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1. Introduction

In 2022~2023, eight high-quality papers were published in the Special Issue of Separations
entitled “Efficient and Green Recovery of Metal Minerals”. Traditionally, the term mineral
resources refers to the collection of minerals or useful elements formed through geological
mineralization. With the continuous exploitation of mineral resources, the availability of rich
or easily extractable minerals is progressively diminishing. People are turning to the efficient
development of lean and secondary metal resources [1–4]. Our Editorial Board noticed that
while the previously mentioned eight papers focus on the extraction of metals from minerals,
some also investigate the reuse of metals from waste secondary resources. In this Special
Issue, the efficient and green separation of Li, Co, Ni, Mn, Ti, V, and other non-ferrous metal
resources is comprehensively discussed.

There are two conventional methods for separating non-ferrous metals: pyrometal-
lurgy and hydrometallurgy. The essence of the pyrometallurgical process is the application
of physical and chemical principles in chemical reactions at high temperatures, while the
hydrometallurgical process consists of the large-scale application of aqueous solution chem-
istry or electro-chemistry. The reactions occurring in pyrometallurgical processes, including
reduction, oxidation, decomposition, sulfurization, halogenation, distillation, distribution,
etc., offer the advantages of fast reaction speeds, short processes, and less equipment [5].
The hydrometallurgy process usually includes three main steps, namely, leaching, purifica-
tion, and sedimentation, which can efficiently separate metals from polymetallic-coexisting
or lean ores [6].

In order to improve metal recovery rates, researchers occasionally employ a process
combining pyrometallurgy and hydrometallurgy, such as that used in the extraction of vana-
dium from vanadium slag. Vanadium slag is one of the secondary resources of vanadium
titanium magnetite. Vanadium slag contains valuable metals such as vanadium, titanium,
iron, manganese, and chromium [7]. Individual pyrometallurgical or hydrometallurgical
technologies cannot be used to separate the valuable metals mentioned above simulta-
neously. As the vanadium-containing phase in vanadium slag is a vanadium iron spinel
structure, which has a complex lattice structure, it is difficult to efficiently extract vanadium
using only the leaching process [8]. Researchers have developed sodium-roasting water-
leaching and calcium-roasting acid-leaching processes for vanadium extraction. These
processes consist of using NaCl or CaCl2 as an additive when roasting vanadium slag at
850 ◦C and then leaching the roasted slag using water or H2SO4 [9].

The efficient and green recovery of metal minerals is a timeless topic. The efficient
utilization of mineral resources is crucial for the development of modern economies and
society. As traditional fossil fuels become increasingly depleted, attention is turning to solar,
wind, nuclear, and hydrogen energy. However, the foundation for the development of these
new energy technologies is based on the efficient utilization of mineral resources. Perovskite
is a research hotspot in the field of solar energy, and the structures and properties of metal
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oxides constitute one of the main topics discussed is in this regard [10]. How to prepare pure
metal oxides is an issue concerning the efficient utilization of mineral resources [11]. Large
wind-power generation equipment should be equipped with high-performance wind turbines,
whose performance and efficiency depend on the use of neodymium, praseodymium, and
dysprosium and other rare earth elements [12–14]. Improving the distribution ratio and
separation coefficients of these rare earth elements is one of the important research areas for
rare earth minerals. The development of nuclear energy is based on the efficient separation of
radioactive metal elements. Radioisotope separation is also an issue regarding the efficient
utilization of mineral resources [15,16]. Furthermore, the safe storage and efficient preparation
of hydrogen energy are closely related to the research and development of advanced metal
materials. Common hydrogen storage alloys include rare earth series, zirconium series, iron
titanium series, magnesium series, etc. [17–19]. These alloy elements are also extracted from
mineral resources.

Whether it is the optimization of metal separation processes, the design of separation
reaction equipment, or the preparation of alloy materials through metal separation, they
are all popular topics in our journal. In this Special Issue of Separations titled “Efficient
and Green Recovery of Metal Minerals”, researchers discuss selective extraction processes,
scale up experiments for separation processes, perform separation in rotating flow fields,
and determine separation mechanisms. This Special Issue also contains a review paper
concerning the separation of magnesium and lithium in salt lake brine. This Editorial aims
to increase the visibility of this Special Issue and encourage scholars to publish articles
about metal separation in our journal.

2. Summary of Published Articles

Lithium-ion batteries used in new energy vehicles have a lifespan of 5–8 years. With
the large-scale use of new energy vehicles, waste lithium-ion batteries are attracting an
increasing amount of attention [20–23]. Common types of lithium-ion batteries include
ternary material batteries and lithium iron phosphate batteries. The power performance of
ternary material batteries is superior, but the addition of elements such as nickel, cobalt,
and manganese results in high usage costs. Waste lithium-ion batteries contain a large
amount of valuable metal elements, such as Li, Co, Ni, and Mn. The traditional methods
for recycling waste lithium-ion batteries mainly involve the use of sulfuric acid leaching
and precipitation processes. In order to reduce the amount of waste acid polluting the
environment, Kun wang et al. proposed the use of an organic acid to leach spent lithium-
ion batteries. They used 2 M acetic acid, 4.0 vol.% H2O2, to leach spent batteries in a
solid–liquid ratio of 20 g/L each at 70 ◦C for 40 min. The results showed that the leaching
rates of lithium, cobalt, nickel, manganese, and aluminum reached 98.56%, 94.61%, 96.39%,
97.97%, and 94.7%, respectively [24]. Furthermore, due to the surge in the demand for
lithium resources, researchers have further developed lithium extraction technologies using
salt lake brine. Yueyu Liu presents a review of MOF nanofiltration membranes used in the
separation of Li from salt lake brine [25].

In order to improve reaction efficiency, chemical production processes require the
use of catalysts with good catalytic performance. However, impurities in the reaction
process may react with the catalyst and precipitate its failure. Junbo Zhou proposed
using roasting and leaching processes to recover Ni, Co, Mo, and V from a waste hy-
drodesulfurization (HDS) catalyst. The results showed that 93.9% of Ni, 100.0% of Co,
99.8% of Mo, and 92.8% of V could be recovered. Furthermore, they used recycled metal
to remake LiNi0.533Co0.193Mn0.260V0.003Fe0.007Al0.004O2 battery cathode materials, which
showed excellent electrochemical performance [26].

This Special Issue includes two papers discussing the comprehensive utilization
of vanadium and titanium resources. One research team proposed the incorporation
of ammonium sulfate in the roasting of vanadium slag. Using FT-IR, XRD, XPS, and
SEM techniques, they showed the result of the decomposition and transformation of
vanadium slag during ammonium salt roasting, revealing that Fe, V, Ti, and Mn transformed
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into sulfate, with some of these elements presenting changes in chemical valence [27].
Titanium dioxide waste acid is a waste acid produced using the sulfuric acid method in the
production of titanium dioxide [28]. Another research team discussed a new process for
treating titanium dioxide waste acid. In addition to sulfuric acid, titanium dioxide waste
acid contains a large amount of ferrous sulfate, which hinders the development of the
titanium dioxide industry. This research team proposed using a new technique consisting
of step extraction and the comprehensive utilization of titanium dioxide waste acid. They
removed other impurities in the form of phosphates when iron was in a reduced state. If
the iron was in the Fe(III) form, iron phosphate was formed [29].

The use of external metallurgical techniques such as microwave, ultrasound, and
supergravity methods may further enhance metal extraction. Long Wang published a
paper discussing the extraction of Re, Ni, Co, Al, and Cr from superalloy scraps via an
ultrasonic leaching method. They found that 92.3% Re, 95.2% Ni, 98.5% Co, 98.7% Al,
and 97.5% Cr could be extracted in the ultrasonic leaching process, corresponding to an
about 20% improvement in the leaching rate compared to that of the conventional leaching
process [30]. Chunwei Shi discussed the degradation of azo dye via ultrasound in a rotating
flow field. Azo dyes are carcinogenic substances. Thus, it is necessary to explore their
degradation processes. The authors found that using a combination of ultrasound and
mechanical stirring led to an efficient degradation of the azo concentration in a solution
without requiring the frequent supplementation of ferrous chloride solution [31].

The successful promotion of laboratory technology to industrial applications has
always been a dream for researchers. The depletion of aluminum resources has led to
increasing attention to the development of low-grade bauxite mines. Yang Chen extracted
Al from low-grade bauxite on a semi-industrial experiment scale. Using the calcification–
carbonization method for processing low-grade alumina, they found that only 0.95% Na2O
was left in the bauxite residue, while only 0.85 A/S was present in the final red mud. The
total Al dissolution rate could reach over 80% [32–34].

3. Conclusions

The articles published in this Special Issue of Separations, titled “Efficient and Green
Recovery of Metal Minerals”, cover topics ranging from the recycling of spent lithium-ion
batteries and catalysts to the efficient utilization of vanadium and titanium resources, the
scaling up of experiments for low-grade bauxite, and Azo degradation and rare metal ex-
traction using ultrasound. These studies reveal that Li, Co, Ni, and Mn in spent lithium-ion
batteries can be recovered via organic acid leaching processes. Mo, V, Ni, and Co in waste
catalysts can be reused as synthetic cathode materials for lithium batteries. Calcification
and carbonization methods can facilitate the large-scale dissolution of low-grade bauxite
aluminum. Using ultrasound technologies, the efficient degradation of azo fuel and the
extraction of rare metals can be achieved. Furthermore, the included review paper may
provide insight into the application of MOF nanofiltration membranes to the separation of
Mg and Li from salt lakes.
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