resin was dried in a dryer at
50 ◦C for 24 h. The dried resin was immersed in distilled water for 24 h. The resin was
taken from distilled water and was wiped with paper gently to remove water from the
outer surface of the resin. An amount of 60 mL of 1 M NaOH aqueous solution per unit
mass (g) of the dried resin was added to the resin in an adequate volume beaker; then, the
resin was stirred for one hour. After stirring, the resin was collected on a paper filter to
separate from the liquid phase by filtration. The resin was rinsed with distilled water and
this rinsing was continued until the pH of the rinsed water was confirmed to be the same
as the distilled water.

2.4. Procedure of Adsorption Experiment in the Model System

Desired amounts of the lactose solution and boric acid solution were mixed to adjust
the desired concentration of lactose and boric acid and the pH of the mixed solution
was adjusted to the desired pH value by adding HCl or NaOH solutions. The prepared
adsorbent (anion exchange resin, IRA402) and the desired amount of distilled water were
taken in a 100 mL Erlenmeyer flask. Then, the flask was set at 30 ◦C. water bath and the
solution was stirred at 400 rpm using a magnetic stirrer. After this, the mixed solution was
taken in the flask. In most experiments, 0.1 or 0.5 g (based on dry weight) of adsorbent was
used, and the volume of the system was set at 40 or 80 mL. The amount of lactose adsorbed
was calculated by the difference between the initial and arbitrary time concentrations
of lactose.

2.5. Procedure of Adsorption Experiments Using Whey Solution

After preparing milk whey using the method described in Section 2.2, the pH was ad-
justed to the desired pH value by adding an appropriate amount of 1 M HCl or 1 M NaOH
solution. After that, the whey solution was centrifuged at 3000 rpm for 15 min. The whey
solution was filtered again with filter paper (ADVANTEC 5C). In the case of varying the
whey protein concentration, whey protein concentration was varied by foam separation to
remove whey proteins from the liquid phase. In this operation, the employed apparatus
was the same one as in our previous study [25–27], and the whey solution was diluted
five times to prevent the entire liquid from becoming foam by aeration. Air was used as
an aerated gas and the volumetric flow rate was set at 50 cm3/min, which corresponds
to a superficial gas velocity of 0.0537 cm/s. The pH value of the prepared whey solution
was adjusted at pH 7 by adding HCl or NaOH solutions. The procedure after this was
mostly the same as the procedure described in Section 2.4. In addition, the control ad-
sorption experiments were conducted with the lactose solution in which bovine serum
albumin (BSA), β-lactoglobulin, (βLG), or L-glutamic acid (Glu) were prepared and added
as desired concentrations.
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2.6. Procedure of Desorption Experiments

The adsorbents that were used in the adsorption experiments were used once in the
desorption experiments. The experimental conditions were as follows: 0.015 M lactose
solution or 0.015 M boric acid/lactose mixed solution; adsorbent 1.0 g-dry; volume 40 mL;
pH 7. After the adsorption experiment, the loaded adsorbents were collected by filtration
using a paper filter (No. 2). The adsorbents were rinsed with distilled water to wash the
outer surface of the adsorbents. After this, the collected lactose-loaded adsorbent was taken
in 40 mL of 1 M NaCl solution in a 100 mL Erlenmeyer flask. At the desired time, a portion
of the solution was sampled and the lactose concentration was determined.

2.7. Determination Method of Lactose, Boric Acid, Phosphate, and Proteins

Lactose concentration was determined spectrophotometrically (486 nm) by the phenol
sulfuric acid method [28]. The Boric acid concentration was determined spectrophotometri-
cally (585 nm) by the carminic acid method [29]. Phosphate concentration was determined
spectrophotometrically (880 nm) by the molybdenum blue method [30]. Protein concentra-
tion was determined spectrophotometrically (725 nm) by the Lowry method [31]. Bovine
serum albumin was employed as a standard protein to make the determination line for the
Lowry method. A V-630 spectrophotometer (JASCO Co. Ltd., Hachioji, Japan) was used
for these measurements described above.

3. Results and Discussion
3.1. Effect of Adding Boric Acid on Adsorption of Lactose onto Anion Exchange Resin

Figure 1 shows a typical result of the influence of the counter ions on the time course
of the amount of lactose adsorbed, Xt. In the case of the chloride ion (solid circle), Xt was
5.0 × 10−5 mol/g; in the case of the hydroxyl ion, Xt was 7.5 × 10−4 mol/g. The binding
strength between the tertiary amine functional group and chloride ion was considered to be
stronger than that between the tertiary amine functional group and hydroxyl ion included
in IRA402. For the usage of IRA402 for lactose adsorption, this result suggested that the
exchange of the counter ion from the chloride ion to the hydroxyl ion was adequate for this
purpose in this study. Therefore, the IRA402 that has a hydroxyl ion as a counter ion was
used in this study. The preparation procedure was described in Section 2.3.

Figure 2 shows the influence of adding boric acid on the typical time course of the
amount of lactose adsorbed, Xt. The equilibrium of the adsorption was required for ca.
30–45 h. At the equilibrium state, Xt was 4.4 × 104 mol/g and 5.4 × 104 mol/g without
(open circle) and with (solid circle) adding boric acid, respectively. Xt with boric acid was
1.22 times higher than Xt without boric acid. The photographs of IRA402 were shown in the
graphical abstract. The color of the resin after adsorption without boric acid was extremely
different from the other resins. The reason considered was that the lactose molecule has a
carbonyl functional group and IRA402 has a tertiary amine functional group; in the case
without boric acid, lactose molecules could bind with the amine functional group within the
resin, resulting in the Maillard reaction [32]—which is a non-enzymatic browning reaction—
occurring on the resin surface. Moreover, desorption experiments were conducted to
confirm the degree of release of lactose from the resin. The results are shown in Figure 3.
The loaded adsorbents were obtained from the adsorption experiments as follows: the
adsorption experiment was conducted with 1 g-dry IRA402 resin and 80 mL of 0.015 M
lactose and 0.015 M lactose–boric acid (role ratio of one to one) at pH 7, respectively. In
the ordinate of Figure 3, Cdmax represents the maximum concentration of lactose in case
of releasing all amounts of lactose adsorbed in the 40 mL of 1 M NaCl solution, and was
defined as,

Cdmax = Xe m/V. (1)

where Xe, m, and V are the equilibrium amount absorbed of lactose, the mass of adsorbent
used in the adsorption experiments, and the volume of the eluent solution, respectively.
Thus, C/Cdmax represents the frequency of desorption of lactose from the resin surface.
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According to the amount adsorbed, the values of Cdmax with and without adding boric
were acid 1.41 × 10−2 M and 2.32 × 10−2 M, respectively. The value of C/Cdmax without
boric acid (ca. 0.1) is smaller than that with boric acid (ca. 0.7). It could be considered that
the fact should support the assumption of the Maillard reaction at the resin surface. At the
early stage of the Maillard reaction, there seems to be a reversible reaction.
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As seen in Figure 1, the adsorption equilibrium state reached about 50 h. Thus, as
the adsorption time has proceeded, the Maillard reaction would be irreversible. It is well
known that ion exchange resin has many pores. At the close surface of the near entrance
part of the pore, the adsorption could be irreversible, resulting in a decrease in available
adsorption sites. The addition of boric acid would enhance both the adsorption and the
desorption of lactose with IRA402.
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3.2. Influence of the Molar Ratio of Boric Acid and Lactose and the Initial and Equilibrium pH
Values on the Amount of Lactose Adsorbed

Figure 4 shows the influence of the molar ratio of lactose to boric acid and the initial
pH on the equilibrium amount of lactose adsorbed, Xe. The experiments were carried out
with 0.01 M of the initial concentration of lactose, 40 mL of liquid volume, and 0.5 g of ion
exchange resin for 72 h of the adsorption time. At both pH 7 and 9, Xe increased up to
the molar ratio of 2, and at higher molar ratios, Xe decreased. Xe in the case of the initial
pH of 7 was slightly higher than that in the case of the initial pH of 9 at a molar ratio of 2;
overall, there was no significant difference between Xe at molar ratios of 1 and 2. Lactose is
a disaccharide sugar that is formed by the β-1→4 glycosidic linkage of β-D-glucose and
β-D-galactose and has two cis-diol structures [33]. In contrast, in an aqueous solution, the
following equilibrium relationship for boric acid is established [34].

B(OH)3 + H2O↔ B(OH)4
− + H+; pKa = 9.24 (2)
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The tetrahydroxyborate ion B(OH)4
− is formed in the alkaline region [34]. In com-

plexation, the tetrahydroxyborate ion binds with the cis-diol part, L, as follows [35,36].

B(OH)4
− + L↔ BL− + 2 H2O (3)

B(OH)4
− + 2 L↔ BL2

− + 4 H2O (4)

As described above, it could be considered that Xe in the case of the molar ratio 2 was
relatively higher than that at the case of the ratio 2 because the tetrahydroxyborate ion
could bind with the cis-diol part up to two parts.

Figure 5 shows the relationship between the equilibrium amount of adsorbed lactose,
Xe, and the equilibrium pH.

The experimental conditions were almost the same as in Figure 4, but only the initial
pH was varied from pH 2 to pH 11. In the range of pH 7–9, Xe reached the maximum value
for both the molar ratios 1 and 2. The reason could be considered that in the acidic region,
the lactose-borate complex is less likely to form; in the alkaline region, the competitive
adsorption between OH− and lactose-borate complexes onto ion exchange resin was caused.
The fractions of tetrahydroxyborate ion are ca. 0.01 and 0.4 at pH 7 and 9, respectively,
which are calculated from the equilibrium relationship (Equation (2)). The relatively high
Xe at pH 7 may be related to the release of OH− ions from adsorbent (ion exchange resin).
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Judging by the results shown above, the most optimum initial experimental conditions
considered were molar ratio 1 and 2, the initial pH 7–9. In further experiments, these initial
conditions were employed.

3.3. Evaluation of Adsorption Kinetics of Lactose on Anion Exchange Resin when Adding
Boric Acid

In particular, it is important to evaluate the adsorption kinetics for the determination
of the operating time of adsorption operation in terms of practical operation. Figure 6
shows the typical time course of the amount of lactose adsorbed at a time, t, Xt. The amount
adsorbed increased very abruptly up to the ca. 18 h in all experimental conditions; after
this, it slowly reached the adsorption equilibrium state. The adsorption equilibrium was
found to reach 30–45 h, same as in Figure 2. Only in the case of the experimental condition
of pH 7 and molar ratio 2, Xt seemed to increase slightly linearly after about 24 h, but this
is not considered to be a significant diffusion-limited process. There was little difference
depending on the experimental conditions, indicating that the adsorption equilibrium was
reached in ca. 24 h. The kinetics equations of the pseudo-second order and the Langmuir
are expressed by the following equations.

Xt =
kXe

2t
1 + kXet

(5)
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Xt = Xe[1− exp(−(kaCe + kd)t)] (6)

where k in Equation (5) and ka and kd, in Equation (6) are the adsorption rate constant
for the pseudo-second order adsorption kinetics, and the adsorption rate constant and
the desorption rate constant for Langmuir adsorption kinetics, respectively. These rate
constants were determined by fitting the data to Equations (5) and (6) using least squares
regression, respectively. The estimated rate constants are summarized in Tables 1 and 2
with the coefficient of determination, R2. There were no large differences, particularly in
the k values except for the experimental condition of pH 7 and the molar ratio 2. The ka
values also were mostly the same without large differences. The K value is defined by the
ratio of ka to kd, which corresponds to the equilibrium adsorption constant of Langmuir
adsorption. In the case of the molar ratio 2, the K value was about two times larger than
that in the case of the molar ratio 1. It has been reported that the adsorption equilibrium
constant for bidentate adsorption was larger than that for monodentate adsorption [37].
According to the reaction scheme shown in Equations (3) and (4), it is considered that the
tetrahydroxyborate ion could bind with two lactose molecules, which as a result might
make bidentate-type adsorption within the anion exchange resin.
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Table 1. The adsorption parameters, k and Xe, estimated from fitting the data to Equation (5) for the
pseudo–second order adsorption kinetics.

pH Molar Ratio
Xe × 103 k × 10−3

R2
[mol/g] [g/(mol h)]

7 1 0.535 6.17 0.99
7 2 0.573 0.88 0.99
9 1 0.528 4.69 0.99
9 2 0.54 3.79 0.99

Table 2. The adsorption parameters, ka, kd and K, estimated from fitting of the data to Equation (6)
for Langmuir adsorption kinetics.

pH Molar Ratio ka
[L/(mol h)]

kd
[h−1]

K
[L/mol] R2

7 1 104.4 0.169 617 0.925
7 2 97.6 0.103 1087 0.871
9 1 111.0 0.238 466 0.858
9 2 115.7 0.119 973 0.925

3.4. Evaluation of Adsorption Equilibrium of Lactose on Anion Exchange Resin when Adding
Boric Acid

We employed Langmuir adsorption isotherm to evaluate the adsorption equilibrium
in this study because the adsorption site of anion exchange resin (IRA402) is the quaternary
ammonium group, and the complex of cis-diol (lactose) and tetrahydroxyborate ion should
have a negative charge. Langmuir isotherm is expressed by the following equation:

Xe =
KXsCe

1 + KCe
(7)

where Xs is the saturated amount of lactose adsorbed. The adsorption isotherms are shown
in Figure 7. As seen in Figure 7, it was found that Xe reached Xs for each experimental
condition. The adsorption parameters, K and Xs, for the Langmuir isotherm were deter-
mined by fitting the data to Equation (7) using least squares regression. The values of K
and Xs are summarized in Table 3. The lines drawn in Figure 7 are the calculated values
using K and Xs determined: the dotted line for pH 7 and molar ratio 1, the solid line for
pH 9 and molar ratio 1, the dashed-dotted line for pH 7 and molar ratio 2, and the dashed
line for pH 9 and molar ratio 2, respectively. In the case of the molar ratio 1, K and Xs
were not substantially different between pH 7 and 9. For both pH 7 and 9, Xs at the molar
ratio 1 was about 1.2 times larger than Xs at the molar ratio 2. In the case of pH 9 and the
molar ratio 9, Xs was estimated larger than the other three cases as 0.846 × 10−3 mol/g.
According to the supplier’s data, the anion exchange resin (IRA402) has the total adsorption
sites as 4.2 × 10−3 mol/g. Comparing these values, the value of Xs at pH 9 and the molar
ratio 1 corresponds to only ca. 20% of the supplier’s data. It is considered that if in the case
of the molar ratio 2, bidentate adsorption may occur, and Xs at the molar ratio 2 should
only be naturally estimated lower than Xs at the molar ratio 1. Since the adsorption of the
complex to the resin is probably due to electrostatic attraction, it is reasonable to assume
that both the adsorption kinetics and the adsorption equilibrium are of the Langmuir-
type adsorption mechanism, although the adsorption kinetic data is statistically in good
agreement with the pseudo-second order adsorption kinetics equation. Judging from these
experimental results, future experiments were conducted at pH 7 with the molar ratio 1,
which requires less boric acid and allows for easier pH adjustment.
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Table 3. K and Xs estimated from fitting of the data to Equation (7) for the Langmuir isotherm.

pH Molar Ratio K
[L/mol]

Xs × 103

[mol/g] R2

7 1:1 593 0.791 0.911
7 1:2 5869 0.615 0.911
9 1:1 547 0.846 0.924
9 1:2 760 0.706 0.924

There have been many papers that apply several kinetics and adsorption isotherm
equations to experimental kinetics data or adsorption equilibrium data and determine
the statistically optimal equation by correlation coefficient or coefficient of determination.
However, for example, the Freundlich isotherm has been derived empirically and does not
have some physical meanings. Moreover, it has been reported that there are many cases in
which the Freundlich isotherm could be explained by two Langmuir isotherms [38–44]. Not
only judging from statistical parameters, it is necessary to consider the types of adsorbents,
the experimental isotherm profiles, and the overall interpretations of the results of the batch
adsorption experiments for the adequate kinetic and adsorption equilibrium isotherm
equations. It is very likely that it is possible that the adsorption kinetics and adsorption
equilibrium relationship of the adsorption experimental data using adsorbents with a finite
number of quantitative functional groups could be expressed by the Langmuir kinetics and
isotherm equations. The adsorption isotherms shown in Figure 7, Figure 10 and Figure
11 sufficiently show that the saturated amount adsorbed is reached as the equilibrium
concentration increases, and a Langmuir adsorption equilibrium relationship is likely
established. If the adsorption rate data in the same system are likely to follow the Langmuir
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adsorption equilibrium, it is quite natural to assume that the rate model will also follow
the Langmuir type. The pseudo-second order kinetic model equation was also applied
because the pseudo-second order kinetic model equation is considered to be derived from
the Langmuir kinetic equation [45–51].

3.5. Influence of Coexisting Substances in Whey Solution on Adsorption of Lactose on Anion
Exchange Resin when Adding Boric Acid
3.5.1. Influence of Phosphate Ion on Adsorption of Lactose

In preliminary experiments, when the pH of the whey solution was raised above 7,
the solution became cloudy. Furthermore, in the adsorption experiments, it was difficult
to reproduce the experiments because the white precipitated substance adhered to the
surface of the resin and was visually confirmed. Phosphate and calcium are two of the
most abundant minerals in milk. The concentrations of phosphate and calcium in milk
are about 2.9 × 10−2 mol/L and about 2.5 × 10−2 mol/L, respectively. More than 70% of
calcium is present in casein micelles. Casein micelles are colloidal particles consisting of
four components αS1–, αS2–, β–, and κ– caseins dispersed in milk, and are composed of small
particles called submicelle, which are bound together via calcium phosphate [4]. The white
precipitated substance observed over pH 7 was considered to be calcium phosphate. By
varying the pH of the whey solution, the white precipitate was removed by centrifugation
and filtration, and the relationship between the pH value and the phosphate concentration
was investigated. After preparing the whey solution as described in Section 2.5, the pH
value of the whey solution was adjusted to the desired value, and then the solution was
centrifuged at 3250× g (3000 rpm) for 15 min. The supernatant solution (whey solution) was
filtered by filter paper (Advantec, No. 5C). Figure 8a shows the relationship between the
phosphate concentration and pH. When increasing pH value, the phosphate concentration
decreased from 1.97 × 10−2 mol/L (pH 4.6) to 1.23 × 10−3 mol/L (pH 12). This result
suggests that phosphate was captured in the white precipitated substance and removed
from the liquid phase. Lactose adsorption experiments were carried out using the whey
solution, which was adjusted at pH 10, centrifuged, and filtered, and then pH was adjusted
at pH 7. Figure 8b shows the time course of the amount of lactose adsorbed, in which
the results of two experiments (run1 and run2) are shown. The reproducibility of the
experiment was very good, indicating that there is no significant variation between the data
of the two runs. Compared with the results of adsorption experiments conducted under
the same conditions with the model system shown in Figure 1 (open circle symbol), the
amount adsorbed at 24 h is 0.727 × 10−3 mol/g for the model system, while the amount
adsorbed at 96 h is 0.583 × 10−3 mol/g for the whey system, indicating that the adsorption
rate was slower and the amount was lower than those for the model system.

3.5.2. Influence of Whey Proteins on Adsorption of Lactose

The whey protein concentration was varied by foam separation to investigate the
influence of the whey protein concentration on the adsorption of lactose on the resin.
Figure 9 shows the typical time course of the whey proteins and lactose within the column.
Before conducting foam separation, phosphate ions were removed from the whey solution
by adjusting pH 10, centrifugation, and filtration; then, the whey solution was diluted
five times and was adjusted to pH 7 to prevent the entire solution from becoming foam
by aeration [25]. When the solution was used in the adsorption experiment, the solution
was further diluted two times (ten-fold dilution of the original whey solution) and pH was
adjusted to pH 7. The whey protein concentration decreased from 0.35 g/L to 0.15 g/L for
up to 2 h, while the lactose concentration was kept constant (0.03 mol/L). The adsorption
experiments were carried out by varying the whey protein concentration in the whey
solution in this manner. The typical result is shown in Figure 10. Boric acid was added to
the solution at the molar ratio of 1. As seen in Figure 10, there was no difference in the time
course of Xt, even though the initial whey protein concentration was different (0.175 and
0.075 g/L). The open circle symbol corresponded to Xt of the model system (without whey
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proteins). The Xe (t = 70 min) of the model system was ca. 0.7 × 10−3 mol/g, while the
Xe (t = 70 min) of the whey system (triangle symbols) was ca. 0.5 × 10−3 mol/g, which
was 30% lower than that of the model system. These results suggest that the presence of
proteins in the system was getting lower than the amount of lactose adsorbed; however,
the variation in the protein concentration did not affect the amount of lactose adsorbed.
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Figure 8. (a) Influence of pH on concentration of phosphate ions in the milk whey solution after
centrifugation and filtration. (b) Typical time course of the amount of lactose adsorbed from milk
whey solution after reducing phosphate ions. Experimental conditions: lactose 0.015 M; boric acid
0.015 M; IRA402 1.0 dry-g; solution volume 80 mL; the initial pH 7.
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3.5.3. Influence of Amino Acid and Kinds of Protein on Adsorption of Lactose

In the previous section, it was suggested that the difference in the concentration
of whey proteins did not affect the adsorption of lactose, but the presence of the whey
proteins could affect the adsorption of lactose. The difference in the amount of lactose
adsorbed between the model system and the whey system was considered to be caused
by other substances and types of proteins contained in the whey. Milk whey contains
β-lactoglobulin (βLG, 3–4 g/L), α-lactalbumin (ca. 1.5 g/L), and bovine serum albumin
(BSA, ca. 0.3–0.6 g/L), which make up ca. 80% content of the total milk whey proteins [52].
In addition, the major amino acid constituents of milk whey are glutamic acid (Glu, ca.
0.04 g/L), tryptophan (0.002 g/L), and glycine (ca. 0.007 g/L), which make up ca. 75% of the
total amino acids content of milk whey [53]. βLG, BSA, and glutamic acid were employed
as typical proteins and amino acids for the adsorption experiment. The concentration of
protein (βLG and BSA) and the amino acid were adjusted to 0.075 g/L and 0.004 g/L in the
solution, respectively, and the pH was adjusted to pH 7; the results are shown in Figure 11.
The time courses of the amount of lactose adsorbed in the model system were mostly the
same, even though any additive was added to the system, while the time courses of the
amount of lactose adsorbed in the whey system were ca. 30% lower than those in the
model system, and were almost the same with the result shown in Figure 10 (open triangle
symbol). Each isoelectric point of βLG, BSA, and Glu is 4.9, 5.2, and 3.25, respectively.
They should have a negative charge at pH 7, with which the adsorption experiments were
conducted. Based on these experimental results, it is unlikely that the decrease in lactose
adsorption in the whey system is due to the influence of proteins or amino acids at pH 7.



Separations 2023, 10, 530 16 of 21

Because whey also contains various vitamins and chlorine as a major mineral [4], it is
assumed that these are influencing factors.
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Atra et al. (2005) investigated ultra- and nanofiltration for recovery of whey proteins
and lactose and reported that the yield of lactose was ca. 90% by using polyamid nanofilter
(RA55 MILLIPORE) under 30 ◦C [54]. Cuartas-Uribe et al. (2009) studied the separation
of lactose from whey ultrafiltration permeate using nanofiltration and reported that the
recovery of lactose ranged in 84.6–89.1% by using DS-5 DL (GE-OSMONICS, US) which is
made of a thin-film composite with polyamide surface on polysulfone support and polyester
matrix [55]. Souza et al. (2010) studied integrated processes (microfiltration, ultrafiltration,
ion exchange, reverse osmosis, and spray-drying) to separate and purify lactose from whey
and reported that lactose was purified as 88.5% by a single-stage ultrafiltration and also was
purified as 97.7% by a second stage ultrafiltration [56]. Ding et al. (2016) studied the shear-
enhanced ultrafiltration to concentrate whey protein and lactose and reported that recovery
of lactose was 30% using polyethersulphone ultrafiltration membranes [57]. Sánchez-
Moya et al. (2020) studied the separation of lactose from sheep whey with ultrafiltration
and reported that the recovery of lactose was 10% by using a polysulfone ultrafiltration
membrane in the filtration of whey [5]. Zhang et al. (2020) investigated a combination of
ultrafiltration, electrodialysis, and nanofiltration to produce low-lactose milk powder, and
reported that the recovery of lactose was 44% by ultrafiltration [58]. Based on the results
of Figures 10 and 11, the recovery of the adsorption method in this study was 58–60%
in the model system for lactose, and 40–42% in the actual system with whey. Even in
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the case of ultrafiltration, a recovery rate of about 40% has been reported in some cases,
and this method can be considered to be doing well as a simple treatment method in
small-scale plants.
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3.6. Limitation of the Present Adsorption Process

Although the addition of boric acid made it possible to regenerate IRB402, the des-
orption efficiency was only about 70%, and about 30% of boric acid remained in IRA402,
which means that complete regeneration of the resin may be difficult. Although it is only an
assumption, because the binding ability of IRA402 and chlorine ions is very strong, it may
be possible to regenerate IRA402 by adding NaCl, and so on. Another problem is that it is
necessary to remove boric acid from the desorption solution after lactose is desorbed from
IRA402. This problem can be solved by using a special ion exchange resin for boric acid.

The necessity to remove minerals and vitamins from the actual whey is also an issue
for further study.

4. Conclusions

The adsorption separation of lactose using an anion exchange resin with the addition
of boric acid was studied from both fundamental and applied aspects with the aim of
effective utilization of whey and reduction of environmental pollution. The following
results were obtained.
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1. By exchanging the counter ion of the anion exchange resin (IRA402) from chloride ion
to hydroxide ion, lactose could be adsorbed onto IRA402, and the amount of lactose
adsorbed was 14.2 times larger.

2. The addition of boric acid enabled the desorption of lactose from anion exchange
resins, and resulted in 72% desorption of lactose from IRA402, and the desorption
rate (%) increased 6.7-fold.

3. The binding between tetrahydroxyboronate ion and the cis-diol of lactose is considered
to be the most likely adsorption species.

4. The optimal amount of boric acid and pH were 1:1 in the molar ratio of boric acid to
lactose and pH 7–9.

5. Langmuir-type adsorption equilibrium relationship was established.
6. The recovery of the adsorption method in this study was 58–60% in the model system

for lactose, and 40–42% in the actual system with whey.
7. The amount of lactose adsorbed from the actual whey solution was 35% lower than in

the model system. It was suggested that coexisting minerals, vitamins, and chlorine
ions influenced the amount of lactose adsorbed from the whey solution.

In further studies, we will conduct a more detailed analysis of the effect of pH on the
amount of lactose adsorbed and will extend this study to a fixed-bed adsorption operation
and separation of boric acid from a practical point of view. The reuse of waste contributes
to SDGs (Sustainable Development Goals subjected by the United Nations), and we could
propose one of the contribution manners for SDGs in this study.
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Nomenclature

C = concentration of metal ion within the column [mol/m3]
Cdmax = the maximum concentration of lactose by releasing lactose [mol/m3]
Ci = initial concentration of of lactose [mol/m3]
Ct = concentration of lactose at time, t [mol/m3]
k = adsorption rate constant defined in Equation (5) [kg/(mol min)]
K = equilibrium adsorption constant defined in Equation (7) [m3/mol]
ka = adsorption rate constant defined in Equation (6) [m3/(mol min)]
kd = desorption rate constant defined in Equation (6) [min−1]
m = mass of anion exchange resin [kg]
R = removal efficiency of metal ion [-]
t = time [min]
Xe = equilibrium amount of lactose adsorbed [mol/kg]
Xs = saturated amount of lactose adsorbed [mol/kg]
Xt = amount of lactose adsorbed at time, t [mol/kg]
V = volume of liquid [m3]
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